Manufacturing of Starch from Rice, Corn, Potato, and Wheat and Its Industrial Applications

  • Chapter
  • First Online:
Recent Advances in Industrial Biochemistry
  • 67 Accesses

Abstract

Starch is a stored carbohydrate in plants that exists in nature abundantly. Most of the plant food is composed of starch. It is added to a large number of synthesized food products. The end products obtained from them have enhanced flavor and texture. Different plants showed different physicochemical and functional characteristics by means of microcrystalline structures and morphologic properties. Starch is an important constituent of cereals. About ¾ dry weight of mature grain consists of starch and is an important part of crops. In plants and animals, it is used as a source of energy and it also produces many commercial goods. The procedure used to extract starch relies on the source of starch. There are abundant sources of starch and such sources are used in industry methods. Starch is commercially obtained from wheat, rice, potato, and corn. Corn is a vital starch source all over the world and almost 85% of starches are manufactured from corn. Stee** and milling processes are used for the production of corn starch. Rice is a primary food. As compared to other starches, rice starch is less used due to the manufacturing, which is very costly. Both traditional and mechanical methods are present for manufacturing rice starch. Potato is a very valued vegetable crop as it has many uses in new or handled food varieties. The separation of starch is done by culling surplus potatoes. Though, for starch production specific cultivars are established. Wheat starch is an important form of starch in different parts of the world and has several uses in food and other products. Wheat starch is prepared by different processes like conservative, hydrocyclone, and high-pressure disintegration. Starch has several commercial uses. In food industry, it is utilized as a dusting, gelling, and thickening agent, as a water absorbent and as it offers more than 80% of calories used up by humans daily, it acts as a nutrient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Ghannam, N., & Balboa, E. (2018). Biotechnological, food, and health care applications. In Sustainable recovery and reutilization of cereal processing by-products. Elsevier.

    Google Scholar 

  • Antunes, M., & Medronho, R. (1992). Bradley hydrocyclones: Design and performance analysis. In Hydrocyclones. Springer.

    Google Scholar 

  • Barreiro, J. (1989). Indian corn of the Americas: Gift to the world. Cultural Encounter II. Northeast Indian Quarterly, 6, n1–n2.

    Google Scholar 

  • Bautista, G. M., & Linko, P. (1962). Glutamic acid decarboxylase activity as a measure of damage in artificially dried and stored corn. Cereal Chemistry, 39, 3.

    Google Scholar 

  • Bao, J. S., & Bergman, C. J. (2018). Rice flour and starch functionality. In M. Sjöö & L. Nilsson (Eds.), Technology and nutrition, starch in food (Woodhead publishing series in food science) (2nd ed., p. 373e419). Woodhead Publishing.

    Google Scholar 

  • Bier, T. H., Elsken, J., & Honeychurch, R. (1974). Integrated starch wet milling process. Starch-Stärke, 26, 23–28.

    Article  CAS  Google Scholar 

  • Bookwalter, G. (1983). World feeding strategies utilizing cereals and other commodities. Cereal Foods World, 28, 507.

    Google Scholar 

  • Bordoloi, A., Singh, J., & Kaur, L. (2012). In vitro digestibility of starch in cooked potatoes as affected by guar gum: Microstructural and rheological characteristics. Food Chemistry, 133(4), 1206–1213.

    Google Scholar 

  • Buleon, A., Colonna, P., Planchot, V., & Ball, S. (1998). Starch granules: Structure and biosynthesis. International Journal of Biological Macromolecules, 23, 85–112.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, G. M., Webb, C., & Mckee, S. L. (1997). Cereals: Novel uses and processes. Springer Science & Business Media.

    Book  Google Scholar 

  • Champagne, E. T. J. C. f. w. (1996). Rice starch composition and characteristics. 41, 833–838.

    Google Scholar 

  • Chen, G.-X., Zhou, J.-W., Liu, Y.-L., Lu, X.-B., Han, C.-X., Zhang, W.-Y., Xu, Y.-H., & Yan, Y.-M. (2016). Biosynthesis and regulation of wheat amylose and amylopectin from proteomic and phosphoproteomic characterization of granule-binding proteins. Scientific Reports, 6, 1–15.

