Biofuel Molecules

  • Chapter
  • First Online:
Recent Advances in Industrial Biochemistry

Abstract

Biofuels have attracted significant attention in recent years as a result of diminishing fossil fuels and increasing environmental concerns due to greenhouse gas emissions. The concept of using biofuels as energy resources is very ancient since the earlier human history. However, civilizations preferred fossil fuels over plant resources as an energy source due to their ease of availability and economic viability. Biofuels are available in solid, liquid, and gaseous states. Biodiesel, bioethanol, biomethanol, biomethane, and bio-butanol are the commonly used biofuels as a substitute of fossil fuels. Biodiesel, because of its renewable nature and environmental benefits, is a potential and more appealing fuel for diesel engines. Biodiesel accounts for the 20% production of liquid biofuels. The biodiesel feedstocks include edible oils such as sunflower, soybean, and coconut oil, as well as nonedible oils such as Jatropha, jojoba, and spent cooking oil. Acid- and base-catalyzed transesterification reactions are the widely used methods to achieve biodiesel from diverse variety of biomass. Bioethanol accounts for the 80% of worldwide production of liquid biofuels and can be an alternative solution for the current fuel issue. Significant progress in renewable biomass pretreatment, cellulase production, and co-fermentation of sugars (pentose and hexose) as well as bioethanol separation and purification has been seen in recent decades, but bioethanol is still not to the fossil fuels. The biggest challenge remains how to reduce the production cost of bioethanol. Therefore, the biorefinery concept is needed to utilize renewable feedstocks more comprehensively and to manufacture more value-added coproducts that would reduce the cost of bioethanol production. Biomethanol can be manufactured by via a variety of thermochemical processes such as pyrolysis, gasification, and liquefaction. Anaerobic digestion, alcoholic fermentation, and agrochemical methanol synthesis are the three types of metabolic pathways. Carbon dioxide, carbon monoxide, carbon, methane, and water are the most common components in the samples investigated, and they can be found in gas, liquid, or solid form. As a result, subsequent reactions of decomposing biomass material can yield methanol. Biomethane is currently the most efficient and clean-burning biofuel available. Biomethane is the most commonly used fuel in vehicles based on gaseous fuels. It may be produced from any type of biomass, even from wet biomass, which isn’t suitable for most other biofuels. Biogas is the basic ingredient of biomethane production, which can be received from a variety of sources. Biogas may be made from a considerably wider range of feedstocks than traditional liquid biofuels. The feedstock may come from a variety of sources, including livestock waste, manure, harvest surplus, and vegetable oil leftovers. Dedicated energy crops are increasingly being used as a feedstock for biogas production. Biogas collected from landfills is another source of feedstock. Bio-butanol has been renewed as a cutting-edge biofuel with exceptional qualities of application as a “drop-in” fuel. ABE fermentation technology, which was the second largest industry in the United States in the first part of the twentieth century, can be revived for bio-butanol production while also addressing environmental concerns. Many researchers have explored several aspects of this process since the 1980s, resulting in significant improvements in bio-butanol production. However, several obstacles related to the substrate, process, and strain are still existing, and research is underway to improve bio-butanol production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah, B., Muhammad, S. A. F. A. S., Shokravi, Z., Ismail, S., Kassim, K. A., Mahmood, A. N., & Aziz, M. M. A. (2019). Fourth generation biofuel: A review on risks and mitigation strategies. Renewable and Sustainable Energy Reviews, 107, 37–50.

    Article  Google Scholar 

  • Abdullahi, M., Panneerselvam, P., Imam, S. S., & Ahmad, L. S. (2016). Removal of free fatty acids in neem oil using diphenylamine functionalized magnetic mesoporous silica SBA-15 for biodiesel production. Journal of Petroleum Technology and Alternative Fuels, 7(4), 31–37.

    Article  CAS  Google Scholar 

  • Abels, C., Carstensen, F., & Wessling, M. (2013). Membrane processes in biorefinery applications. Journal of Membrane Science, 444, 285–317.

    Article  CAS  Google Scholar 

  • Achmad, F., Kamarudin, S. K., Daud, W. R. W., & Majlan, E. H. (2011). Passive direct methanol fuel cells for portable electronic devices. Applied Energy, 88(5), 1681–1689.

    Article  Google Scholar 

  • Acquaye, A. A., Sherwen, T., Genovese, A., Kuylenstierna, J., Koh, S. L., & McQueen-Mason, S. (2012). Biofuels and their potential to aid the UK towards achieving emissions reduction policy targets. Renewable and Sustainable Energy Reviews, 16(7), 5414–5422.

    Article  Google Scholar 

  • Adams, P., Bridgwater, T., Lea-Langton, A., Ross, A., & Watson, I. (2017). Biomass conversion technologies (pp. 107–139). Greenhouse Gases Balances of Bioenergy System.

    Google Scholar 

  • Adams, P., Bridgwater, T., Lea-Langton, A., Ross, A., & Watson, I. (2018). Biomass conversion technologies. In Greenhouse gas balances of bioenergy systems (pp. 107–139). Academic Press.

    Chapter  Google Scholar 

  • Agrawal, D., Kaur, B., Brar, K. K., & Chadha, B. S. (2020). An innovative approach of priming lignocelluloses with lytic polysaccharide mono-oxygenases prior to saccharification with glycosyl hydrolases can economize second generation ethanol process. Bioresource Technology, 308, 123257.

    Article  CAS  PubMed  Google Scholar 

  • Akubude, V. C., Nwaigwe, K. N., & Dintwa, E. (2019). Production of biodiesel from microalgae via nanocatalyzed transesterification process: A review. Materials Science for Energy Technologies, 2(2), 216–225.

    Article  Google Scholar 

  • Alalwan, H. A., Alminshid, A. H., & Aljaafari, H. A. (2019). Promising evolution of biofuel generations – Subject review. Renewable Energy Focus, 28, 127–139.

    Article  Google Scholar 

  • Albahri, T. A., Riazi, M. R., & Alqattan, A. A. (2003). Analysis of quality of the petroleum fuels. Energy & Fuels, 17(3), 689–693.

    Article  CAS  Google Scholar 

  • Alberts, G., Ayuso, M., Bauen, A., Boshell, F., Chudziak, C., Gebauer, J. P., German, L., Kaltschmitt, M., Nattrass, L., Ripken, R., & Robson, P. (2016). Innovation outlook: Advanced liquid biofuels. IRENA.

    Google Scholar 

  • Alptekin, E., Canakci, M., & Sanli, H. (2011). Methyl ester production from chicken fat with high FFA (pp. 319–326). In World Renewable Energy Congress-Sweden.

    Google Scholar 

  • Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851–4861.

    Article  CAS  PubMed  Google Scholar 

  • Ambat, I., Srivastava, V., & Sillanpää, M. (2018). Recent advancement in biodiesel production methodologies using various feedstock: A review. Renewable and Sustainable Energy Reviews, 90, 356–369.

    Article  CAS  Google Scholar 

  • Anderson, E., Addy, M., **e, Q., Ma, H., Liu, Y., Cheng, Y., Onuma, N., Chen, P., & Ruan, R. (2016). Glycerin esterification of scum derived free fatty acids for biodiesel production. Bioresource Technology, 200, 153–160.

    Article  CAS  PubMed  Google Scholar 

  • Arteaga, L. E., Peralta, L. M., Kafarov, V., Casas, Y., & Gonzales, E. (2008). Bioethanol steam reforming for ecological syngas and electricity production using a fuel cell SOFC system. Chemical Engineering Journal, 136(2–3), 256–266.

    Article  CAS  Google Scholar 

  • Ashani, P. N., Shafiei, M., & Karimi. (2020). Biobutanol production from municipal solid waste: Technical and economic analysis. Bioresource Technology, 308, 123267.

    Article  CAS  PubMed  Google Scholar 

  • Atadashi, I. M., Aroua, M. K., & Aziz, A. A. (2010). High quality biodiesel and its diesel engine application: A review. Renewable and Sustainable Energy Reviews, 14(7), 1999–2008.

    Article  CAS  Google Scholar 

  • Atadashi, I. M., Aroua, M. K., Aziz, A. A., & Sulaiman, N. M. N. (2012). Production of biodiesel using high free fatty acid feedstocks. Renewable and Sustainable Energy Reviews, 16(5), 3275–3285.

    Article  CAS  Google Scholar 

  • Atadashi, I. M., Aroua, M. K., Aziz, A. A., & Sulaiman, N. M. N. (2013). The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 19(1), 14–26.

