Electron-Hole Plasma and Liquid

  • Chapter
  • First Online:
Semiconductor Optics 2

Part of the book series: Graduate Texts in Physics ((GTP))

  • 377 Accesses

Abstract

The presence of a gas of free electrons and holes is essential for many opto-electronic devices. Electrons and holes are generated pair-wise in solar cells or photo-diodes. Radiative recombination of electron-hole pairs is the basis of light-emitting diodes or laser diodes. Of importance is here that the electrons and holes have strong interactions which also determine details of the device operation. The interactions are due to the Coulomb interaction of the carriers and their fermionic nature. The results are primarily density-dependent effects like screening, correlation, band-gap renormalization and state filling. The consequences of these effects are manifold and prominently reflected in optical non-linearities like optical gain or optical bistability. But also different phases of the carrier gas like the electron-hole plasma or the electron-hole liquid evolve. We will treat in this chapter the named many-body interactions and how they result in the Mott transition. We discuss the phase diagram of the electron-hole gas and which phases are realized in prominent semiconductors and their nanostructures. Since the electron-hole plasma is characterized by an inverted electronic population optical gain arises which is the basis of applications like the laser diode and random lasers. We detail here the physics of degenerate electron-hole plasmas in various materials and dimensions required for the understanding of such lasers. The experimental technique optical gain spectroscopy which is an excellent tool to study electron-hole plasmas is presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Debye, E. Hückel, Z. Phys. 24(185), 305 (1923)

    Google Scholar 

  2. L.H. Thomas, Proc. Camb. Phil. Soc. 23, 542 (1927)

    Article  ADS  Google Scholar 

  3. E. Fermi, Z. Phys. 48, 73 (1928)

    Article  ADS  Google Scholar 

  4. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  ADS  Google Scholar 

  5. T.S. Moss, Proc. Phys. Soc. London, B 67, 775 (1954)

    Google Scholar 

  6. R.J. Elliot, Phys. Rev. 108, 1384 (1957) and Polarons and Excitons, ed. by C.G. Kupper, G.D. Whitfield (Oliver and Boyd, Edinburgh, 1963), p. 269

    Google Scholar 

  7. M.G.A. Bernard, G. Duraffourg, Phys. Status Solidi 1, 699 (1961). https://doi.org/10.1002/pssb.19610010703

    Article  Google Scholar 

  8. L.V. Keldyh, in Proceedings of the 9th International Conference on Physics of Semiconductors, Moscow, (1968), p. 1303

    Google Scholar 

  9. N.F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974)

    Google Scholar 

  10. G.A. Thomas, T.M. Rice, J.C. Hensel, Phys. Rev. Lett. 33, 219 (1974)

    Article  ADS  Google Scholar 

  11. V.G. Lyssenko et al., Sov. Phys. JETP 41, 163 (1975)

    ADS  Google Scholar 

  12. T.L. Reinecke, S.C. Ying, Phys. Rev. Lett. 35, 311 (1975). https://doi.org/10.1103/PhysRevLett.35.547.2

    Article  ADS  Google Scholar 

  13. T.C. Hensel, T.G. Phillips, G.A. Thomas, Solid State Phys. 32, 88 (1977)

    Google Scholar 

  14. E. Hanamura, H. Haug, Phys. Rep. 33C, 209 (1977). https://doi.org/10.1016/0370-1573(77)90012-6

    Article  ADS  Google Scholar 

  15. R.W. Martin, H.L. Stormer, Solid State Commun. 22, 523 (1977). https://doi.org/10.1016/0038-1098(77)91406-5

    Article  ADS  Google Scholar 

  16. T.M. Rice, Solid State Phys. 32, 1 (1977)

    Google Scholar 

  17. M. Rösler, R. Zimmermann, Phys. Status Solidi (b) 83, 85 (1977)

    Article  ADS  Google Scholar 

  18. G. Beni, T.M. Rice, Phys. Rev. B 18, 768 (1978)

    Article  ADS  Google Scholar 

  19. S.W. Koch et al., Phys. Status Solidi (b) 89, 431 (1978)

    Article  ADS  Google Scholar 

  20. V.G. Lysenko, V.I. Revenko, Sov. Phys. Solid State 20, 1238 (1978)

    Google Scholar 

  21. R. Zimmermann et al., Phys. Status Solidi (B) 90, 175 (1978)

    Article  ADS  Google Scholar 

  22. M. Combescot, Solid State Commun. 30, 81 (1979)

    Article  ADS  Google Scholar 

  23. H. Maaref et al., J. Lumin. 18/19, 547 (1979)

    Google Scholar 

  24. R.M. Westervelt, J.C. Culbertson, B.S. Black, Phys. Rev. Lett. 42, 269 (1979)

    Article  ADS  Google Scholar 

  25. K. Bohnert, G. Schmieder, C. Klingshirn, Phys. Status Solidi (b) 98, 175 (1980)

    Article  ADS  Google Scholar 

  26. M. Greenstein, J.P. Wolfe, Solid State Commun. 33, 309 (1980)

    Article  ADS  Google Scholar 

  27. H. Haug, D.B. Tran Thoai, Phys. Status Solidi 98, 581 (1980) doi: https://doi.org/10.1002/pssb.2220980220

  28. Ch.M. Bowden, M. Ciftan, H.R. Robl (eds.), Optical Bistability (Plenum, New York, 1980)

    Google Scholar 

  29. K. Bohnert et al., Z. Phys. B 42, 1 (1981)

    Article  ADS  Google Scholar 

  30. A. Cornet, M. Pugnet, J. Collet, T. Amand, M. Brousseau, J. Phys. (Paris), Colloq. 42, 471 (1981)

    Article  Google Scholar 

  31. A. Forchel, B. Laurich, G. Moersch, W. Schmid, T.L. Reinecke, Phys. Rev. Lett. 46, 678 (1981). https://doi.org/10.1103/PhysRevLett.46.678