    Google Scholar 

  • Christophersen, C., Andersen, E., Jakobsen, T. S., & Wagner, P. (1997). Xylanases in wheat separation. Starch-Stärke, 49, 5–12.

    Article  CAS  Google Scholar 

  • Cornell, H. J., & Hoveling, A. W. (2020). Wheat: Chemistry and utilization. CRC Press.

    Book  Google Scholar 

  • Coup, B. R. E. D. A. (2021). Grain: World markets and trade.

    Google Scholar 

  • Czuchajowska, Z., & Pomeranz, Y. (1993). Protein concentrates and prime starch from wheat flours. Cereal Chemistry, 70, 701–701.

    CAS  Google Scholar 

  • Dsniel, J., & Whistler, R. (1990). Fatty sensory qualities of polysaccharide. Cereal Foods World, 35, 825–827.

    Google Scholar 

  • Eckhoff, S. R., & Watson, S. A. (2009). Corn and sorghum starches: Production. Elsevier.

    Book  Google Scholar 

  • Eliasson, A.-C. (2004). Starch in food: Structure, function and applications. CRC Press.

    Book  Google Scholar 

  • Eliasson, A. C., & Karlsson, R. (1983). Gelatinization properties of different size classes of wheat starch granules measured with differential scanning calorimetry. Starch-Stärke, 35, 130–133.

    Article  CAS  Google Scholar 

  • Ellis, R. P., Cochrane, M. P., Dale, M. F. B., Duffus, C. M., Lynn, A., Morrison, I. M., ... & Tiller, S. A. (1998). Starch production and industrial use. Journal of the Science of Food and Agriculture, 77(3), 289–311.

    Google Scholar 

  • Evers, A., Greenwood, C., Muir, D., & Venables, C. (1974). Studies on the biosynthesis of starch granules. Part 8. A comparison of the properties of the small and the large granules in mature cereal starches. Starch-Stärke, 26, 42–46.

    Article  CAS  Google Scholar 

  • Fan, L.-T., Chen, H., Ja, S., & Chung, D. (1965). Comparison of rates of absorption of water by corn kernels with and without dissolved sulfur dioxide. Cereal Chemistry, 42, 385.

    Google Scholar 

  • Fang, C., & Campbell, G. M. (2003). On predicting roller milling performance V: Effect of moisture content on the particle size distribution from first break milling of wheat. Journal of Cereal Science, 37, 31–41.

    Article  Google Scholar 

  • Foster, G. H. (1973). Grain breakage caused by commercial handling methods. Agricultural Research Service, United States Department of Agriculture.

    Google Scholar 

  • Feiz, L., Martin, J., & Giroux, M. (2008). Relationship between wheat (Triticum aestivum L.) grain hardness and wet-milling quality. Cereal Chemistry, 85, 44–50.

    Article  CAS  Google Scholar 

  • Franzke, C., & Wahl, G. (1970). Biochemisch-technologische Studien über die Naßverarbeitung von Mais. 2. Mitt. Die Veränderung der Quellwasserzusammensetzung während des Quellprozesses. Starch-Stärke, 22, 64–67.

    Article  CAS  Google Scholar 

  • Gerits, L. R., Pareyt, B., & Delcour, J. A. (2015). Wheat starch swelling, gelatinization and pasting: Effects of enzymatic modification of wheat endogenous lipids. LWT-Food Science and Technology, 63, 361–366.

    Article  CAS  Google Scholar 

  • Ghorbani, F. M., Kaffashi, B., Shokrollahi, P., Seyedjafari, E., & Ardeshirylajimi, A. (2015). PCL/chitosan/Zn-doped nha electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation. Carbohydrate Polymers, 118, 133–142.

    Article  CAS  PubMed  Google Scholar 

  • Gwirtz, J. A., & Garcia-Casal, M. N. (2014). Processing maize flour and CORN meal food products. Annals of the New York Academy of Sciences, 1312, 66–75.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, T., Hamilton, B. C., Johnson, B. C., & Mitchell, H. (1951). The dependence of the physical and chemical composition of the CORN kernel on soil fertility and crop** system. Cereal Chemistry, 28, 163–176.