    Article  CAS  Google Scholar 

  • Bajaj, A., Lohan, P., Jha, P. N., & Mehrotra, R. (2010). Biodiesel production through lipase catalyzed transesterification: An overview. Journal of Molecular Catalysis B: Enzymatic, 62(1), 9–14.

    Article  CAS  Google Scholar 

  • Banković-Ilić, I. B., Stamenković, O. S., & Veljković, V. B. (2012). Biodiesel production from non-edible plant oils. Renewable and Sustainable Energy Reviews, 16(6), 3621–3647.

    Article  Google Scholar 

  • Baral, N. R., Sundstrom, E. R., Das, L., Gladden, J., Eudes, A., Mortimer, J. C., Singer, S. W., Mukhopadhyay, A., & Scown, C. D. (2019). Approaches for more efficient biological conversion of lignocellulosic feedstocks to biofuels and bioproducts. ACS Sustainable Chemistry & Engineering, 7(10), 9062–9079.

    Article  CAS  Google Scholar 

  • Baral, P., Jain, L., Kurmi, A. K., Kumar, V., & Agrawal, D. (2020). Augmented hydrolysis of acid pretreated sugarcane bagasse by PEG 6000 addition: A case study of Cellic CTec2 with recycling and reuse. Bioprocess and Biosystems Engineering, 43(3), 473–482.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya, J. K., Kumar, S., & Devotta, S. (2008). Studies on acidification in two-phase biomethanation process of municipal solid waste. Waste Management, 28(1), 164–169.

    Article  CAS  PubMed  Google Scholar 

  • Bhatti, H. N., Hanif, M. A., & Qasim, M. (2008). Biodiesel production from waste tallow. Fuel, 87(13–14), 2961–2966.

    Article  CAS  Google Scholar 

  • Bhuiya, M. M. K., Rasul, M. G., Khan, M. M. K., Ashwath, N., Azad, A. K., & Hazrat, M. A. (2014). Second generation biodiesel: potential alternative to-edible oil-derived biodiesel. Energy Procedia, 61, 1969–1972.

    Article  Google Scholar 

  • Bibra, M., Rathinam, N. K., Johnson, G. R., & Sani, R. K. (2020). Single pot biovalorization of food waste to ethanol by Geobacillus and Thermoanaerobacter spp. Renewable Energy, 155, 1032–1041.

    Article  CAS  Google Scholar 

  • Binhayeeding, N., Klomklao, S., & Sangkharak, K. (2017). Utilization of waste glycerol from biodiesel process as a substrate for mono-, di-, and triacylglycerol production. Energy Procedia, 138, 895–900.

    Article  CAS  Google Scholar 

  • Caballero, J. A., Front, R., Marcilla, A., & Conesa, J. A. (1997). Characterization of sewage sludges by primary and secondary pyrolysis. Journal of Analytical and Applied Pyrolysis, 40, 433–450.

    Article  Google Scholar 

  • Carlucci, C., Degennaro, L., & Luisi, R. (2019). Titanium dioxide as a catalyst in biodiesel production. Catalysts, 9(1), 75.

    Article  Google Scholar 

  • Carpita, N., Tierney, M., & Campbell, M. (2001). Molecular biology of the plant cell wall: Searching for the genes that define structure, architecture, and dynamics (pp. 1–5). In Plant Cell Walls Springer.

    Book  Google Scholar 

  • Carrozza, C. F., Papa, G., Citterio, A., Sebastiano, R., Simmons, B. A., & Singh, S. (2019). One-pot bio-derived ionic liquid conversion followed by hydrogenolysis reaction for biomass valorization: A promising approach affecting the morphology and quality of lignin of switchgrass and poplar. Bioresource Technology, 294, 122214.

    Article  CAS  PubMed  Google Scholar 

  • Chai, M., Tu, Q., Lu, M., & Yang, Y. J. (2014). Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Processing Technology, 125, 106–113.

    Article  CAS  Google Scholar 

  • Chandel, A. K., Garlapati, V. K., Singh, A. K., Antunes, F. A. F., & da Silva, S. S. (2018). The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresource Technology, 264, 370–381.

    Article  CAS  PubMed  Google Scholar 

  • Chandel, A. K., Garlapati, V. K., Jeevan, K. S. P., Hans, M., Singh, A. K., & Kumar, S. (2020). The role of renewable chemicals and biofuels in building a bioeconomy. Biofuels, Bioproducts and Biorefining, 14(4), 830–844.

    Article  CAS  Google Scholar 

  • Chaturvedi, T., Torres, A. I., Stephanopoulos, G., Thomsen, M. H., & Schmidt, J. E. (2020). Develo** process designs for biorefineries – Definitions, categories, and unit operations. Energies, 13(6), 1493.

    Article  CAS  Google Scholar 

  • Chylenski, P., Bissaro, B., Sørlie, M., Røhr, Å. K., Varnai, A., Horn, S. J., & Eijsink, V. G. (2019). Lytic polysaccharide monooxygenases in enzymatic processing of lignocellulosic biomass. ACS Catalysis, 9(6), 4970–4991.

    Article  CAS  Google Scholar 

  • da Silva, A. S. A., Espinheira, R. P., Teixeira, R. S. S., de Souza, M. F., Ferreira-Leitão, V., & Bon, E. P. (2020). Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: A critical review. Biotechnology for Biofuels, 13(1), 1–28.

    Article  Google Scholar 

  • Dai, Y., Zhang, H. S., Huan, B., & He, Y. (2017). Enhancing the enzymatic saccharification of bamboo shoot shell by sequential biological pretreatment with Galactomyces sp. CCZU11-1 and deep eutectic solvent extraction. Bioprocess and Biosystems Engineering, 40(9), 1427–1436.

    Article  CAS  PubMed  Google Scholar 

  • Davis, K. M., Rover, M., Brown, R. C., Bai, X., Wen, Z., & Jarboe, L. R. (2016). Recovery and utilization of lignin monomers as part of the biorefinery approach. Energies, 9(10), 808.

    Article  Google Scholar 

  • De Bhowmick, G., Sarmah, A. K., & Sen, R. (2018). Lignocellulosic biorefinery as a model for sustainable development of biofuels and value-added products. Bioresource Technology, 247, 1144–1154.

    Article  PubMed  Google Scholar 

  • de Carvalho Silvello, M. A., Martínez, J., & Goldbeck, R. (2020). Application of supercritical CO2 treatment enhances enzymatic hydrolysis of sugarcane bagasse. Bioenergy Research, 13(3), 786–796.

    Article  Google Scholar 

  • Del Campo, I., Alegría, I., Zazpe, M., Echeverria, M., & Echeverría, I. (2006). Diluted acid hydrolysis pretreatment of agri-food wastes for bioethanol production. Industrial Crops and Products, 24(3), 214–221.

    Article  Google Scholar 

  • Demirbas, A. (2008a). Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conversion and Management, 49(8), 2106–2116.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2008b). Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Conversion and Management, 49(1), 125–130.

    Article  CAS  Google Scholar 

  • Demirbas, M. F., Balat, M., & Balat, H. (2011). Biowastes-to-biofuels. Energy Conversion and Management, 52(4), 1815–1828.

    Article  Google Scholar 

  • Demirbas, A., Bafail, A., Ahmad, W., & Sheikh, M. (2016). Biodiesel production from non-edible plant oils. Energy Exploration & Exploitation, 34(2), 290–318.

    Article  CAS  Google Scholar 

  • Dı́az, I., Mohino, F., Pérez-Pariente, J., & Sastre, E. (2003). Synthesis of MCM-41 materials functionalised with dialkylsilane groups and their catalytic activity in the esterification of glycerol with fatty acids. Applied Catalysis A: General, 242(1), 161–169.

    Article  Google Scholar 

  • Diez, V., DeWeese, A., Kalb, R. S., Blauch, D. N., & Socha, A. M. (2019). Cellulose dissolution and biomass pretreatment using quaternary ammonium ionic liquids prepared from H-, G-, and S-type lignin-derived benzaldehydes and dimethyl carbonate. Industrial & Engineering Chemistry Research, 58(35), 16009–16017.

    Article  CAS  Google Scholar 

  • Digman, M. F., Shinners, K. J., Casler, M. D., Dien, B. S., Hatfield, R. D., Jung, H. J. G., Muck, R. E., & Weimer, P. J. (2010). Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production. Bioresource Technology, 101(14), 5305–5314.