    Article  ADS  Google Scholar 

  32. C. Klingshirn, H. Haug, Phys. Rep. 70, 315 (1981)

    Article  ADS  Google Scholar 

  33. D.A.B. Miller, IEEE J. Quantum Electron. 17, 306 (1981)

    Article  ADS  Google Scholar 

  34. K.M. Romanek, H. Nather, J. Fischer, E.O. Gobel, J. Lumin. 24–25, 585 (1981)

    Article  Google Scholar 

  35. H. Stolz, R. Zimmermann, G. Röpke, Phys. Status Solidi (b) 105, 585 (1981)

    Article  ADS  Google Scholar 

  36. K. Bohnert, Dissertation, Universität Karlsruhe (1982)

    Google Scholar 

  37. R. Dai et al., Z. Phys. B 46, 189 (1982)

    Article  ADS  Google Scholar 

  38. G.W. Fehrenbach et al., Phys. Rev. Lett. 49, 1281 (1982)

    Article  ADS  Google Scholar 

  39. A. Kreissl et al., Phys. Status Solidi (b) 114, 537 (1982)

    Article  ADS  Google Scholar 

  40. O. Madelung, U. Rössler (ed.), Landolt–Börnstein. New Series, Group III, vol. 17 a to i, 22 a and b, 41 A to D (Springer, Berlin, 1982–2001)

    Google Scholar 

  41. P. Vashista, R.K. Kalia, Phys. Rev. B 25, 6492 (1982)

    Article  ADS  Google Scholar 

  42. K. Bohnert, H. Kalt, C. Klingshirn, Appl. Phys. Lett. 43, 1088 (1983). https://doi.org/10.1063/1.94252

    Article  ADS  Google Scholar 

  43. M. Combescot, C. Benoit à la Guillaume, Solid State Commun. 46, 579 (1983)

    Google Scholar 

  44. A. Forchel et al., Phys. B+C 117–118, 336 (1983) doi: https://doi.org/10.1016/0378-4363(83)90521-1

  45. P. Vashista, R.K. Kalia, K.S. Singwi in Electron-Hole Droplets in Semiconductors, ed. by C.D. Jeffries, L.V. Keldysh (north Holland, Amsterdam 1983), p.1

    Google Scholar 

  46. S. Schmitt-Rink et al., Physica B 117/118, 339 (1983)

    Google Scholar 

  47. H. Haug, S. Schmitt-Rink, Prog. Quant. Electron 9, 3 (1984)

    Article  ADS  Google Scholar 

  48. S.W. Koch, Dynamics of First-Order Phase Transitions in Equilibrium and Nonequilibrium Systems. Lecture Notes in Physics, vol. 207 (Springer, Berlin/Heidelberg, 1984)

    Google Scholar 

  49. K. Kempf, C. Klingshirn, Solid State Commun. 49, 23 (1984)

    Article  ADS  Google Scholar 

  50. G. Manzke, V. May, K. Henneberger, Phys. Status Solidi (b) 125, 693 (1984)

    Article  ADS  Google Scholar 

  51. D.A.B. Miller, J. Opt. Soc. Am. B 1, 857 (1984). https://doi.org/10.1364/JOSAB.1.000857

    Article  ADS  Google Scholar 

  52. Ch.M. Bowden, H.M. Gibbs, S.L. McCall (eds.), Optical Bistability II (Plenum, New York, 1984)

    Google Scholar 

  53. B.S. Wherrett, S.D. Smith (eds.), Optical Bistability, Dynamical Nonlinearity and Photonic Logic (The Royal Society/Cambridge University Press, Cambridge, 1984)

    Google Scholar 

  54. S. Schmitt-Rink, C. Ell, H.E. Schmidt, H. Haug, Solid State Commun. 52, 123 (1984)

    Article  ADS  Google Scholar 

  55. D. Bimberg, in Landolt-Börnstein New Series, Group III, vol. 17i (Springer, New York, 1985), p.297

    Google Scholar 

  56. M. Capizzi et al., Helv. Phy. Acta 58, 272 (1985)

    Google Scholar 

  57. H.M. Gibbs, Optical Bistability, Controlling Light with Light (Academic, New York, 1985)

    Google Scholar 

  58. D. Hulin et al., J. Lumin. 30, 290 (1985)

    Article  Google Scholar 

  59. C.D. Jeffries, L.V. Keldysh (eds.), Electron–Hole Droplets in Semiconductors. Modern Problems in Condensed Matter Sciences, vol. 6 (North-Holland, Amsterdam, 1985)

    Google Scholar 

  60. F.A. Majumder et al., Phys. Rev. B 32, 2407 (1985). https://doi.org/10.1103/PhysRevB.32.2407

    Article  ADS  Google Scholar 

  61. R.M. Westervelt in [85J1], p. 187

    Google Scholar 

  62. M. Asada, Y. Miyamoto, Y. Suematsu, IEEE J. Quantum Electron. 22, 1915 (1986). https://doi.org/10.1109/JQE.1986.1073149

    Article  ADS  Google Scholar 

  63. L. Banyai and S.W. Koch, Z. Phys. B 63, 283 (1986)

    Google Scholar 

  64. L.V. Keldysh, Contemp. Phys. 27, 395 (1986). https://doi.org/10.1080/00107518608211022

    Article  ADS  Google Scholar 

  65. Y.H. Lee et al., Phys. Rev. Lett. 57, 2446 (1986). https://doi.org/10.1103/PhysRevLett.57.2446

    Article  ADS  Google Scholar 

  66. P. Mandel, N. Peyghambarian, S.D. Smith (eds.), Optical Bistability III. Springer Proceedings in Physics, vol. 8 (Springer, Berlin/Heidelberg, 1986