    CAS  Google Scholar 

  • Hanashiro, I. J. S. M. and structure (2015). Fine structure of amylose. pp. 41–60.

    Google Scholar 

  • Hill, R. D., & Munck, L. (1985). New approaches to research on cereal carbohydrates: Proceedings of the international conference on new approaches to research on cereal carbohydrates. Elsevier.

    Google Scholar 

  • Hizukuri, S., Takeda, Y., Yasuda, M., & Suzuki, A. (1981). Multi-branched nature of amylose and the action of debranching enzymes. Carbohydrate Research, 94, 205–213.

    Article  CAS  Google Scholar 

  • Hoepke, C., & Huster, H. (1976). Erfahrungen mit Dekantern bei der Entwässerung von Maiskleber. Starch-Stärke, 28, 14–19.

    Article  CAS  Google Scholar 

  • Hogan, R. A., & Kirchner, J. H. J. J. o. A. P. (1967). Preliminary report of the extinction of learned fears via short-term implosive therapy. 72(2), 106.

    Google Scholar 

  • Karlsson, M. E., Leeman, A. M., Björck, I. M., & Eliasson, A. C. (2007). Some physical and nutritional characteristics of genetically modified potatoes varying in amylose/amylopectin ratios. Food Chemistry, 100(1), 136–146.

    Google Scholar 

  • Kempf, W. (1971). Einfluß einer mechanischen Bewegung des Maises während des Quellprozesses auf die Ausbeuten. Starch-Stärke, 23, 89–95.

    Article  Google Scholar 

  • Kennedy, G., & Burlingame, B. J. F. C. (2003). Analysis of food composition data on rice from a plant genetic resources perspective. 80(4), 589–596.

    Google Scholar 

  • Larsson, K. (2018). Physicochemical behavior of the components of wheat flour. In Cereals in breadmaking. Routledge.

    Google Scholar 

  • Leeman, A. M., Karlsson, M. E., Eliasson, A. C., & Björck, I. M. (2006). Resistant starch formation in temperature treated potato starches varying in amylose/amylopectin ratio. Carbohydrate Polymers, 65(3), 306–313.

    Google Scholar 

  • Lim, T. (2015). Colocasia esculenta. In Edible medicinal and non medicinal plants. Springer.

    Chapter  Google Scholar 

  • Lindemann, E. (1954). Der Einfluß der Maissorte und des Verarbeitungsprozesses auf die Qualität der Maisstärke. Starch-Stärke, 6, 274–277.

    Article  Google Scholar 

  • Lisinska, G., & Leszczynski, W. (1989). Potato science and technology. Springer Science & Business Media.

    Google Scholar 

  • Lumdubwong, N., & Seib, P. J. J. o. C. S. (2000). Rice starch isolation by alkaline protease digestion of wet-milled rice flour. 31(1), 63–74.

    Google Scholar 

  • Majzoobi, M., & Farahnaky, A. (2021). Granular cold-water swelling starch; properties, preparation and applications, a review. Food Hydrocolloids, 111, 106393.

    Article  CAS  Google Scholar 

  • Maningat, C. C., Seib, P. A., Bassi, S. D., Woo, K. S., & Lasater, G. D. (2009). Wheat starch: Production, properties, modification and uses. In Starch. Elsevier.

    Google Scholar 

  • Marti, A., Seetharaman, K., & Pagani, M. A. (2010). Rice-based pasta: A comparison between conventional pasta-making and extrusion-cooking. Journal of Cereal Science, 52, 404–409.

    Article  Google Scholar 

  • McComber, D. R., Osman, E. M., & Lohnes, R. A. (1988). Factors related to potato mealiness. Journal of Food Science, 53(5), 1423–1425.

    Google Scholar 

  • McComber, D. R., Horner, H. T., Chamberlin, M. A., & Cox, D. F. (1994). Potato cultivar differences associated with mealiness. Journal of Agricultural and Food Chemistry, 42(11), 2433–2439.