    Article  CAS  PubMed  Google Scholar 

  • Dimos, K., Paschos, T., Louloudi, A., Kalogiannis, K. G., Lappas, A. A., Papayannakos, N., Kekos, D., & Mamma, D. (2019). Effect of various pretreatment methods on bioethanol production from cotton stalks. Fermentation, 5(1), 5.

    Article  CAS  Google Scholar 

  • Doménech, P., Manzanares, P., Álvarez, C., Ballesteros, M., & Duque, A. (2021). Comprehensive study on the effects of process parameters of alkaline thermal pretreatment followed by thermomechanical extrusion in sugar liberation from Eucalyptus grandis wood. Holzforschung, 75(3), 250–259.

    Article  Google Scholar 

  • Duan, C., Luo, M., & **ng, X. (2011). High-rate conversion of methane to methanol by Methylosinustrichosporium OB3b. Bioresource Technology, 102(15), 7349–7353.

    Article  CAS  PubMed  Google Scholar 

  • Duque, A., Manzanares, P., Ballesteros, I., Negro, M. J., Oliva, J. M., González, A., & Ballesteros, M. (2014). Sugar production from barley straw biomass pretreated by combined alkali and enzymatic extrusion. Bioresource Technology, 158, 262–268.

    Article  CAS  PubMed  Google Scholar 

  • Dziekońska-Kubczak, U., Berłowska, J., Dziugan, P., Patelski, P., Balcerek, M., Pielech-Przybylska, K., & Robak, K. (2019). Two-stage pretreatment to improve saccharification of oat straw and Jerusalem artichoke biomass. Energies, 12(9), 1715.

    Article  Google Scholar 

  • Ebbeson, B., Stokes, H. C., & Stokes, C. A. (2000). Methanol – The other alcohol: A bridge to a sustainable clean liquid fuel. Edwards RD, Smith KR Zhang J, Ma Y (2004) implications of changes in household stoves and fuel use in China. Energy Policy, 32, 395–411.

    Google Scholar 

  • Elgharbawy, A. S., Sadik, W. A., Sadek, O. M., & Kasaby, M. A. (2021). Glycerolysis treatment to enhance biodiesel production from low-quality feedstocks. Fuel, 284, 118970.

    Article  CAS  Google Scholar 

  • El-Refai, A. H., El-Abyad, M. S., El-Diwany, A. I., Sallam, L. A., & Allam, R. F. (1992). Some physiological parameters for ethanol production from beet molasses by Saccharomyces cerevisiae Y-7. Bioresource Technology, 42(3), 183–189.

    Article  CAS  Google Scholar 

  • Encinar, J. M., Pardal, A., & Sánchez, N. (2016). An improvement to the transesterification process by the use of co-solvents to produce biodiesel. Fuel, 166, 51–58.

    Article  CAS  Google Scholar 

  • Eriksson, T., Börjesson, J., & Tjerneld, F. (2002). Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology, 31(3), 353–364.

    Article  CAS  Google Scholar 

  • Farag, H. A., El-Maghraby, A., & Taha, N. A. (2011). Optimization of factors affecting esterification of mixed oil with high percentage of free fatty acid. Fuel Processing Technology, 92(3), 507–510.

    Article  CAS  Google Scholar 

  • Farmanbordar, S., Amiri, H., & Karimi, K. (2018). Simultaneous organosolv. Pretreatment and detoxification of municipal solid waste for efficient biobutanol production. Bioresource Technology, 270, 236–244.

    Article  CAS  PubMed  Google Scholar 

  • Felizardo, P., Correia, M. J. N., Raposo, I., Mendes, J. F., Berkemeier, R., & Bordado, J. M. (2006). Production of biodiesel from waste frying oils. Waste Management, 26(5), 487–494.

    Article  CAS  PubMed  Google Scholar 

  • Felizardo, P., Machado, J., Vergueiro, D., Correia, M. J. N., Gomes, J. P., & Bordado, J. M. (2011). Study on the glycerolysis reaction of high free fatty acid oils for use as biodiesel feedstock. Fuel Processing Technology, 92(6), 1225–1229.

    Article  CAS  Google Scholar 

  • Fernández-Álvarez, P., Vila, J., Garrido, J. M., Grifoll, M., Feijoo, G., & Lema, J. M. (2007). Evaluation of biodiesel as bioremediation agent for the treatment of the shore affected by the heavy oil spill of the prestige. Journal of Hazardous Materials, 147(3), 914–922.

    Article  PubMed  Google Scholar 

  • Fernando, S., Adhikari, S., Chandrapal, C., & Murali, N. (2006). Biorefineries: Current status, challenges, and future direction. Energy & Fuels, 20(4), 1727–1737.

    Article  CAS  Google Scholar 

  • Ferreira, A. B., Lemos Cardoso, A., & da Silva, M. J. (2012). Tin-catalyzed esterification and transesterification reactions: A review (Vol. 2012, p. 1). International Scholarly Research Notices.

    Google Scholar 

  • Figueiredo, M. K., Romeiro, G. A., Damasceno, R. N., & Franco, A. P. (2009). The isolation of pyrolysis oil from castor seeds via a Low Temperature Conversion (LTC) process and its use in a pyrolysis oil–diesel blend. Fuel, 88(11), 2193–2198.

    Article  CAS  Google Scholar 

  • Freedman, B., Butterfield, R. O., & Pryde, E. H. (1986). Transesterification kinetics of soybean oil. Journal of the American Oil Chemists’ Society, 63(10), 1375–1380.

    Article  CAS  Google Scholar 

  • Fregolente, P. B. L., Fregolente, L. V., Pinto, G. M. F., Batistella, B. C., & Wolf-Maciel, M. R. (2008). Monoglycerides and diglycerides synthesis in a solvent-free system by lipase-catalyzed glycerolysis. In Biotechnology for fuels and chemicals (pp. 285–292). Humana Press.

    Chapter  Google Scholar 

  • García Martín, J. F., Carrión Ruiz, J., Torres García, M., Feng, C. H., & Álvarez Mateos, P. (2019). Esterification of free fatty acids with glycerol within the biodiesel production framework. PRO, 7(11), 832.

    Google Scholar 

  • Gnanaprakasam, A., Sivakumar, V. M., Surendhar, A., Thirumarimurugan, M., & Kannadasan, T. (2013). Recent strategy of biodiesel production from waste cooking oil and process influencing parameters: A review. Journal of Energy.

    Google Scholar 

  • Goff, M. J., Bauer, N. S., Lopes, S., Sutterlin, W. R., & Suppes, G. J. (2004). Acid-catalyzed alcoholysis of soybean oil. Journal of the American Oil Chemists’ Society, 81(4), 415–420.

    Article  CAS  Google Scholar 

  • Gottumukkala, L. D., Haigh, K., & Görgens, J. (2017). Trends and advances in conversion of lignocellulosic biomass to biobutanol: Microbes, bioprocesses, and industrial viability. Renewable and Sustainable Energy Reviews, 76, 963–973.

    Article  CAS  Google Scholar 

  • Granados, M. L., Poves, M. Z., Alonso, D. M., Mariscal, R., Galisteo, F. C., Moreno-Tost, R., Santamaría, J., & Fierro, J. L. G. (2007). Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B: Environmental, 73(3–4), 317–326.

    Article  CAS  Google Scholar 

  • Guglielmo, S., Maurizio, P., Silvia, C., Maurizio, R., Riccardo, V., & Moresi. (2012). Development and testing of a novel lab-scale direct steam-injection apparatus to hydrolyse model and saline crop slurries. Journal of Biotechnology, 157(4), 590–597.

    Article  CAS  Google Scholar 

  • Gui, M. M., Lee, K. T., & Bhatia, S. (2008). Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy, 33(11), 1646–1653.

    Article  CAS  Google Scholar 

  • Guo, F., Peng, Z. G., Dai, J. Y., & **u, Z. L. (2010). Calcined sodium silicate as solid base catalyst for biodiesel production. Fuel Processing Technology, 91(3), 322–328.

    Article  CAS  Google Scholar 

  • Hafeez, S., Al-Salem, S. M., Manos, G., & Constantinou, A. (2020). Fuel production using membrane reactors: A review. Environmental Chemistry Letters, 18(5), 1477–1490.

    Article  CAS  Google Scholar 

  • Han, S. H., Cho, D. H., Kim, Y. H., & Shin, S. J. (2013). Biobutanol production from 2-year-old willow biomass by acid hydrolysis and acetone–butanol–ethanol fermentation. Energy, 61, 13–17.

