Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 15))

  • 114 Accesses

Abstract

Hormone-induced adaptations occur in many aspects of maternal physiology during gestation. Before these changes can be initiated, the newly formed blastocyst must signal its presence to the mother. This process is known as the maternal recognition of pregnancy and occurs in all mammalian species, but there are important species differences in how this process is achieved. Because progesterone is essential to support uterine function in pregnancy, a critical step is to maintain the function of the corpus luteum, formed from the freshly ovulated follicle, to sustain progesterone secretion. Humans and other primates have an extended luteal phase during their menstrual cycle, and post ovulatory progesterone secretion continues for a period beyond the time of implantation. Hence, these species use a placenta-derived hormone, human chorionic gonadotropin, to act as a luteotrophic hormone. Commonly used laboratory rodent species, however, have a short luteal phase during their oestrous cycle, and progesterone secretion lasts for only a few hours after ovulation. These species use a mating-induced signal to support corpus luteum function to initiate pregnancy. A unique neuroendocrine reflex initiated by vagino-cervical stimulation during mating induces a pattern of twice-daily prolactin surges that provide luteotrophic support for the first part of pregnancy, maintaining progesterone secretion until implantation can occur. After formation of the placenta, placental lactogens take over as the primary luteotrophic hormones. This chapter reviews the initial processes whereby the establishment of pregnancy is signalled to the maternal endocrine system, sustaining progesterone secretion and enabling subsequent initiation of hormone-induced adaptive changes in maternal physiology and behaviour. In the interests of limiting the scope of the chapter, we have focused on humans and rodents, as the major biomedical research species. We have not attempted to describe the processes in the blastocyst and uterus leading to implantation, which are clearly important for pregnancy but do not have a significant neuroendocrine involvement. Similarly, we have not covered immune interactions between the conceptus and the mother.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam SM, Konno T, Soares MJ (2015) Identification of target genes for a prolactin family paralog in mouse decidua. Reproduction 149(6):625–632

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrews ZB, Grattan DR (2002) Opioid control of prolactin secretion in late pregnant rats is mediated by tuberoinfundibular dopamine neurons. Neurosci Lett 328(1):60–64

    Article  CAS  PubMed  Google Scholar 

  • Andrews ZB, Grattan DR (2003) Opioid receptor subtypes involved in the regulation of prolactin secretion during pregnancy and lactation. J Neuroendocrinol 15(3):227–236

    Article  CAS  PubMed  Google Scholar 

  • Arey BJ, Averill RL, Freeman ME (1989) A sex-specific endogenous stimulatory rhythm regulating prolactin secretion. Endocrinology 124(1):119–123

    Article  CAS  PubMed  Google Scholar 

  • Arosh JA, Banu SK, McCracken JA (2016) Novel concepts on the role of prostaglandins on luteal maintenance and maternal recognition and establishment of pregnancy in ruminants. J Dairy Sci 99(7):5926–5940

    Article  CAS  PubMed  Google Scholar 

  • Bao L, Tessier C, Prigent-Tessier A, Li F, Buzzio OL, Callegari EA, Horseman ND, Gibori G (2007) Decidual prolactin silences the expression of genes detrimental to pregnancy. Endocrinology 148(5):2326–2334

    Article  CAS  PubMed  Google Scholar 

  • Bao H, Sun Y, Yang N, Deng N, Ni Z, Tang Y, Li G, Du L, Wang YL, Chen D, Wang H, Kong S (2021) Uterine Notch2 facilitates pregnancy recognition and corpus luteum maintenance via upregulating decidual Prl8a2. PLoS Genet 17(8):e1009786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazer FW (2015) History of maternal recognition of pregnancy. Adv Anat Embryol Cell Biol 216:5–25

    Article  PubMed  Google Scholar 

  • Bertram R, Egli M, Toporikova N, Freeman ME (2006) A mathematical model for the mating-induced prolactin rhythm of female rats. Am J Physiol Endocrinol Metab 290(3):E573–E582

    Article  CAS  PubMed  Google Scholar 

  • Binart N, Helloco C, Ormandy CJ, Barra J, Clement-Lacroix P, Baran N, Kelly PA (2000) Rescue of preimplantatory egg development and embryo implantation in prolactin receptor-deficient mice after progesterone administration. Endocrinology 141(7):2691–2697

    Article  CAS  PubMed  Google Scholar 

  • Breton C, Pechoux C, Morel G, Zingg HH (1995) Oxytocin receptor messenger ribonucleic acid: characterization, regulation, and cellular localization in the rat pituitary gland. Endocrinology 136(7):2928–2936