    Google Scholar 

  • Meredith, P. (1981). Large and small starch granules in wheat–are they really different? Starch-Stärke, 33, 40–44.

    Article  CAS  Google Scholar 

  • Montgomery, E. M., Sexson, K., Dimler, R., & Senti, F. (1964). Physical properties and chemical structure of high-amylose corn starch fractions. Starch-Stärke, 16, 345–351.

    Article  CAS  Google Scholar 

  • Mooradian, A. D., Failla, M., Hoogwerf, B., Maryniuk, M., & Wylie-Rosett, J. (1994). Selected vitamins and minerals in diabetes. Diabetes Care, 17, 464–479.

    Article  CAS  PubMed  Google Scholar 

  • Morrison, W., & Scott, D. (1986). Measurement of the dimensions of wheat starch granule populations using a Coulter Counter with 100-channel analyzer. Journal of Cereal Science, 4, 13–21.

    Article  Google Scholar 

  • Myllrinen, P., Autio, K., Schulman, A. H., & Poutanen, K. (1998). Heat-induced structural changes of small and large barley starch granules. Journal of the Institute of Brewing, 104, 343–349.

    Article  Google Scholar 

  • Nwufo, B. T., Griffin, G. L., & Ekpenyong, K. I. (1984). Extrusion of starch-extended water-soluble polyvinyl alcohol. Industrial & Engineering Chemistry Product Research and Development, 23, 594–595.

    Article  CAS  Google Scholar 

  • Overton, M. (1996). Agricultural revolution in England: The transformation of the agrarian economy 1500–1850. Cambridge University Press.

    Book  Google Scholar 

  • Ozel, B., Dag, D., Kilercioglu, M., Sumnu, S. G., & Oztop, M. H. (2017). NMR relaxometry is a tool to understand the effect of microwave heating on starch-water interactions and gelatinization behavior. LWT-Food Science and Technology, 83, 10–17.

    Article  CAS  Google Scholar 

  • Peng, M., Gao, M., Abdel-Aal, E. S., Hucl, P., & Chibbar, R. (1999). Separation and characterization of A-and B-type starch granules in wheat endosperm. Cereal Chemistry, 76, 375–379.

    Article  CAS  Google Scholar 

  • Radley, J. (1976). The manufacture of sweet potato starch. In J. A. Radley (Ed.), Starch production technology (pp. 222–225). Applied Science Pub.

    Google Scholar 

  • Raeker, M., Gaines, C., Finney, P., & Donelson, T. (1998). Granule size distribution and chemical composition of starches from 12 soft wheat cultivars. Cereal Chemistry, 75, 721–728.

    Article  CAS  Google Scholar 

  • Radomir, L. (2017). The chemistry of cereal proteins. Routledge.

    Book  Google Scholar 

  • Ranum, P., Peña-Rosas, J. P., & Garcia-Casal, M. N. (2014). Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312, 105–112.

    Article  PubMed  Google Scholar 

  • Rasby, R. J., Erickson, G. E., Klopfenstein, T. J., & Adams, D. C. (2003). Value and use of corn milling by-products in the cow herdv. University of Nebraska.

    Google Scholar 

  • Robertson, G., Cao, T., & Ong, I. (1999). Wheat gluten swelling and partial solubility with potential impact on starch-from-gluten separation by ethanol washing. Cereal Chemistry, 76, 843–845.

    Article  CAS  Google Scholar 

  • Robyt, J., Whelan, W., & Radley, J. (1968). Amylases and their actions on starch. In Starch and derivatives (4th ed., pp. 431–432). Chapman &. Hall Ltd.

    Google Scholar 

  • Roels, S., Courtin, C., & Delcour, J. (2001). Research note: Endoxylanases and Arabinoxylans in gluten isolated in a batter system. Journal of Cereal Science, 1, 53–57.

    Article  Google Scholar 

  • Roushdi, M., Ghali, Y., & Hassanean, A. (1979). Factors improving the stee** process of corn grains. Part I. Effect of stee** process, artificial drying, scratching and storage. Starch-Stärke, 31, 78–81.