    Article  CAS  Google Scholar 

  • Harabi, M., Neji Bouguerra, S., Marrakchi, F., Chrysikou, P., Bezergianni, L., & Bouaziz, M. (2019, 1937). Biodiesel and crude glycerol from waste frying oil: Production, characterization, and evaluation of biodiesel oxidative stability with diesel blends. Sustainability, 11(7).

    Google Scholar 

  • Hasegawa, F., Yokoyama, S., & Imou, K. (2010). Methanol or ethanol produced from woody biomass: Which is more advantageous? Bioresource Technology, 101(1), S109–S111.

    Article  CAS  PubMed  Google Scholar 

  • Hassan, N. S., Jalil, A. A., Hitam, C. N. C., Vo, D. N., & Nabgan, W. (2020). Biofuels and renewable chemicals production by catalytic pyrolysis of cellulose: A review. Environmental Chemistry Letters, 18(5), 1625–1648.

    Article  CAS  Google Scholar 

  • Hayyan, A., Alam, M. Z., Mirghani, M. E., Kabbashi, N. A., Hakimi, N. I. N. M., Siran, Y. M., & Tahiruddin, S. (2011). Reduction of high content of free fatty acid in sludge palm oil via acid catalyst for biodiesel production. Fuel Processing Technology, 92(5), 920–924.

    Article  CAS  Google Scholar 

  • Hermosilla, E., Rubilar, O., Schalchli, H., da Silva, A. S. A., Ferreira-Leitao, V., & Diez, M. C. (2018). Sequential white-rot and brown-rot fungal pretreatment of wheat straw as a promising alternative for complementary mild treatments. Waste Management, 79, 240–250.

    Article  CAS  PubMed  Google Scholar 

  • Huang, C. F., Lin, T. H., Guo, G. L., & Hwang, W. S. (2009). Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresource Technology, 100(17), 3914–3920.

    Article  CAS  PubMed  Google Scholar 

  • Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 106(9), 4044–4098.

    Article  CAS  PubMed  Google Scholar 

  • Huzir, N. M., Aziz, M. M. A., Ismail, S. B., Abdullah, B., Mahmood, N. A. N., Umor, N. A., & Muhammad, S. A. F. A. S. (2018). Agro-industrial waste to biobutanol production: Eco-friendly biofuels for next generation. Renewable and Sustainable Energy Reviews, 94, 476–485.

    Article  CAS  Google Scholar 

  • Imahara, H., Minami, E., Hari, S., & Saka, S. (2008). Thermal stability of biodiesel in supercritical methanol. Fuel, 87(1), 1–6.

    Article  CAS  Google Scholar 

  • Jeswani, H. K., Chilvers, A., & Azapagic, A. (2020). Environmental sustainability of biofuels: A review. Proceedings of the Royal Society A, 476(2243), 20200351.

    Article  Google Scholar 

  • Jørgensen, H., & Pinelo, M. (2017). Enzyme recycling in lignocellulosic biorefineries. Biofuels, Bioproducts and Biorefining, 11(1), 150–167.

    Google Scholar 

  • Jørgensen, H., Kristensen, J. B., & Felby, C. (2007). Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. Biofuels, Bioproducts and Biorefining, 1(2), 119–134.

    Google Scholar 

  • Julio, R., Albe, J., Vialle, C., Vaca-Garcia, C., & Sablayrolles, C. (2017). Sustainable design of biorefinery processes: Existing practices and new methodology. Biofuels, Bioproducts and Biorefinings, 11(2), 373–395.

    Article  CAS  Google Scholar 

  • Kandasamy, M., Hamawand, I., Bowtell, L., Seneweera, S., Chakrabarty, S., Yusaf, T., Shakoor, Z., Algayyim, S., & Eberhard, F. (2017). Investigation of ethanol production potential from lignocellulosic material without enzymatic hydrolysis using the ultrasound technique. Energies, 10(1), 62.

    Article  Google Scholar 

  • Kang, K. E., Park, D. H., & Jeong, G. T. (2013). Effects of inorganic salts on pretreatment of Miscanthus straw. Bioresource Technology, 132, 160–165.

    Article  CAS  PubMed  Google Scholar 

  • Kang, Q., Appels, L., Tan, T., & Dewil, R. (2014). Bioethanol from lignocellulosic biomass: Current findings determine research priorities. The Scientific World Journal, 2014, 1.

    CAS  Google Scholar 

  • Kaparaju, P., Serrano, M., Thomsen, A. B., Kongjan, P., & Angelidaki, I. (2009). Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology, 100(9), 2562–2568.

    Article  CAS  PubMed  Google Scholar 

  • Kara, K., Ouanji, F., Lotfi, E. M., El Mahi, M., Kacimi, M., & Ziyad, M. (2018). Biodiesel production from waste fish oil with high free fatty acid content from Moroccan fish-processing industries. Egyptian Journal of Petroleum, 27(2), 249–255.

    Article  Google Scholar 

  • Karmakar, A., Karmakar, S., & Mukherjee, S. (2010). Properties of various plants and animals’ feedstocks for biodiesel production. Bioresource Technology, 101(19), 7201–7210.

    Article  CAS  PubMed  Google Scholar 

  • Khan, S. A., Hussain, M. Z., Prasad, S., & Banerjee, U. C. (2009). Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews, 13(9), 2361–2372.

    Article  CAS  Google Scholar 

  • Khan, S., Siddique, R., Sajjad, W., Nabi, G., Hayat, K. M., Duan, P., & Yao, L. (2017). Biodiesel production from algae to overcome the energy crisis. HAYATI Journal of Biosciences, 24(4), 163–167.

    Article  Google Scholar 

  • Kim, H. G., Han, G. H., & Kim, S. W. (2010). Optimization of lab scale methanol production by Methylosinustrichosporium OB3b. Biotechnology and Bioprocess Engineering, 15(3), 476–480.

    Article  CAS  Google Scholar 

  • Kim, S. M., Dien, B. S., Tumbleson, M. E., Rausch, K. D., & Singh, V. (2016). Improvement of sugar yields from corn stover using sequential hot water pretreatment and disk milling. Bioresource Technology, 216, 706–713.

    Article  CAS  PubMed  Google Scholar 

  • Kiwjaroun, C., Tubtimde, C., & Piumsomboon, P. (2009). LCA studies comparing biodiesel synthesized by conventional and supercritical methanol methods. Journal of Cleaner Production, 17(2), 143–153.

    Article  CAS  Google Scholar 

  • Knothe, G. J. H., Van Gerpen, J., & Krahl. (2005). The biodiesel handbook (Vol. 1). AOCS Press.

    Book  Google Scholar 

  • Kuhad, R. C., Singh, A., & Eriksson, K. E. L. (1997). Microorganisms and enzymes involved in the degradation of plant fiber cell walls (pp. 45–125). Biotechnology in the Pulp and Paper Industry.

    Google Scholar 

  • Kumabe, K., Fujimoto, S., Yanagida, T., Ogata, M., Fukuda, T., Yab, A., & Minowa, T. (2008). Environmental and economic analysis of methanol production process via biomass gasification. Fuel, 87(7), 1422–1427.

    Article  CAS  Google Scholar 

  • Kumar, B., Bhardwaj, N., Agrawal, K., Chaturvedi, V., & Verma, P. (2020). Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Processing Technology, 199, 106244.

    Article  CAS  Google Scholar 

  • Ladevèze, S., Haon, M., Villares, A., Cathala, B., Grisel, S., Herpoël-Gimbert, I., Henrissat, B., & Berrin, J. G. (2017). The yeast Geotrichumcandidum encodes functional lytic polysaccharide monooxygenases. Biotechnology for Biofuels, 10(1), 1–11.

    Article  Google Scholar 

  • Lam, M. K., Lee, K. T., & Mohamed, A. R. (2010). Homogeneous, heterogeneous, and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 28(4), 500–518.

    Article  CAS  PubMed  Google Scholar 

  • Latif, M. A. A., Yusof, A. A., Shukor, A. Z., Habidi, F. A., Nor, N. F. M., Akop, M. Z., Mohd Hanafi, M. H., & Roslizar, A. (2017). Nanostructure and oxidation properties investigation of engine using Jatropha biodiesel as engine fuel. In MATEC Web of Conferences 90:01046 EDP Sciences.