    Google Scholar 

  67. K.T. Tsen, H. Morkoc, Phys. Rev. B 34, 6018 (1986). https://doi.org/10.1103/PhysRevB.34.6018

    Article  ADS  Google Scholar 

  68. M. Wegener, C. Klingshirn, S. Koch, L. Banyai, Semicond. Sci. Technol. 1, 366 (1986). https://doi.org/10.1088/0268-1242/1/6/005

    Article  ADS  Google Scholar 

  69. P. Mandel, S.D. Smith, B. Wherett (eds.), From Optical Bistability Towards Optical Computing (North-Holland, Amsterdam, 1987)

    Google Scholar 

  70. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  71. P. Lugli, S.M. Goodnick, Phys. Rev. Lett. 59, 716 (1987). https://doi.org/10.1103/PhysRevLett.59.716

    Article  ADS  Google Scholar 

  72. F.A. Majumder et al., Z. Phys. B 66, 409 (1987)

    Article  ADS  Google Scholar 

  73. From Optical Bistability Towards Optical Computing, ed. by P. Mandel, S.D. Smith, B. Wherett (North-Holland, Amsterdam, 1987)

    Google Scholar 

  74. G. Trinkle et al., Phys. Rev. Lett. 58, 419 (1987). https://doi.org/10.1103/PhysRevLett.58.419

    Article  ADS  Google Scholar 

  75. G. Trinkle et al., Phys. Rev. B 36, 6712 (1987). https://doi.org/10.1103/PhysRevB.36.6712

    Article  ADS  Google Scholar 

  76. M. Wegener, C. Klingshirn, Phys. Rev. A 35(1740), 4247 (1987)

    Article  ADS  Google Scholar 

  77. D.S. Chemla et al., IEEE J. QE 24, 1664 (1988)

    Article  Google Scholar 

  78. D.S. Chemla, D.A.B. Miller, S. Schmitt-Rink, in Optical Nonlinearities and Instabilities in Semiconductors. ed. by H. Haug (Academic, New York, 1988), p.83

    Chapter  Google Scholar 

  79. H. Kalt, A.L. Smirl, T.F. Bogges, Phys. Status Solidi (b) 150, 895 (1988)

    Article  ADS  Google Scholar 

  80. S.W. Koch, N. Peyghambarian, H.M. Gibbs, J. Appl. Phys. 63, R1 (1988). https://doi.org/10.1063/1.340098

    Article  ADS  Google Scholar 

  81. S.W. Koch, in [88O3], p 273

    Google Scholar 

  82. K. Leo, W.W. Rühle, K. Ploog, Phys. Rev. B 38, 1947 (1988) https://doi.org/10.1103/PhysRevB.38.1947

  83. W. Firth, N. Peyghambarian, A. Tallet, (eds.), Optical Bistability IV (les Editions de Physique, Les Ulis Cedex, 1988); J. Phys. Paris 49 (C2 suppl. au no. 6) (1988)

    Google Scholar 

  84. H. Haug, L. Banyai (eds.), Optical Switching in Low-Dimensional Solids. NATO ASI Series B, vol. 194 (Plenum, New York, 1988)

    Google Scholar 

  85. H. Haug (ed.), Optical Nonlinearities and Instabilities in Semiconductors (Academic, New York, 1988)

    Google Scholar 

  86. T.K. Gustafson, P.W. Smith (eds.), Photonic Switching. Springer Series in Electronics and Photonics, vol. 25 (Springer, Berlin, 1988)

    Google Scholar 

  87. H.E. Swoboda et al., Z. Phys. B 70, 341 (1988); Phys. Rev. B 39, 11019 (1989)

    Google Scholar 

  88. C. Weber et al., Phys. Rev. B 38, 12748 (1988). https://doi.org/10.1103/PhysRevB.38.12748

    Article  ADS  Google Scholar 

  89. R. Zimmermann, Many Particle Theory of Highly Excited Semiconductors (Teubner-Texte zur Physik (Teubner, Leipzig, 1988)

    Google Scholar 

  90. R. Zimmermann, Phys. Status Solidi (b) 146, 371 (1988). https://doi.org/10.1002/pssb.2221460140

    Article  ADS  Google Scholar 

  91. C. Ell, H. Haug, S.W. Koch, Opt. Lett. 14, 356 (1989). https://doi.org/10.1364/OL.14.000356

    Article  ADS  Google Scholar 

  92. H. Haug, S.W. Koch, Phys. Rev. A 39, 1887 (1989). https://doi.org/10.1103/PhysRevA.39.1887

    Article  ADS  Google Scholar 

  93. C. Klingshirn et al., NATO ASI Ser. B 194, 353 (1989)

    Article  Google Scholar 

  94. C. Klingshirn et al., NATO ASI Ser. B 200, 167 (1989)

    Article  Google Scholar 

  95. H. Kalt, K. Leo, R. Cingolani, K. Ploog, Phys. Rev. B 40, 12017 (1989). https://doi.org/10.1103/PhysRevB.40.12017

    Article  ADS  Google Scholar 

  96. V.D. Kulakovskii, E. Lach, A. Forchel, D. Grützmacher, Phys. Rev. B 40, 8087 (1989). https://doi.org/10.1103/PhysRevB.40.8087

    Article  ADS  Google Scholar 

  97. D.A.B. Miller, in Optical Bistability IV, ed. by W. Firth, N. Peyghambarian, A. Tallet (les Editions de Physique, Les Ulis Cedex, 1988); J. Phys. Paris 49 (C2 suupl. au no. 6) (1988), pp. 55, 71