    Article  CAS  PubMed  Google Scholar 

  • Brown RS, Herbison AE, Grattan DR (2014) Prolactin regulation of kisspeptin neurones in the mouse brain and its role in the lactation-induced suppression of kisspeptin expression. J Neuroendocrinol 26(12):898–908

    Article  CAS  PubMed  Google Scholar 

  • Brown RSE, Khant Aung Z, Phillipps HR, Barad Z, Lein HJ, Boehm U, Szawka RE, Grattan DR (2019) Acute suppression of LH secretion by prolactin in female mice is mediated by kisspeptin neurons in the arcuate nucleus. Endocrinology 160(5):1323–1332

    Article  CAS  PubMed  Google Scholar 

  • Bruce HM (1959) An exteroceptive block to pregnancy in the mouse. Nature 184:105

    Article  CAS  PubMed  Google Scholar 

  • Cole LA (2010) Biological functions of hCG and hCG-related molecules. Reprod Biol Endocrinol 8:102

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa MA (2016) The endocrine function of human placenta: an overview. Reprod Biomed Online 32(1):14–43

    Article  CAS  PubMed  Google Scholar 

  • Damewood MD, Rock JA (2005) In memoriam: Georgeanna Seegar Jones, M.D.: her legacy lives on. Fertil Steril 84(2):541–542

    Article  PubMed  Google Scholar 

  • de Greef WJ, Zeilmaker GH (1979) Serum prolactin concentrations during hormonally induced pseudopregnancy in the rat. Endocrinology 105(1):195–199

    Article  PubMed  Google Scholar 

  • DeMayo FJ, Lydon JP (2020) 90 years of progesterone: New insights into progesterone receptor signaling in the endometrium required for embryo implantation. J Mol Endocrinol 65(1):T1–T14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devall AJ, Coomarasamy A (2020) Sporadic pregnancy loss and recurrent miscarriage. Best Pract Res Clin Obstet Gynaecol 69:30–39

    Article  PubMed  Google Scholar 

  • d’Hauterive SP, Close R, Gridelet V, Mawet M, Nisolle M, Geenen V (2022) Human chorionic gonadotropin and early embryogenesis: review. Int J Mol Sci 23(3):1380–1395

    Google Scholar 

  • Di Renzo GC, Tosto V, Tsibizova V (2020) Progesterone: History, facts, and artifacts. Best Pract Res Clin Obstet Gynaecol 69:2–12

    Article  PubMed  Google Scholar 

  • Egli M, Bertram R, Toporikova N, Sellix MT, Blanco W, Freeman ME (2006) Prolactin secretory rhythm of mated rats induced by a single injection of oxytocin. Am J Physiol Endocrinol Metab 290(3):E566–E572

    Article  CAS  PubMed  Google Scholar 

  • Elwood RW, Kennedy HF (1990) The relationship between infanticide and pregnancy block in mice. Behav Neural Biol 53(2):277–283

    Article  CAS  PubMed  Google Scholar 

  • Erskine MS (1995) Prolactin release after mating and genitosensory stimulation in females. Endocr Rev 16(4):508–528

    CAS  PubMed  Google Scholar 

  • Finkel H (1931) The diagnosis of pregnancy by the Aschheim-Zondek test. N Engl J Med 204:203–209

    Article  Google Scholar 

  • Fitzpatrick LA, Good A (1999) Micronized progesterone: clinical indications and comparison with current treatments. Fertil Steril 72(3):389–397

    Article  CAS  PubMed  Google Scholar 

  • Freeman ME (1979) A direct effect of the uterus on the surges of prolactin induced by cervical stimulation in the rat. Endocrinology 105(2):387–390

    Article  CAS  PubMed  Google Scholar 

  • Freeman ME (1994) The neuroendocrine control of the ovarian cycle of the rat. In: Knobil E, Neill JD (eds) The physiology of reproduction, vol 2. Raven, New York, p 613

    Google Scholar 

  • Frye CA, Erskine MS (1990) Influence of time of mating and paced copulation on induction of pseudopregnancy in cyclic female rats. J Reprod Fertil 90(2):375–385

    Article  CAS  PubMed  Google Scholar 

  • Galli Manini C (1947) Pregnancy test using the male toad. J Clin Endocrinol Metab 7(9):653–658