    Google Scholar 

  • Leduc, S., Lundgren, J., Franklin, O., & Dotzauer, E. (2010). Location of a biomass-based methanol production plant: A dynamic problem in northern Sweden. Applied Energy, 87(1), 68–75.

    Article  CAS  Google Scholar 

  • Lee, J. Y., Jang, Y. S., Lee, J., Papoutsakis, E. T., & Lee, S. Y. (2009). Metabolic engineering of clostridium acetobutylicum M5 for highly selective butanol production. Biotechnology Journal: Healthcare Nutrition Technology, 4(10), 1432–1440.

    Article  CAS  Google Scholar 

  • Lee B, Sakamoto Y, Hirabayashi D, Suzuki K, Hibino (2010) Direct oxidation of methane to methanol over proton conductor/metal mixed catalysts. Journal of Catalysis 271(2):195–200.

    Google Scholar 

  • Leung, D. Y., Wu, X., & Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4), 1083–1095.

    Article  CAS  Google Scholar 

  • Li, Z. H., Lin, P. H., Wu, J. C., Huang, Y. T., Lin, K. S., & Wu, K. C. W. (2013). A stirring packed-bed reactor to enhance the esterification–transesterification in biodiesel production by lowering mass-transfer resistance. Chemical Engineering Journal, 234, 9–15.

    Article  CAS  Google Scholar 

  • Li, K., Wang, X., Wang, J., & Zhang, J. (2015). Benefits from additives and xylanase during enzymatic hydrolysis of bamboo shoot and mature bamboo. Bioresource Technology, 192, 424–431.

    Article  CAS  PubMed  Google Scholar 

  • Li, H. Y., Chen, X., Wang, C. Z., Sun, S. N., & Sun, R. C. (2016). Evaluation of the two-step treatment with ionic liquids and alkali for enhancing enzymatic hydrolysis of eucalyptus: Chemical and anatomical changes. Biotechnology for Biofuels, 9(1), 1–13.

    Article  Google Scholar 

  • Li, W. C., Zhang, S. J., Xu, T., Sun, M. Q., Zhu, J. Q., Zhong, C., Li, B. Z., & Yuan, Y. J. (2020). Fractionation of corn stover by two-step pretreatment for production of ethanol, furfural, and lignin. Energy, 195, 117076.

    Article  CAS  Google Scholar 

  • Liu, W., Chen, W., Hou, Q., Wang, S., & Liu, F. (2018). Effects of combined pretreatment of dilute acid pre-extraction and chemical-assisted mechanical refining on enzymatic hydrolysis of lignocellulosic biomass. RSC Advances, 8(19), 10207–10214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C. G., **ao, Y., **a, X. X., Zhao, X. Q., Peng, L., Srinophakun, P., & Bai, F. W. (2019). Cellulosic ethanol production: Progress, challenges, and strategies for solutions. Biotechnology Advances, 37(3), 491–504.

    Article  CAS  PubMed  Google Scholar 

  • Luo, X., Liu, J., Zheng, P., Li, M., Zhou, Y., Huang, L., Chen, L., & Shuai, L. (2019). Promoting enzymatic hydrolysis of lignocellulosic biomass by inexpensive soy protein. Biotechnology for Biofuels, 12(1), 1–13.

    Article  Google Scholar 

  • Ma, Y., Sun, Q., Wu, D., Fan, W. H., Zhang, Y. L., & Deng, J. F. (1998). A practical approach for the preparation of high activity Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation. Applied Catalysis A: General, 171(1), 45–55.

    Article  CAS  Google Scholar 

  • Mahapatra, S., Kumar, D., Singh, B., & Sachan, P. K. (2021). Biofuels and their sources of production: A review on cleaner sustainable alternative against conventional fuel, in the framework of the food and energy nexu. Energy Nexus, 4, 100036.

    Article  CAS  Google Scholar 

  • Marinković, D. M., Stanković, M. V., Veličković, A. V., Avramović, J. M., Miladinović, M. R., Stamenković, O. O., Veljković, V. B., & Jovanović, D. M. (2016). Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives. Renewable and Sustainable Energy Reviews, 56, 1387–1408.

    Article  Google Scholar 

  • Martínez-Patiño, J. C., Lu-Chau, T. A., Gullon, B., Ruiz, E., Romero, I., Castro, E., & Lema, J. M. (2018). Application of a combined fungal and diluted acid pretreatment on olive tree biomass. Industrial Crops and Products, 121, 10–17.

    Article  Google Scholar 

  • Math, M. C., Kumar, S. P., & Chetty, S. V. (2010). Technologies for biodiesel production from used cooking oil – A review. Energy for Sustainable Development, 14(4), 339–345.

    Article  CAS  Google Scholar 

  • Matthews, J. F., Skopec, C. E., Mason, P. E., Zuccato, P., Torget, R. W., Sugiyama, J., Himmel, M. E., & Brady, J. W. (2006). Computer simulation studies of microcrystalline cellulose Iβ. Carbohydrate Research, 341(1), 138–152.

    Article  CAS  PubMed  Google Scholar 

  • Mićić, V., Dugić, P., Petrović, Z., & Tomić, M. (2017). Biofuels as promising fuels. Contemporary Materials, 2(6), 224–233.

    Google Scholar 

  • Mizik, T., & Gyarmati, G. (2021). Economic and sustainability of biodiesel production – A systematic literature review. Clean Technologies, 3, 19–36.

    Article  Google Scholar 

  • Moazeni, F., Chen, Y. C., & Zhang, G. (2019). Enzymatic transesterification for biodiesel production from used cooking oil, a review. Journal of Cleaner Production, 216, 117–128.

    Article  CAS  Google Scholar 

  • Mouthier, T. M., de Rink, B., van Erven, G., de Gijsel, P., Schols, H. A., & Kabel, M. A. (2019). Low liquid ammonia treatment of wheat straw increased enzymatic cell wall polysaccharide degradability and decreased residual hydroxycinnamic acids. Bioresource Technology, 272, 288–299.

    Article  CAS  PubMed  Google Scholar 

  • Müller, G., Várnai, A., Johansen, K. S., Eijsink, V. G., & Horn, S. J. (2015). Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions. Biotechnology for Biofuels, 8(1), 1–9.

    Google Scholar 

  • Murphy, F., Devlin, G., Deverell, R., & McDonnell, K. (2014). Potential to increase indigenous biodiesel production to help meet 2020 targets – An EU perspective with a focus on Ireland. Renewable and Sustainable Energy Reviews, 35, 154–170.

    Article  Google Scholar 

  • Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first- and second-generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 0578–0597.

    Article  CAS  Google Scholar 

  • Nakagawa, H., Harada, T., Ichinose, T., Takeno, K., Matsumoto, S., Kobayashi, M., & Sakai, M. (2007). Biomethanol production and CO2 emission reduction from forage grasses, trees, and crop residues. Japan Agricultural Research Quarterly: JARQ, 41(2), 173–180.

    Article  CAS  Google Scholar 

  • Naresh Kumar, M., Ravikumar, R., Thenmozhi, S., Ranjith Kumar, M., & Kirupa Shankar, M. (2019). Choice of pretreatment technology for sustainable production of bioethanol from lignocellulosic biomass: Bottle necks and recommendations. Waste and Biomass Valorization, 10(6), 1693–1709.

    Article  CAS  Google Scholar 

  • Ngamcharussrivichai, C., Nunthasanti, P., Tanachai, S., & Bunyakiat, K. (2010). Biodiesel production through transesterification over natural calciums. Fuel Processing Technology, 91(11), 1409–1415.

    Article  CAS  Google Scholar 

  • Öhgren, K., Vehmaanperä, J., Siika-Aho, M., Galbe, M., Viikari, L., & Zacchi, G. (2007). High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn Stover for ethanol production. Enzyme and Microbial Technology, 40(4), 607–613.

    Article  Google Scholar 

  • Okumoto, M., Kim, H. H., Takashima, K., Katsura, S., & Mizuno, A. (2001). Reactivity of methane in nonthermal plasma in the presence of oxygen and inert gases at atmospheric pressure. IEEE Transactions on Industry Applications, 37(6), 1618–1624.

    Article  CAS  Google Scholar 

  • Oliva, J. M., Negro, M. J., Manzanares, P., Ballesteros, I., Chamorro, M. Á., Sáez, F., Ballesteros, M., & Moreno, A. D. (2017). A sequential steam explosion and reactive extrusion pretreatment for lignocellulosic biomass conversion within a fermentation-based biorefinery perspective. Fermentation, 3(2), 15.