    Google Scholar 

  98. B.S. Wherett, F.A.P. Tooley (eds.), Optical Computing. The Scottish Universities Summer School in Physics, vol. 34 (Edinburgh University Press, Edinburgh, 1989)

    Google Scholar 

  99. M. Rinker et al., Solid State Commun. 69, 887 (1989)

    Article  ADS  Google Scholar 

  100. S. Schmitt-Rink, D.S. Chemla, D.A.B. Miller, Adv. Phys. 38, 89–188 (1989). https://doi.org/10.1080/00018738900101102

    Article  ADS  Google Scholar 

  101. R. Cingolani, K. Ploog, Adv. Phys. 40, 535 (1990). https://doi.org/10.1080/00018739100101522

    Article  ADS  Google Scholar 

  102. R. Cingolani, H. Kalt, K. Ploog, Phys. Rev. B 42, 7655 (1990). https://doi.org/10.1103/PhysRevB.42.7655

    Article  ADS  Google Scholar 

  103. H. Fieseler, R. Schwabe, J. Staehli, Phys. Status Solidi (b) 159, 411 (1990)

    Article  ADS  Google Scholar 

  104. H. Haug, S.W. Koch, Quantum Theory of Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1990)

    Book  Google Scholar 

  105. C. Klingshirn, Festkörperphysik/Adv. Solid State Phys. 30, 335 (1990)

    Google Scholar 

  106. H. Kalt, K. Reimann, W.W. Rühle, M. Rinker, E. Bauser, Phys. Rev. B 42, 7058 (1990). https://doi.org/10.1103/PhysRevB.42.7058

    Article  ADS  Google Scholar 

  107. M. Kunz et al., J. Cryst. Growth 101, 734 (1990)

    Article  ADS  Google Scholar 

  108. E. Lach et al., Phys. status solidi 159, 125 (1990). https://doi.org/10.1002/pssb.2221590114

    Article  Google Scholar 

  109. M. Rinker, H. Kalt, K. Reimann, Y.-C. Lu, E. Bauser, Phys. Rev. B 42, 7274 (1990). https://doi.org/10.1103/PhysRevB.42.7274

    Article  ADS  Google Scholar 

  110. R. Cingolani et al., Phys. Rev. Lett. 67, 891 (1991). https://doi.org/10.1103/PhysRevLett.67.891

    Article  ADS  Google Scholar 

  111. R. Cingolani, K. Ploog, Adv. Phys. 40, 535 (1991). https://doi.org/10.1080/00018739100101522

    Article  ADS  Google Scholar 

  112. K.-H. Schlaad et al., Phys. Status Solidi (b) 159, 173 (1990); Phys. Rev. B 43, 4268 (1991) doi: https://doi.org/10.1103/PhysRevB.43.4268

  113. V.S. Dneprovskii et al., Phys. Status Solidi (b) 173, 405 (1992)

    Article  ADS  Google Scholar 

  114. H. Kalt, Festkörperphysik/Adv. Solid State Phys. 32, 145 (1992). https://doi.org/10.1007/BFb0108617

    Article  Google Scholar 

  115. H. Kalt, M. Rinker, Phys. Rev. B 45, 1139 (1992). https://doi.org/10.1103/PhysRevB.45.1139

    Article  ADS  Google Scholar 

  116. H. Kalt, R. Nötzel, K. Ploog, H. Gießen, Solid State Commun. 83, 285 (1992). https://doi.org/10.1016/0038-1098(92)90273-C

    Article  ADS  Google Scholar 

  117. E. Kapon et al., Superlattices Microstruct. 12, 491 (1992). https://doi.org/10.1016/0749-6036(92)90307-Q

    Article  ADS  Google Scholar 

  118. H. Thomas (ed.), Nonlinear Dynamics in Solids (Springer, Berlin, 1992)

    Google Scholar 

  119. P.P. Paskov, Europhys. Lett. 20, 143 (1992)

    Article  ADS  Google Scholar 

  120. X. **ao, C.W. Liu, J.C. Sturm, L.C. Lenchyshyn, M.L.W. Thewalt, Appl. Phys. Lett. 60, 1720 (1992). https://doi.org/10.1063/1.107196

    Article  ADS  Google Scholar 

  121. M. Combescot, Ch. Tanguy, in Proceedings of the 9th International Conference on Physics of Semiconductors, Bei**g, 1992, ed. by P. Jiang, H.-Z. Zheng (World Scientific, Singapore, 1993), p. 141

    Google Scholar 

  122. F. Daminger et al., in Proceedings of the 21st International Conference on Physics of Semiconductors, Bei**g, 1992, ed. by P. Jiang, H.-Z. Zheng (World Scientific, Singapore, 1993), p. 1293

    Google Scholar 

  123. E.C. Fox, H.M. van Driel, Phys. Rev. B 47, 1663 (1993)

    Article  ADS  Google Scholar 

  124. M. Hovinen, J. Ding, A.V. Nurmikko, Appl. Phys. Lett. 63, 3128 (1993)

    Article  ADS  Google Scholar 

  125. S.D. Smith, R.F. Neale (eds.), Optical Information Technology (Esprit Basic Research Series (Springer, Berlin, 1993)

    Google Scholar 

  126. K. Ploog, R. Nötzel, O. Brandt, in Proceedings of the 21st International Conference on Physics of Semiconductors, Bei**g, 1992, ed. by P. Jiang, H.-Z. Zheng (World Scientific, Singapore, 1993), p. 1297

    Google Scholar 

  127. M.S. Skolnick et al., in Proceedings of the 21st International Conference on Physics of Semiconductors, Bei**g, 1992, ed. by P. Jiang, H.-Z. Zheng (World Scientific, Singapore, 1993), p. 41