    Article  CAS  PubMed  Google Scholar 

  • Garzia E, Clauser R, Persani L, Borgato S, Bulfamante G, Avagliano L, Quadrelli F, Marconi AM (2013) Prolactin and proinflammatory cytokine expression at the fetomaternal interface in first trimester miscarriage. Fertil Steril 100(1):108–115 e101–102

    Article  CAS  PubMed  Google Scholar 

  • Ghalioungui P, Khalil S, Ammar AR (1963) On an ancient Egyptian method of diagnosing pregnancy and determining foetal sex. Med Hist 7(3):241–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorospe WC, Mick C, Freeman ME (1981) The obligatory role of the uterus for termination of prolactin surges initiated by cervical stimulation. Endocrinology 109(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Greep RO, Hisaw FL (1938) Pseudopregnancies from electrical stimulation of the cervix in the diestrum. Proc Soc Exp Biol Med 39(2):359–360

    Article  Google Scholar 

  • Gridelet V, Perrier d’Hauterive S, Polese B, Foidart JM, Nisolle M, Geenen V (2020) Human chorionic gonadotrophin: new pleiotropic functions for an “old” hormone during pregnancy. Front Immunol 11:343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunnet JW, Freeman ME (1983) The mating-induced release of prolactin: a unique neuroendocrine response. Endocr Rev 4(1):44–61

    Article  CAS  PubMed  Google Scholar 

  • Hackwell ECR, Ladyman SR, Brown RSE, Grattan DR (2023) Mechanisms of lactation-induced infertility in female mice. Endocrinology 164(5):bqad049

    Google Scholar 

  • Hattori T, Osakada T, Masaoka T, Ooyama R, Horio N, Mogi K, Nagasawa M, Haga-Yamanaka S, Touhara K, Kikusui T (2017) Exocrine gland-secreting peptide 1 is a key chemosensory signal responsible for the Bruce effect in mice. Curr Biol 27(20):3197–3201 e3193

    Article  CAS  PubMed  Google Scholar 

  • Helena CV, McKee DT, Bertram R, Walker AM, Freeman ME (2009) The rhythmic secretion of mating-induced prolactin secretion is controlled by prolactin acting centrally. Endocrinology 150(7):3245–3251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchison JS, Zeleznik AJ (1984) The rhesus monkey corpus luteum is dependent on pituitary gonadotropin secretion throughout the luteal phase of the menstrual cycle. Endocrinology 115(5):1780–1786

    Article  CAS  PubMed  Google Scholar 

  • Jones GE (1949) Some newer aspects of the management of infertility. J Am Med Assoc 141(16):1123–1129

    Article  CAS  PubMed  Google Scholar 

  • Kelley K (2010) The Aschheim-Zondek test for pregnancy. Embryo Project Encyclopedia from http://embryo.asu.edu/handle/10776/2078

  • Kennett JE, McKee DT (2012) Oxytocin: an emerging regulator of prolactin secretion in the female rat. J Neuroendocrinol 24(3):403–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirillova A, Martazanova B, Mishieva N, Semenova M (2021) Follicular waves in ontogenesis and female fertility. Biosystems 210:104558

    Article  PubMed  Google Scholar 

  • Ladyman SR, Carter KM, Gillett ML, Aung ZK, Grattan DR (2021) A reduction in voluntary physical activity in early pregnancy in mice is mediated by prolactin. Elife 10:e62260

    Google Scholar 

  • Larsen CM, Grattan DR (2010) Prolactin-induced mitogenesis in the subventricular zone of the maternal brain during early pregnancy is essential for normal postpartum behavioral responses in the mother. Endocrinology 151(8):3805–3814

    Article  CAS  PubMed  Google Scholar 

  • Lunenfeld B (2004) Historical perspectives in gonadotrophin therapy. Hum Reprod Update 10(6):453–467

    Article  CAS  PubMed  Google Scholar 

  • Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA Jr, Shyamala G, Conneely OM, O’Malley BW (1995) Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 9(18):2266–2278

    Article  CAS  PubMed  Google Scholar 

  • McKee DT, Poletini MO, Bertram R, Freeman ME (2007) Oxytocin action at the lactotroph is required for prolactin surges in cervically stimulated ovariectomized rats. Endocrinology 148(10):4649–4657

    Article  CAS  PubMed  Google Scholar 

  • McQuillan HJ, Han SY, Cheong I, Herbison AE (2019) GnRH pulse generator activity across the estrous cycle of female mice. Endocrinology 160(6):1480–1491