    Article  Google Scholar 

  • Oumer, A. N., Hasan, M. M., Baheta, A. T., Mamat, R., & Abdullah, A. A. (2018). Bio-based liquid fuels as a source of renewable energy: A review. Renewable and Sustainable Energy Reviews, 88, 82–98.

    Article  CAS  Google Scholar 

  • Padella, M., O’Connell, A., & Prussi, M. (2019). What is still limiting the deployment of cellulosic ethanol? Analysis of the current status of the sector. Applied Sciences, 9(21), 4523.

    Article  CAS  Google Scholar 

  • Padilla-Rascón, C., Ruiz, E., Romero, I., Castro, E., Oliva, J. M., Ballesteros, I., & Manzanares, P. (2020). Valorisation of olive stone by-product for sugar production using a sequential acid/steam explosion pretreatment. Industrial Crops and Products, 148, 112279.

    Article  Google Scholar 

  • Palmarola-Adrados, B., Chotěborská, P., Galbe, M., & Zacchi, G. (2005). Ethanol production from non-starch carbohydrates of wheat bran. Bioresource Technology, 96(7), 843–850.

    Article  CAS  PubMed  Google Scholar 

  • Parnthong, J., Kungsanant, S., & Chavadej, S. (2017). Enhancement of enzymatic hydrolysis of lignocellulosic materials by nonionic surfactant. In Key Engineering Materials, 757, 151–155. Trans Tech Publications Ltd.

    Article  Google Scholar 

  • Patel, M., Zhang, X., & Kumar, A. (2016). Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review. Renewable and Sustainable Energy Reviews, 53, 1486–1499.

    Article  CAS  Google Scholar 

  • Patraşcu, I., Bîldea, C. S., & Kiss, A. A. (2017). Eco-efficient butanol separation in the ABE fermentation process. Separation and Purification Technology, 177, 49–61.

    Article  Google Scholar 

  • Paul, P. E. V., Sangeetha, V., & Deepika, R. G. (2019). Emerging trends in the industrial production of chemical products by microorganisms. Recent Developments in Applied Microbiology and Biochemistry, 1, 107–125.

    Article  Google Scholar 

  • Pengilly, C., García-Aparicio, M. P., Diedericks, D., & Görgens, J. F. (2016). Optimization of enzymatic hydrolysis of steam pretreated triticale straw. Bioenergy Research, 9(3), 851–863.

    Article  CAS  Google Scholar 

  • Perez-Cantu, L., Schreiber, A., Schütt, F., Saake, B., Kirsch, C., & Smirnova, I. (2013). Comparison of pretreatment methods for rye straw in the second generation biorefinery: Effect on cellulose, hemicellulose, and lignin recovery. Bioresource Technology, 142, 428–435.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, M. O., Larsen, J., & Thomsen, M. H. (2009). Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals. Biomass and Bioenergy, 33(5), 834–840.

    Article  CAS  Google Scholar 

  • Potters, G., Van Goethem, D., & Schutte, F. (2010). Promising biofuel resources: Lignocellulose and algae. Nature Education, 3(9), 14.

    Google Scholar 

  • Pragya, N., Pandey, K. K., & Sahoo, P. K. (2013). A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renewable and Sustainable Energy Reviews, 24, 159–171.

    Article  CAS  Google Scholar 

  • Procentese, A., Raganati, F., Olivieri, G., Russo, M. E., Rehmann, L., & Marzocchella, A. (2017). Low-energy biomass pretreatment with deep eutectic solvents for bio-butanol production. Bioresource Technology, 243, 464–473.

    Article  CAS  PubMed  Google Scholar 

  • Ptasinski, K. J., Hamelinck, C., & Kerkhof, P. J. A. M. (2002). Energy analysis of methanol from the sewage sludge process. Energy Conversion and Management, 43(9–12), 1445–1457.

    Article  CAS  Google Scholar 

  • Qi, G., Dong, P., Zhai, M., & Wang, L. (2007). Experimental study on rice husk flash pyrolysis with discontinuity feed for production of bio-oil. In Challenges of power engineering and environment (pp. 135–138). Springer.

    Chapter  Google Scholar 

  • Rahadianti, E. S., Yerizam, Y., & Martha, M. (2018). Biodiesel production from waste cooking oil. IJFAC Indonesian Journal of Fundamental and Applied Chemistry, 3(3), 77–82.

    Article  Google Scholar 

  • Ramadhas, A. S., Jayaraj, S., & Muraleedharan, C. (2005). Biodiesel production from high FFA rubber seed oil. Fuel, 84(4), 335–340.

    Article  CAS  Google Scholar 

  • Ranjan, A., Khanna, S., & Moholkar, V. S. (2013). Feasibility of rice straw as alternate substrate for biobutanol production. Applied Energy, 103, 32–38.

    Article  CAS  Google Scholar 

  • Rashid, U., Anwar, F., Moser, B. R., & Ashraf, S. (2008). Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis. Biomass and Bioenergy, 32(12), 1202–1205.

    Article  CAS  Google Scholar 

  • Ravindran, R., Jaiswal, S., Abu-Ghannam, N., & Jaiswal, A. K. (2017). Two-step sequential pretreatment for the enhanced enzymatic hydrolysis of coffee spent waste. Bioresource Technology, 239, 276–284.

    Article  CAS  PubMed  Google Scholar 

  • Rehman, O., Shahid, A., Liu, C. G., Xu, J. R., Javed, M. R., Eid, N. H., Gull, M., Nawaz, M., & Mehmood, M. A. (2020). Optimization of low-temperature energy-efficient pretreatment for enhanced saccharification and fermentation of Conocarpus erectus leaves to produce ethanol using Saccharomyces cerevisiae. Biomass Conversion and Biorefinery, 10(4), 1269–1278.

    Article  CAS  Google Scholar 

  • Renó, M. L. G., Lora, E. E. S., Palacio, J. C. E., Venturini, O. J., Buchgeister, J., & Almazan, O. (2011). A LCA (life cycle assessment) of the methanol production from sugarcane bagasse. Energy, 36(6), 3716–3726.

    Google Scholar 

  • Rincón, L. E., Jaramillo, J. J., & Cardona, C. A. (2014). Comparison of feedstocks and technologies for biodiesel production: An environmental and techno-economic evaluation. Renewable Energy, 69, 479–487.

    Article  Google Scholar 

  • Rivarolo, M., Bellotti, D., Mendieta, A., & Massardo, A. F. (2014). Hydro-methane and methanol combined production from hydroelectricity and biomass: Thermo-economic analysis in Paraguay. Energy Conversion and Management, 79, 74–84.

    Article  CAS  Google Scholar 

  • Rocha-Martín, J., Martinez-Bernal, C., Pérez-Cobas, Y., Reyes-Sosa, F. M., & García, B. D. (2017). Additives enhancing enzymatic hydrolysis of lignocellulosic biomass. Bioresource Technology, 244, 48–56.

    Article  PubMed  Google Scholar 

  • Ruan, R., Zhang, Y., Chen, P., Liu, S., Fan, L., Zhou, N., Ding, K., Peng, P., Addy, M., Cheng, Y., & Anderson, E. (2019). Biofuels: Introduction. In Biofuels: Alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels (pp. 3–43). Academic Press.

    Chapter  Google Scholar 

  • Ruchala, J., Kurylenko, O. O., Dmytruk, K. V., & Sibirny, A. A. (2020). Construction of advanced producers of first-and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts. Scheffersomycesstipitis, Ogataea polymorpha. Journal of Industrial Microbiology and Biotechnology, 47(1), 109–132.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz, H. A., Conrad, M., Sun, S. N., Sanchez, A., Rocha, G. J., Romaní, A., Castro, E., Torres, A., Rodríguez-Jasso, R. M., Andrade, L. P., & Smirnova, I. (2020). Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresource Technology, 299, 122685.

    Article  CAS  PubMed  Google Scholar 

  • Sadaf, S., Iqbal, J., Ullah, I., Bhatti, H. N., Nouren, S., Nisar, J., & Iqbal, M. (2018). Biodiesel production from waste cooking oil: an efficient technique to convert waste into biodiesel. Sustainable Cities and Society, 41, 220–226.

    Article  Google Scholar 

  • Sahibzada, M., Chadwick, D., & Metcalfe, I. S. (1997). Methanol synthesis from CO2/H2 over Pd-promoted cu/ZnO/Al2O3 catalysts: Kinetics and deactivation. In Studies in Surface Science and Catalysis, 107, 29–34.