    Google Scholar 

  128. R. Cingolani, Phys. Scripta T 49(B), 470 (1994)

    Google Scholar 

  129. M. Illing et al., J. Cryst. Growth 138, 638 (1994)

    Article  ADS  Google Scholar 

  130. E. Kapon, Semiconduct. Semimet. 40, 259 (1994)

    Article  Google Scholar 

  131. C. Klingshirn, NATO ASI Ser. B 339, 327 (1994)

    Google Scholar 

  132. H. Kalt, J. Lumin. 60/61, 262 (1994)

    Google Scholar 

  133. M. Grundmann et al., J. Nonlinear Opt. Phys. Mater. 4, 99 (1995)

    Article  ADS  Google Scholar 

  134. H.F. Ghaemi et al., Superlattice Microst. 17, 15 (1995)

    Article  ADS  Google Scholar 

  135. W. Langbein et al., Phys. Rev. B 51, 1946 (1995). https://doi.org/10.1103/PhysRevB.51.1946

    Article  ADS  Google Scholar 

  136. Proc. Internat. Workshop ZnSe-Based Blue-Green Laser Structures, Würzburg (1994) published in phys. stat. sol. (b) 187 (1995)

    Google Scholar 

  137. M. Umlauff et al., Phys. Rev. B 52, 5063 (1995). https://doi.org/10.1103/PhysRevB.52.5063

    Article  ADS  Google Scholar 

  138. D.S. Wiersma, M.P. van Albada, A. Lagendijk, Nature 373, 203 (1995). https://doi.org/10.1038/373203b0

    Article  ADS  Google Scholar 

  139. M. Bayer et al., Phys. Rev. B 55, 13180 (1996)

    Article  ADS  Google Scholar 

  140. H. Kalt, Optical Properties of III–V Semiconductors: The Influence of Multi-Valley Band Structures. Springer Series in Solid State Sciences, vol. 120 (Springer, Berlin, 1996). https://doi.org/10.1007/978-3-642-58284-4

  141. O. Wind et al., J. Cryst. Growth 159, 867 (1996)

    Article  ADS  Google Scholar 

  142. D.S. Wiersma, A. Lagendijk, Phys. Rev. E 54, 4256 (1996)

    Article  ADS  Google Scholar 

  143. A. Girndt et al., Phys. Status Solidi (b) 202, 725 (1997)

    Article  ADS  Google Scholar 

  144. D.S. Wiersma, P. Bartolini, A. Lagendijk, R. Righini, Nature 390, 671 (1997). https://doi.org/10.1038/37757

    Article  ADS  Google Scholar 

  145. L. Banyai et al., Phys. Rev. Lett. 81, 882 (1998)

    Article  ADS  Google Scholar 

  146. U. Dörr et al., J. Appl. Phys. 83, 2241 (1998)

    Article  ADS  Google Scholar 

  147. C. Denz, Optical Neuronal Networks (Vieweg, Braunschweig, 1998)

    Book  Google Scholar 

  148. A. Jolk, C. Klingshirn, Phys. Status Solidi (b) 206, 841 (1998)

    Article  ADS  Google Scholar 

  149. G. Manzke et al., Phys. Status Solidi (b) 206, 37 (1998)

    Article  ADS  Google Scholar 

  150. G. Manzke et al., Phys. Rev. Lett. 80, 4943 (1998)

    Article  ADS  Google Scholar 

  151. M.F. Pereira Jr., K. Henneberger, Phys. Status Solidi (b) 206, 477 (1998)

    Article  ADS  Google Scholar 

  152. R. Schepe et al., Phys. Status Solidi (b) 206, 273 (1998)

    Article  ADS  Google Scholar 

  153. C.R. Bennet et al., Physica B 263–264, 546 (1999)

    Article  ADS  Google Scholar 

  154. H. Cao et al., Phys. Rev. Lett. 82, 2278 (1999). https://doi.org/10.1103/PhysRevLett.82.2278

    Article  ADS  Google Scholar 

  155. M. Grundmann, Phys. E Low-dimensional Syst. Nanostructures 5, 167 (1999). https://doi.org/10.1016/S1386-9477(99)00041-7

    Article  ADS  Google Scholar 

  156. C. Piermarocchi et al., Solid State Commun. 112, 433 (1999)

    Article  ADS  Google Scholar 

  157. A. Jolk et al., Phys. Status Solidi (b) 221, 295 (2000)

    Article  ADS  Google Scholar 

  158. V.I. Klimov et al., Science 290, 314 (2000). https://doi.org/10.1126/science.290.5490.314

    Article  ADS  Google Scholar 

  159. T. Meier et al., Phys. Rev. 62, 4218 (2000)

    Article  Google Scholar 

  160. T. Meier, S.W. Koch, Phys. Status Solidi (b) 221, 211 (2000)

    Article  ADS  Google Scholar 

  161. A. Ohtoma et al., Appl. Phys. Lett. 77, 2204 (2000)

    Article  ADS  Google Scholar 

  162. T. Schmielau, G. Manzke, D. Tamme, K. Henneberger, Phys. Status Solidi (B) 221, 215 (2000)

    Article  ADS  Google Scholar 

  163. R. Ziebold, T. Witte, M. Hübner, R.G. Ulbrich, Phys. Rev. B 61, 16610 (2000)

    Article  ADS  Google Scholar 

  164. D.S. Chemla, J. Shah, Nature 411, 549 (2001). https://doi.org/10.1038/35079000

    Article  ADS  Google Scholar 

  165. H. Cao, Y. Ling, J.Y. Xu, C. Cao, P. Kumar, Phys. Rev. Lett. 86, 4524 (2001). https://doi.org/10.1103/PhysRevLett.86.4524