    Article  CAS  PubMed  Google Scholar 

  • Mesen TB, Young SL (2015) Progesterone and the luteal phase: a requisite to reproduction. Obstet Gynecol Clin North Am 42(1):135–151

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulac-Jericevic B, Mullinax RA, DeMayo FJ, Lydon JP, Conneely OM (2000) Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science 289(5485):1751–1754

    Article  CAS  PubMed  Google Scholar 

  • Northrop LE, Erskine MS (2008) Selective oxytocin receptor activation in the ventrolateral portion of the ventromedial hypothalamus is required for mating-induced pseudopregnancy in the female rat. Endocrinology 149(2):836–842

    Article  CAS  PubMed  Google Scholar 

  • Northrop LE, Shadrach JL, Erskine MS (2006) Noradrenergic innervation of the ventromedial hypothalamus is involved in mating-induced pseudopregnancy in the female rat. J Neuroendocrinol 18(8):577–583

    Article  CAS  PubMed  Google Scholar 

  • Norwitz ER, Schust DJ, Fisher SJ (2001) Implantation and the survival of early pregnancy. N Engl J Med 345(19):1400–1408

    Article  CAS  PubMed  Google Scholar 

  • Nyuyki KD, Waldherr M, Baeuml S, Neumann ID (2011) Yes, I am ready now: differential effects of paced versus unpaced mating on anxiety and central oxytocin release in female rats. PLoS One 6(8):e23599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillipps HR, Yip SH, Grattan DR (2020) Patterns of prolactin secretion. Mol Cell Endocrinol 502:110679

    Article  CAS  PubMed  Google Scholar 

  • Pletzer B, Winkler-Crepaz K, Maria Hillerer K (2023) Progesterone and contraceptive progestin actions on the brain: A systematic review of animal studies and comparison to human neuroimaging studies. Front Neuroendocrinol 69:101060

    Article  CAS  PubMed  Google Scholar 

  • Poletini MO, Kennett JE, McKee DT, Freeman ME (2010) Central clock regulates the cervically stimulated prolactin surges by modulation of dopamine and vasoactive intestinal polypeptide release in ovariectomized rats. Neuroendocrinology 91(2):179–188

    Article  CAS  PubMed  Google Scholar 

  • Prigent-Tessier A, Tessier C, Hirosawa-Takamori M, Boyer C, Ferguson-Gottschall S, Gibori G (1999) Rat decidual prolactin. Identification, molecular cloning, and characterization. J Biol Chem 274(53):37982–37989

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen CA, Hashizume K, Orwig KE, Xu L, Soares MJ (1996) Decidual prolactin-related protein: heterologous expression and characterization. Endocrinology 137(12):5558–5566

    Article  CAS  PubMed  Google Scholar 

  • Roellig K, Goeritz F, Fickel J, Hermes R, Hofer H, Hildebrandt TB (2010) Superconception in mammalian pregnancy can be detected and increases reproductive output per breeding season. Nat Commun 1(6):78

    Article  PubMed  Google Scholar 

  • Roellig K, Menzies BR, Hildebrandt TB, Goeritz F (2011) The concept of superfetation: a critical review on a ‘myth’ in mammalian reproduction. Biol Rev Camb Philos Soc 86(1):77–95

    Article  PubMed  Google Scholar 

  • Rosser AE, Remfry CJ, Keverne EB (1989) Restricted exposure of mice to primer pheromones coincident with prolactin surges blocks pregnancy by changing hypothalamic dopamine release. J Reprod Fertil 87(2):553–559

    Article  CAS  PubMed  Google Scholar 

  • Ryu V, Gumerova A, Korkmaz F, Kang SS, Katsel P, Miyashita S, Kannangara H, Cullen L, Chan P, Kuo T, Padilla A, Sultana F, Wizman SA, Kramskiy N, Zaidi S, Kim SM, New MI, Rosen CJ, Goosens KA, Frolinger T, Haroutunian V, Ye K, Lizneva D, Davies TF, Yuen T, Zaidi M (2022) Brain atlas for glycoprotein hormone receptors at single-transcript level. Elife 11

    Google Scholar 

  • Short R (1969) Implantation and the maternal recognition of pregnancy. In: Ciba Foundation symposium—foetal autonomy 2

    Google Scholar 

  • Smarr BL, Zucker I, Kriegsfeld LJ (2016) Detection of successful and unsuccessful pregnancies in mice within hours of pairing through frequency analysis of high temporal resolution core body temperature data. PLoS One 11(7):e0160127