    Article  CAS  Google Scholar 

  • Sani, Y. M., Daud, W. M. A. W., & Aziz, A. A. (2012). Biodiesel feedstock and production technologies: Successes, challenges, and prospects. Biodiesel-Feedstocks, Production, and Applications, 10, 52790.

    Google Scholar 

  • Sankar, M. K., Ravikumar, R., Kumar, M. N., & Sivakumar, U. (2018). Development of co-immobilized tri-enzyme biocatalytic system for one-pot pretreatment of four different perennial lignocellulosic biomass and evaluation of their bioethanol production potential. Bioresource Technology, 269, 227–236.

    Article  Google Scholar 

  • Saravanan, N., Puhan, S., Nagarajan, G., & Vedaraman, N. (2010). An experimental comparison of transesterification process with different alcohols using acid catalysts. Biomass and Bioenergy, 34(7), 999–1005.

    Article  CAS  Google Scholar 

  • Scholwin, F., Weidele, T., Gattermann, H., Schattauer, A., & Weiland, P. (2006). Anlagentechnikzur Biogasbereitstellung (pp. 36–85). Fachagentur für Nachwachsende Rohstoffe, Handreichung Biogasgewinnung und–nutzung, 3rd edition, Gülzow.

    Google Scholar 

  • Scott, B. R., Huang, H. Z., Frickman, J., Halvorsen, R., & Johansen, K. S. (2016). Catalase improves saccharification of lignocellulose by reducing lytic polysaccharide monooxygenase-associated enzyme inactivation. Biotechnology Letters, 38(3), 425–434.

    Article  CAS  PubMed  Google Scholar 

  • Shamsul, N. S., Kamarudin, S. K., Rahman, N. A., & Kofli, N. T. (2014). An overview on the production of biomethane as potential renewable energy. Renewable and Sustainable Energy Reviews, 33, 578–588.

    Google Scholar 

  • Shen, W. J., Ichihashi, Y., & Matsumura, Y. (2005). Low temperature methanol synthesis from carbon monoxide and hydrogen over ceria supported copper catalyst. Applied Catalysis A: General, 282(1–2), 221–226.

    Article  CAS  Google Scholar 

  • Shi, F., **ang, H., & Li, Y. (2015). Combined pretreatment using ozonolysis and ball milling to improve enzymatic saccharification of corn straw. Bioresource Technology, 179, 444–451.

    Article  CAS  PubMed  Google Scholar 

  • Shuangning, X., Weiming, Y., & Li, B. (2005). Flash pyrolysis of agricultural residues using a plasma heated laminar entrained flow reactor. Biomass and Bioenergy, 29(2), 135–141.

    Article  Google Scholar 

  • Sianipar, R. N. R., Ariyani, D., & Nata, I. F. (2017). Conversion of palm oil sludge to biodiesel using alum and KOH as catalysts. Sustainable Environment Research, 27(6), 291–295.

    Article  Google Scholar 

  • Silva, C. D. O. G., Aquino, E. N., Ricart, C. A. O., Midorikawa, G. E. O., & Miller, R. N. G. (2015). GH11 xylanase from Emericellanidulans with low sensitivity to inhibition by ethanol and lignocellulose-derived phenolic compounds. FEMS Microbiology Letters, 362(13).

    Google Scholar 

  • Singh, S., Cheng, G., Sathitsuksanoh, N., Wu, D., Varanasi, P., George, A., Balan, V., Gao, X., Kumar, R., Dale, B. E., & Wyman, C. E. (2015). Comparison of different biomass pretreatment techniques and their impact on chemistry and structure. Frontiers in Energy Research, 2, 62.

    Article  Google Scholar 

  • Smith, P. C., Ngothai, Y., Nguyen, Q. D., & O’Neill, B. K. (2009). Alkoxylation of biodiesel and its impact on low-temperature properties. Fuel, 88(4), 605–612.

    Article  CAS  Google Scholar 

  • Söderström, J., Pilcher, L., Galbe, M., & Zacchi, G. (2003). Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass and Bioenergy, 24(6), 475–486.

    Article  Google Scholar 

  • Soltanian, S., Aghbashlo, M., Almasi, F., Hosseinzadeh-Bandbafha, H., Nizami, A. S., Ok, Y. S., Lam, S. S., & Tabatabaei, M. (2020). A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energy Conversion and Management, 212, 112792.

    Article  CAS  Google Scholar 

  • Soltanieh, M., Azar, K. M., & Saber, M. (2012). Development of a zero-emission integrated system for co-production of electricity and methanol through renewable hydrogen and CO2 capture. International Journal of Greenhouse Gas Control, 7, 145–152.

    Article  CAS  Google Scholar 

  • Sousa, L. L., Lucena, I. L., & Fernandes, F. A. (2010). Transesterification of castor oil: Effect of the acid value and neutralization of the oil with glycerol. Fuel Processing Technology, 91(2), 194–196.

    Article  CAS  Google Scholar 

  • Sumathi, S., Chai, S. P., & Mohamed, A. R. (2008). Utilization of oil palm as a source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews, 12(9), 2404–2421.

    Article  CAS  Google Scholar 

  • Suntana, A. S., Vogt, K. A., Turnblom, E. C., & Upadhye, R. (2009). Biomethane potential in Indonesia: Forest biomass as a source of bioenergy that reduces carbon emissions. Applied Energy, 86, S215–S221.

    Google Scholar 

  • Susmozas, A., Martín-Sampedro, R., Ibarra, D., Eugenio, M. E., Iglesias, R., Manzanares, P., & Moreno, A. D. (2020). Process strategies for the transition of 1G to advanced bioethanol production. PRO, 8(10), 1310.

    CAS  Google Scholar 

  • Takeguchi, M., Furuto, T., Sugimori, D., & Okura, I. (1997). Optimization of methanol biosynthesis by Methylosinustrichosporium OB3b: An approach to improve methanol accumulation. Applied Biochemistry and Biotechnology, 68(3), 143–152.

    Article  CAS  Google Scholar 

  • Tang, S., Cao, Y., Xu, C., Wu, Y., Li, L., Ye, P., Luo, Y., Gao, Y., Liao, Y., Yan, Q., & Cheng, X. (2020). One-step or two-step acid/alkaline pretreatments to improve enzymatic hydrolysis and sugar recovery from Arundo Donax L. Energies, 13(4), 948.

    Article  CAS  Google Scholar 

  • Tariq, M., Ali, S., & Khalid, N. (2012). Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review. Renewable and Sustainable Energy Reviews, 16(8), 6303–6316.

    Article  CAS  Google Scholar 

  • Thaiyasuit, P., Pianthong, K., & Worapun, I. (2012). Acid esterification-alkaline transesterification process for methyl ester production from crude rubber seed oil. Journal of Oleo Science, 61(2), 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Thomsen, M. H., Thygesen, A., Jørgensen, H., Larsen, J., Christensen, B. H., & Thomsen, A. B. (2006). Preliminary results on optimization of pilot scale pretreatment of wheat straw used in coproduction of bioethanol and electricity. In Twenty-seventh symposium on biotechnology for fuels and chemicals (pp. 448–460). Humana Press.

    Chapter  Google Scholar 

  • Tran, L. S., Sirjean, B., Glaude, P. A., Fournet, R., & Battin-Leclerc, F. (2012). Progress in detailed kinetic modeling of the combustion of oxygenated components of biofuels. Energy, 43(1), 4–18.

    Article  CAS  Google Scholar 

  • Valente, O. S., Pasa, V. M. D., Belchior, C. R. P., & Sodré, J. R. (2011). Physical–chemical properties of waste cooking oil biodiesel and castor oil biodiesel blends. Fuel, 90(4), 1700–1702.

    Article  CAS  Google Scholar 

  • Varanda, M. G., Pinto, G., & Martins, F. (2011). Life cycle analysis of biodiesel production. Fuel Processing Technology, 92(5), 1087–1094.

    Article  CAS  Google Scholar 

  • Wan Isahak, W. N. R., Che Ramli, Z. A., Ismail, M., Mohd Jahim, J., & Yarmo, M. A. (2015). Recovery and purification of crude glycerol from vegetable oil transesterification. Separation & Purification Reviews, 44(3), 250–267.