    Article  ADS  Google Scholar 

  166. R. Huber et al., Nature 414, 286 (2001)

    Article  ADS  Google Scholar 

  167. H. Haug, Nature 414, 261 (2001)

    Article  ADS  Google Scholar 

  168. H. Ichida et al., Int. J. Mod. Phys. B 15, 28 (2001)

    Article  Google Scholar 

  169. H. Ichida et al., in Proceedings of 2000 International Conference on Excitonic Processes in Condensed Matter (= EXCON 2000), ed. by K. Cho, A. Matsui (World Scientific, Singapore/New Jersey/ London/Hong Kong, 2001), p. 225

    Google Scholar 

  170. C. Klingshirn (ed.), Landolt-Börnstein New Series, Group III, vol. 34C1 (Springer, Berlin, 2001)

    Google Scholar 

  171. M. Nagai, R. Shimano, M. Kuwata-Gonokami, Physical Review Letters 86, 5795 (2001). https://doi.org/10.1103/PhysRevLett.86.5795

    Article  ADS  Google Scholar 

  172. C. Vanneste, P. Sebbah, Phys. Rev. Lett. 87, 183903 (2001). https://doi.org/10.1103/PhysRevLett.87.183903

    Article  ADS  Google Scholar 

  173. A. Jolk, M. Jörger, C. Klingshirn, Phys. Rev. B 65, 245209 (2002)

    Article  ADS  Google Scholar 

  174. G. Manzke, K. Henneberger, Phys. Status Solidi (B) 234, 233 (2002)

    Article  ADS  Google Scholar 

  175. Ch. Nacke et al., Eur. Phys. J. B 30, 303 (2002)

    Article  ADS  Google Scholar 

  176. M. Nagai, M. Kuwata-Gonokami, J. Lumin. 100, 233 (2002)

    Article  Google Scholar 

  177. M. Nagai, K. Ohkawa, M. Kuwata-Gonokami, Appl. Phys. Lett. 81, 484 (2002)

    Article  ADS  Google Scholar 

  178. M. Nagai, M. Kuwata-Gonokami, J. Phys. Soc. Jpn. 71, 2276 (2002)

    Article  ADS  Google Scholar 

  179. R. Shimano, M. Nagai, K. Horiuchi, M. Kuwata-Gonokami, Phys. Rev. Lett. 88, 057404–1 (2002). https://doi.org/10.1103/PhysRevLett.88.057404

    Article  ADS  Google Scholar 

  180. H. Cao, Waves Random Media 13, R1 (2003). https://doi.org/10.1088/0959-7174/13/3/201

    Article  ADS  Google Scholar 

  181. M. Nagai, R. Shimano, K. Horiuch, M. Kuwata-Gonokami, Phys. status solidi 238, 509 (2003). https://doi.org/10.1002/pssb.200303171

    Article  Google Scholar 

  182. M. Nagai, R. Shimano, K. Horiuchi, M. Kuwata-Gonokami, Phys. Rev. B 68, 17 (2003). https://doi.org/10.1103/PhysRevB.68.081202

    Article  Google Scholar 

  183. S. Chatterjee et al., Phys. Rev. Lett. 92, 067402 (2004). https://doi.org/10.1103/PhysRevLett.92.067402

    Article  ADS  Google Scholar 

  184. L. Florescu, S. John, Phys. Rev. Lett. 93, 013602 (2004). https://doi.org/10.1103/PhysRevLett.93.013602

    Article  ADS  Google Scholar 

  185. H. Kalt, M. Hetterich (eds.), Optics of Semiconductors and Their Nanostructures. Springer Series in Solid State Science, vol. 146 (Springer, Berlin/New York, 2004)

    Google Scholar 

  186. S.W. Koch and M. Kira in [04K1] p. 1

    Google Scholar 

  187. H. Priller et al., Phys. Status Solidi (b) 241, 587 (2004)

    Article  ADS  Google Scholar 

  188. J.A. Zapien et al., Appl. Phys. Lett. 84, 1189 (2004); ibid., 90, 213114 (2007)

    Google Scholar 

  189. Y. Chan et al., Appl. Phys. Lett. 86, 073102 (2005)

    Article  ADS  Google Scholar 

  190. G. Chen et al., Appl. Phys. Lett. 87, 251108 (2005)

    Article  ADS  Google Scholar 

  191. C. Klingshirn et al., Adv. Solid State Phys. 45 261 (2005); Superlattice Microst. 38 209 (2005); Physik J 5 33 (2006)

    Google Scholar 

  192. L. Pavesi, Mater. Today 8, 18 (2005). https://doi.org/10.1016/S1369-7021(04)00675-3

    Article  Google Scholar 

  193. J. Shumway, D.M. Ceperlay, Solid State Commun. 134, 19 (2005)

    Article  ADS  Google Scholar 

  194. These data have been calculated with the Saha equation; H. Stolz and T. Schmielau private commun. (2005)

    Google Scholar 

  195. M. Seemann et al., Solid State Commun. 134, 107 (2005); Phys. Rev. B 72, 075204 (2005); Solid State Commun. 138, 457 (2006)

    Google Scholar 

  196. J. Fallert et al., Proceedings of the 28th ICPS, Vienna (2006); AIP Conf. Ser 893, 163 (2007)

    Google Scholar 

  197. K. Henneberger, T. Schmielau and H. Stolz, private commun (2006)

    Google Scholar 

  198. J. Hader et al., in Nitride Semiconductor Devices, Principles and Simulations, ed. by J. Piprek (Wiley, Weinheim, 2006 in press)