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith MS, Freeman ME, Neill JD (1975) The control of progesterone secretion during the estrous cycle and early pseudopregnancy in the rat: prolactin, gonadotropin and steroid levels associated with rescue of the corpus luteum of pseudopregnancy. Endocrinology 96(1):219–226

    Article  CAS  PubMed  Google Scholar 

  • Soules MR, Clifton DK, Cohen NL, Bremner WJ, Steiner RA (1989) Luteal phase deficiency: abnormal gonadotropin and progesterone secretion patterns. J Clin Endocrinol Metab 69(4):813–820

    Article  CAS  PubMed  Google Scholar 

  • Sundstrom-Poromaa I, Comasco E, Sumner R, Luders E (2020) Progesterone—friend or foe? Front Neuroendocrinol 59:100856

    Article  PubMed  Google Scholar 

  • Talwar GP (1999) Vaccines and passive immunological approaches for the control of fertility and hormone-dependent cancers. Immunol Rev 171:173–192

    Article  CAS  PubMed  Google Scholar 

  • Taraborrelli S (2015) Physiology, production and action of progesterone. Acta Obstet Gynecol Scand 94(Suppl 161):8–16

    Article  CAS  PubMed  Google Scholar 

  • Tonkowicz PA, Voogt JL (1983) Termination of prolactin surges with development of placental lactogen secretion in the pregnant rat. Endocrinology 113(4):1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Vomachka AJ, Pratt SL, Lockefeer JA, Horseman ND (2000) Prolactin gene-disruption arrests mammary gland development and retards T-antigen-induced tumor growth. Oncogene 19(8):1077–1084

    Article  CAS  PubMed  Google Scholar 

  • Voogt J, Robertson M, Friesen H (1982) Inverse relationship of prolactin and rat placental lactogen during pregnancy. Biol Reprod 26(5):800–805

    Article  CAS  PubMed  Google Scholar 

  • Wall EG, Desai R, Khant Aung Z, Yeo SH, Grattan DR, Handelsman DJ, Herbison AE (2023) Unexpected plasma gonadal steroid and prolactin levels across the mouse estrous cycle. Endocrinology 164(6):bqad070

    Google Scholar 

  • White A (1949) The chemistry and physiology of adenohypophyseal luteotropin (prolactin). In: Harris RS, Thimann KV (eds) Vitamins & hormones, vol 7. Academic, New York, pp 253–292

    Google Scholar 

  • Yang JJ, Larsen CM, Grattan DR, Erskine MS (2009) Mating-induced neuroendocrine responses during pseudopregnancy in the female mouse. J Neuroendocrinol 21(1):30–39

    Article  CAS  PubMed  Google Scholar 

  • Zeberg H, Kelso J, Paabo S (2020) The neandertal progesterone receptor. Mol Biol Evol 37(9):2655–2660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, Armant DR (2013) Physiological and molecular determinants of embryo implantation. Mol Aspects Med 34(5):939–980

    Article  PubMed  PubMed Central  Google Scholar 

  • Zinaman MJ, Clegg ED, Brown CC, O’Connor J, Selevan SG (1996) Estimates of human fertility and pregnancy loss. Fertil Steril 65(3):503–509

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Grattan .

Editor information

Editors and Affiliations

Key References (See the Reference List for Citation Details)

Key References (See the Reference List for Citation Details)

  • Bazer (2015). Provides an overview of the origins of the concept of “maternal recognition of pregnancy”, and a thorough description of the range of species differences in this process.

  • Bertram et al. (2006). Provides the theoretical understanding of how a pattern of twice-daily prolactin surges can be generated from a single stimulus (mating). This formed the basis of much experimental work to elucidate the pathways involved.

  • Erskine (1995) and Gunnet and Freeman (1983). Comprehensive reviews of the mechanisms controlling the secretion of prolactin following mating. This is an essential luteotrophic signal in rodents to support early pregnancy.

  • Smith et al. (1975). The first complete characterization of the patterns of hormone secretion associated with the maternal recognition of pregnancy in rodents.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grattan, D.R., Ladyman, S.R. (2024). Maternal Recognition of Pregnancy. In: Brunton, P.J., Grattan, D.R. (eds) Neuroendocrine Regulation of Mammalian Pregnancy and Lactation. Masterclass in Neuroendocrinology, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-031-51138-7_1

Download citation

Publish with us

Policies and ethics

Navigation