    Article  CAS  Google Scholar 

  • Wang, Y. F., Tsai, C. H., Shih, M., Hsieh, L. T., & Chang, W. (2005). Direct conversion of methane into methanol and formaldehyde in an RF plasma environment I: A preliminary study. Aerosol and Air Quality Research, 5(2), 204–210.

    Article  CAS  Google Scholar 

  • Wang, Y., Ou, S., Liu, P., & Zhang, Z. (2007). Preparation of biodiesel from waste cooking oil via two-step catalyzed process. Energy Conversion and Management, 48(1), 184–188.

    Article  Google Scholar 

  • Wang, R., Sun, Y., Zhang, S., & Lu, X. (2012). Two-step pretreatment of corn stalk silage for increasing sugars production and decreasing the amount of catalyst. Bioresource Technology, 120, 290–294.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Guo, W., Cheng, C. L., Ho, S. H., Chang, J. S., & Ren, N. (2016). Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis. Bioresource Technology, 200, 557–564.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Ho, S. H., Yen, H. W., Nagarajan, D., Ren, N. Q., Li, S., Hu, Z., Lee, D. J., Kondo, A., & Chang, J. S. (2017). Current advances on fermentative biobutanol production using third generation feedstock. Biotechnology Advances, 35(8), 1049–1059.

    Article  CAS  PubMed  Google Scholar 

  • Wang, P., Chen, Y. M., Wang, Y., Lee, Y. Y., Zong, W., Taylor, S., McDonald, T., & Wang, Y. (2019). Towards comprehensive lignocellulosic biomass utilization for bioenergy production: Efficient biobutanol production from acetic acid pretreated switchgrass with Clostridium saccharoperbutylacetonicum N1-4. Applied Energy, 236, 551–559.

    Article  CAS  Google Scholar 

  • Weimer, T., Schaber, K., Specht, M., & Bandi, A. (1996). Methanol from atmospheric carbon dioxide: A liquid zero emission fuel for the future. Energy Conversion and Management, 37(6–8), 1351–1356.

    Article  CAS  Google Scholar 

  • Wi, S. G., Choi, I. S., Kim, K. H., Kim, H. M., & Bae, H. J. (2013). Bioethanol production from rice straw by pop** pretreatment. Biotechnology for Biofuels, 6(1), 1–7.

    Article  Google Scholar 

  • Wiggers, V. R., Wisniewski, A., Jr., Madureira, L. A. S., Barros, A. C., & Meie, H. F. (2009). Biofuels from waste fish oil pyrolysis: Continuous production in a pilot plant. Fuel, 88(11), 2135–2141.

    Article  CAS  Google Scholar 

  • Wu, W., Lei, Y. C., & Chang, J. S. (2019). Life cycle assessment of upgraded microalgae-to-biofuel chains. Bioresource Technology, 288, 121492.

    Article  CAS  PubMed  Google Scholar 

  • Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96(18), 1959–1966.

    Article  CAS  PubMed  Google Scholar 

  • Wyman, C. E., Balan, V., Dale, B. E., Elander, R. T., Falls, M., Hames, B., Holtzapple, M. T., Ladisch, M. R., Lee, Y. Y., Mosier, N., & Pallapolu, V. R. (2011). Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresource Technology, 102(24), 11052–11062.

    Article  CAS  PubMed  Google Scholar 

  • **ao, Y., **ao, G., & Varma, A. (2013). A universal procedure for crude glycerol purification from different feedstocks in biodiesel production: Experimental and simulation study. Industrial & Engineering Chemistry Research, 52(39), 14291–14296.

    Article  CAS  Google Scholar 

  • Xu, S. W., Lu, Y., Li, J., Jiang, Z. Y., & Wu, H. (2006). Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate− silica (ALG− SiO2) hybrid gel. Industrial & Engineering Chemistry Research, 45(13), 4567–4573.

    Article  CAS  Google Scholar 

  • Xu, Y., Ye, T. Q., Qiu, S. B., Ning, S., Gong, F. Y., Liu, Y., & Li, Q. X. (2011). High efficient conversion of CO2-rich bio-syngas to CO-rich bio-syngas using biomass char: A useful approach for production of biomethane from bio-oil. Bioresource Technology, 102(10), 6239–6245.

    Google Scholar 

  • Xu, G. C., Ding, J. C., Han, R. Z., Dong, J. J., & Ni, Y. (2016). Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresource Technology, 203, 364–369.

    Article  CAS  PubMed  Google Scholar 

  • Xue, D., Zeng, X., Lin, D., & Yao, S. (2019). Thermostable ethanol tolerant xylanase from a cold-adapted marine species Acinetobacter johnsonii. Chinese Journal of Chemical Engineering, 27(5), 1166–1170.

    Article  CAS  Google Scholar 

  • Yaakob, Z., Mohammad, M., Alherbawi, M., Alam, Z., & Sopian, K. (2013). Overview of the production of biodiesel from waste cooking oil. Renewable and Sustainable Energy Reviews, 18, 184–193.

    Article  CAS  Google Scholar 

  • Yang, R., Yu, X., Zhang, Y. I., Li, W., & Tsubaki, N. (2008). A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2. Fuel, 87(4–5), 443–450.

    Article  CAS  Google Scholar 

  • Yang, M., Zhang, J., Kuittinen, S., Vepsäläinen, J., Soininen, P., Keinänen, M., & Pappinen, A. (2015). Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone–butanol–ethanol fermentation. Bioresource Technology, 189, 131–137.

    Article  CAS  PubMed  Google Scholar 

  • Yao, S. L., Takemoto, T., Ouyang, F., Nakayama, A., Suzuki, E., Mizuno, A., & Okumoto, M. (2000). Selective oxidation of methane using a non-thermal pulsed plasma. Energy & Fuels, 14(2), 459–446.

    Article  CAS  Google Scholar 

  • Yeong, T. K., Jiao, K., Zeng, X., Lin, L., Pan, S., & Danquah, M. K. (2018). Microalgae for biobutanol production – technology evaluation and value proposition. Algal Research, 31, 367–376.

    Article  Google Scholar 

  • Yin, J. Z., **ao, M., & Song, J. B. (2008). Biodiesel from soybean oil in supercritical methanol with co-solvent. Energy Conversion and Management, 49(5), 908–912.

    Article  CAS  Google Scholar 

  • Yoo, C. G., Meng, X., Pu, Y., & Ragauskas, A. J. (2020). The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. Bioresource Technology, 301, 122784.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Q., Zhuang, X., Yuan, Z., Wang, Q., Qi, W., Wang, W., Zhang, Y., Xu, J., & Xu, H. (2010). Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Bioresource Technology, 101(13), 4895–4899.

    Article  CAS  PubMed  Google Scholar 

  • Zabeti, M., Daud, W. M. A. W., & Aroua, M. K. (2009). Activity of solid catalysts for biodiesel production: A review. Fuel Processing Technology, 90(6), 770–777.

    Article  CAS  Google Scholar 

  • Zhang, Y., Fu, X., & Chen, H. (2012). Pretreatment based on two-step steam explosion combined with an intermediate separation of fiber cells-optimization of fermentation of corn straw hydrolysates. Bioresource Technology, 121, 100–104.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, R., Liu, Y., Zhang, Y., Feng, D., Hou, S., Guo, W., Niu, K., Jiang, Y., Han, L., Sindhu, L., & Fang, X. (2019). Identification of a thermostable fungal lytic polysaccharide monooxygenase and evaluation of its effect on lignocellulosic degradation. Applied Microbiology and Biotechnology, 103(14), 5739–5750.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Y. I., Pan, Z., Zhang, R., & Wang, D. (2009). Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production. Applied Energy, 86(11), 2459–2465.

    Article  CAS  Google Scholar 

  • Zheng, J., Tashiro, Y., Wang, Q., & Sonomoto, K. (2015). Recent advances to improve fermentative butanol production: Genetic engineering and fermentation technology. Journal of Bioscience and Bioengineering, 119(1), 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, Y., Frost, H., Bustamante, M., Li, S., Liu, Y. S., & Liao, W. (2020). A mechano-biocatalytic one-pot approach to release sugars from lignocellulosic materials. Renewable and Sustainable Energy Reviews, 121, 109675.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saeed, A., Shabir, G., Khurshid, A. (2024). Biofuel Molecules. In: Hashmi, M.Z., Saeed, A., Musharraf, S.G., Shuhong, W. (eds) Recent Advances in Industrial Biochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-50989-6_9

Download citation

Publish with us

Policies and ethics

Navigation