    Google Scholar 

  199. R. Hauschild et al., Phys. Status Solidi (c) 3, 2514 (2006). https://doi.org/10.1002/pssc.200668081

    Article  ADS  Google Scholar 

  200. R. Hauschild, H. Kalt, Appl. Phys. Lett. 89, 123107 (2006). https://doi.org/10.1063/1.2354427

    Article  ADS  Google Scholar 

  201. J. Renner et al., Appl. Phys. Lett. 89, 231104, 091105(2006)

    Google Scholar 

  202. S. Reitzenstein et al., Appl. Phys. Lett. 89, 051107 (2006)

    Article  ADS  Google Scholar 

  203. C. Klingshirn, Phys. Status Solidi (b) 244, 3027 (2007). https://doi.org/10.1002/pssb.200743072

    Article  ADS  Google Scholar 

  204. C. Vanneste, P. Sebbah, H. Cao, Phys. Rev. Lett. 98, 143902 (2007). https://doi.org/10.1103/PhysRevLett.98.143902

    Article  ADS  Google Scholar 

  205. J. Fallert et al., Opt. Express 16, 1125 (2008). https://doi.org/10.1364/OE.16.001125

    Article  ADS  Google Scholar 

  206. H.E. Türeci, L. Ge, S. Rotter, A.D. Stone, Science 320, 643 (2008). https://doi.org/10.1126/science.1155311

    Article  ADS  Google Scholar 

  207. D.S. Wiersma, Nat. Phys. 4, 359 (2008). https://doi.org/10.1038/nphys971

    Article  Google Scholar 

  208. S. Arai, T. Maruyama, IEEE. J. Sel. Top. Quantum Electron. 15, 731 (2009). https://doi.org/10.1109/JSTQE.2008.2010872

    Article  Google Scholar 

  209. J. Fallert et al., Phys. Status Solidi (c) 6, 449 (2009). https://doi.org/10.1002/pssc.200880308

    Article  ADS  Google Scholar 

  210. J. Fallert et al., Nat. Photon. 3, 279 (2009). https://doi.org/10.1038/nphoton.2009.67

    Article  ADS  Google Scholar 

  211. J. Fallert et al., J. Lumin. 129, 1685–1688 (2009). https://doi.org/10.1016/j.jlumin.2009.02.022

    Article  Google Scholar 

  212. G. Manzke et al., Phys. Status Solidi (C) 6, 520 (2009)

    Article  ADS  Google Scholar 

  213. F. Richter et al., Phys. Status Solidi (C) 6, 532 (2009)

    Article  ADS  Google Scholar 

  214. D. Semkat et al., Phys. Rev. B 80, 155201 (2009)

    Article  ADS  Google Scholar 

  215. D. Semkat, D. Kremp, K. Henneberger, Phys. Status Solidi (C) 6, 546 (2009)

    Article  ADS  Google Scholar 

  216. K. Sebald, C. Kruse, J. Wiersig, Phys. Status Solidi B 246, 255 (2009)

    Article  ADS  Google Scholar 

  217. M. Willander et al., Nanotechnology 20, 332001 (2009)

    Article  Google Scholar 

  218. D.S. Wiersma, Nat. Photonics 3, 246 (2009). https://doi.org/10.1038/nphoton.2009.53

    Article  ADS  Google Scholar 

  219. V.V. Zalamai et al., Appl. Phys. B 97, 817 (2009)

    Article  ADS  Google Scholar 

  220. J. Andreasen et al., Adv. Opt. Photonics 3, 88 (2010). https://doi.org/10.1364/AOP.3.000088

    Article  ADS  Google Scholar 

  221. C. Klingshirn et al., Phys. Status Solidi (b) 247, 1424 (2010)

    Article  ADS  Google Scholar 

  222. C.F. Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann, J. Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applications. Springer Series in Materials Science, vol. 120 (Springer, Berlin/Heidelberg, 2010)

    Google Scholar 

  223. H. Kalt et al., Phys. Status Solidi (b) 247, 1448 (2010). https://doi.org/10.1002/pssb.200983268

    Article  ADS  Google Scholar 

  224. V.V. Zalamai et al., Appl. Phys. B 99, 215 (2010)

    Article  ADS  Google Scholar 

  225. M.A.M. Versteegh et al., Phys. Rev. B 84, 035207 (2011). https://doi.org/10.1103/PhysRevB.84.035207

    Article  ADS  Google Scholar 

  226. G. Manzke, D. Semkat, H. Stolz, New J. Phys. 14, 095002 (2012). https://doi.org/10.1088/1367-2630/14/9/095002

    Article  ADS  Google Scholar 

  227. B. Redding, A.A. Choma, H. Cao, Nat. Photonics 6, 355 (2012). https://doi.org/10.1038/nphoton.2012.90

    Article  ADS  Google Scholar 

  228. P. Stano, P. Jacquod, Nat. Photonics 7, 66–71 (2012). https://doi.org/10.1038/nphoton.2012.298

    Article  ADS  Google Scholar 

  229. H.K. Liang et al., Adv. Mater. 25, 6859 (2013) do: 10.1002/adma.201303122

    Google Scholar 

  230. G. Maret et al., Nat. Photonics 7, 934 (2013). https://doi.org/10.1038/nphoton.2013.281

    Article  ADS  Google Scholar 

  231. D.S. Wiersma, Nat. Photonics 7, 188 (2013). https://doi.org/10.1038/nphoton.2013.29

    Article  ADS  Google Scholar 

  232. A.E. Almand-Hunter et al., Nature 506, 471 (2014). https://doi.org/10.1038/nature12994

    Article  ADS  Google Scholar 

  233. N. Bachelard, S. Gigan, X. Noblin, P. Sebbah, Nat. Phys. 10, 426 (2014). https://doi.org/10.1038/nphys2939

    Article  Google Scholar 

  234. M. Saba et al., Nat. Commun. 5, 1 (2014). https://doi.org/10.1038/ncomms6049

    Article  MathSciNet  Google Scholar 

  235. M.M. Ugeda et al., Nat. Mater. 13, 1091 (2014). https://doi.org/10.1038/nmat4061

    Article  ADS  Google Scholar 

  236. A. Chernikov, C. Ruppert, H.M. Hill, A.F. Rigosi, T.F. Heinz, Nat. Photonics 9, 466 (2015). https://doi.org/10.1038/nphoton.2015.104

    Article  ADS  Google Scholar 

  237. A. Chernikov et al., Phys. Rev. Lett. 115, 126802 (2015). https://doi.org/10.1103/PhysRevLett.115.126802

    Article  ADS  Google Scholar 

  238. Y.-S. Park, W.K. Bae, T. Baker, J. Lim, V.I. Klimov, Nano Lett. 15, 7319 (2015). https://doi.org/10.1021/acs.nanolett.5b02595

    Article  ADS  Google Scholar 

  239. S. Wu et al., Nature 520, 69 (2015). https://doi.org/10.1038/nature14290

    Article  ADS  Google Scholar 

  240. K.F. Mak, J. Shan, Nat. Photonics 10, 216–226 (2016). https://doi.org/10.1038/nphoton.2015.282

    Article  ADS  Google Scholar 

  241. E.A.A. Pogna et al., ACS Nano acsnano.5b06488 (2016) doi: https://doi.org/10.1021/acsnano.5b06488

  242. R. Schmidt et al., Nano Lett. 16, 2945 (2016). https://doi.org/10.1021/acs.nanolett.5b04733

    Article  ADS  Google Scholar 

  243. A. Steinhoff et al., Nat. Commun. 8, 1166 (2017). https://doi.org/10.1038/s41467-017-01298-6

    Article  ADS  Google Scholar 

  244. J. Heckötter et al., Phys. Rev. Lett. 121, 097401 (2018). https://doi.org/10.1103/PhysRevLett.121.097401

    Article  ADS  Google Scholar 

  245. A. Rustagi, A.F. Kemper, Nano Lett. 18, 455 (2018). https://doi.org/10.1021/acs.nanolett.7b04377

    Article  ADS  Google Scholar 

  246. T.B. Arp, D. Pleskot, V. Aji, N.M. Gabor, Nat. Photonics 13, (2019) doi: https://doi.org/10.1038/s41566-019-0349-y

  247. Y. Arakawa, T. Nakamura, J. Kwoen, Semicond. Semimet. 101, 91 (2019). https://doi.org/10.1016/bs.semsem.2019.07.007

    Article  Google Scholar 

  248. H. Kalt, C.F. Klingshirn, Semiconductor Optics 1: Linear Optical Properties of Semiconductors, (Springer Nature Switzerland AG. Cham (2019). https://doi.org/10.1007/978-3-030-24152-0

    Article  ADS  Google Scholar 

  249. M. Lee, S. Callard, C. Seassal, H. Jeon, Nat. Photonics 13, 445 (2019). https://doi.org/10.1038/s41566-019-0407-5

    Article  ADS  Google Scholar 

  250. D. Semkat, H. Fehske, H. Stolz, Phys. Rev. B 100, 155204 (2019). https://doi.org/10.1103/PhysRevB.100.155204

    Article  ADS  Google Scholar 

  251. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 3rd. edition (John Wiley & Sons, 2019)

    Google Scholar 

  252. J. Wang et al., Sci. Adv. 5, 2 (2019). https://doi.org/10.1126/sciadv.aax0145

    Article  Google Scholar 

  253. R. Younts et al., Phys. status solidi 256, 1900223 (2019). https://doi.org/10.1002/pssb.201900223

    Article  Google Scholar 

  254. A. Boschetti et al., Nat. Photonics 14, 177 (2020). https://doi.org/10.1038/s41566-019-0558-4

    Article  ADS  Google Scholar 

  255. C. Qin et al., Nature 585, (2020) doi: https://doi.org/10.1038/s41586-020-2621-1

  256. F.P. Garcia de Arquer et al., Science 373, eaaz8541 (2021) doi: https://doi.org/10.1126/science.aaz8541

  257. J. Norman, R.P. Mirin, J.E. Bowers, J. Vac. Sci. Technol. A 39, 020802 (2021). https://doi.org/10.1116/6.0000768

    Article  Google Scholar 

  258. C. Shang et al., ACS Photonics 8, 2555 (2021). https://doi.org/10.1021/acsphotonics.1c00707

    Article  Google Scholar 

  259. R.L. Wilmington et al., Phys. Rev. B 103, 075416 (2021). https://doi.org/10.1103/PhysRevB.103.075416

    Article  ADS  Google Scholar 

  260. D. Ni, M. Späth, F. Klämpfl, M. Hohmann, Sensors 23, 247 (2022). https://doi.org/10.3390/s23010247

    Article  ADS  Google Scholar 

  261. E. Perfetto, Y. Pavlyukh, G. Stefanucci, Phys. Rev. Lett. 128, 016801 (2022). https://doi.org/10.1103/PhysRevLett.128.016801

    Article  ADS  Google Scholar 

  262. R. Sapienza, Nat. Phys. 18, 976 (2022). https://doi.org/10.1038/s41567-022-01655-3

    Article  Google Scholar 

  263. Q.M. Thai et al., Opt. Express 30, 25219 (2022). https://doi.org/10.1364/OE.454381

    Article  ADS  Google Scholar 

  264. T. Troha et al., Phys. Rev. Lett. 130, 226301 (2023). https://doi.org/10.1103/PhysRevLett.130.226301

    Article  ADS  Google Scholar 

  265. Z. Zhan et al., ACS Photonics 10, 3077 (2023). https://doi.org/10.1021/acsphotonics.3c00435

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Kalt .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalt, H., Klingshirn, C.F. (2024). Electron-Hole Plasma and Liquid. In: Semiconductor Optics 2. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-031-51296-4_16

Download citation

Publish with us

Policies and ethics

Navigation