    Article  CAS  Google Scholar 

  • Rosa, Z., & Dias, A. (2011). Impact of heat–moisture treatment and annealing in starches: Areview. Carbohydrate Polymers, 83, 317–328.

    Article  Google Scholar 

  • Salunkhe, D. K., Kadam, S. S., & Jadhav, S. J. (Eds.). (1991). Potato: production, processing, and products (p. 292).

    Google Scholar 

  • Sayaslan, A. (2004). Wet-milling of wheat flour: Industrial processes and small-scale test methods. Lwt-Food Science and Technology, 37, 499–515.

    Article  CAS  Google Scholar 

  • Sayaslan, A., Seib, P. A., & Chung, O. K. (2006). Wet-milling properties of waxy wheat flours by two laboratory methods. Journal of Food Engineering, 72, 167–178.

    Article  CAS  Google Scholar 

  • Saint-Lèbe, P. L., Jossoud, M., & André, C. (1965). Extraction de l’Amidon de Mais. Une méthode de laboratoire dérivée de la technique industrielle. Starch-Stärke, 17, 341–346.

    Article  Google Scholar 

  • Scheel, O. S. M. (1955). The influence of environment on certain constituents of quality and food value of hybrid sweet corn and field corn. Virginia Tech.

    Google Scholar 

  • Schirmer, M., Höchstötter, A., Jekle, M., Arendt, E., & Becker, T. (2013). Physicochemical and morphological characterization of different starches with variable amylose/amylopectin ratio. Food Hydrocolloids, 32(1), 52–63.

    Google Scholar 

  • Scott, M., & Emery, M. (2016). Maize: overview. In C. Wrigley et al. (Eds.), Encyclopedia of grain science (Vol. 2, pp. 99–104).

    Chapter  Google Scholar 

  • Shewfelt, A., & Adams, G. (1945). Separation of starch and gluten: III. A rapid method of separation from wheat flour. Canadian Journal of Research, 23, 373–382.

    Article  CAS  PubMed  Google Scholar 

  • Sinha, A. K., Kumar, V., Makkar, H. P., De Boeck, G., & Becker, K. (2011). Non-starch polysaccharides and their role in fish nutrition–A review. Food Chemistry, 127, 1409–1426.

    Article  CAS  Google Scholar 

  • Singh, S., Singh, N., Isono, N., & Noda, T. (2010). Relationship of granule size distribution and amylopectin structure with pasting, thermal, and retrogradation properties in wheat starch. Journal of Agricultural and Food Chemistry, 58, 1180–1188.

    Article  CAS  PubMed  Google Scholar 

  • Soulaka, A. B., & Morrison, W. R. (1985). The amylose and lipid contents, dimensions, and gelatinisation characteristics of some wheat starches and their A-and B-granule fractions. Journal of the Science of Food and Agriculture, 36, 709–718.

    Article  CAS  Google Scholar 

  • Sprague, G. F., & Dudley, J. W. (1988). Corn and corn improvement. American Society of Agronomy.

    Book  Google Scholar 

  • Staller, J. E. (2010). An introduction to maize cobs and cultures. Maize cobs and cultures: History of Zea mays L. Springer: 1–6.

    Google Scholar 

  • Steele, J., & Chung, O. (1997). Proceedings, international wheat quality conference. International wheat quality conference 1997: Manhattan, Kansas, USA. Grain Industry Alliance.

    Google Scholar 

  • Takeda, Y., Takeda, C., Mizukami, H., & Hanashiro, I. (1999). Structures of large, medium and small starch granules of barley grain. Carbohydrate Polymers, 38, 109–114.

    Article  CAS  Google Scholar 

  • Uriarte-Aceves, P. M., Cuevas-Rodríguez, E. O., Gutiérrez-Dorado, R., Mora-Rochín, S., Reyes-Moreno, C., Puangpraphant, S., & Milán-Carrillo, J. (2015). Physical, compositional, and wet-milling characteristics of Mexican blue maize (Zea mays L.) Landrace. Cereal Chemistry, 92, 491–496.

    Article  CAS  Google Scholar 

  • Van Der Borght, A., Goesaert, H., Veraverbeke, W. S., & Delcour, J. A. (2005). Fractionation of wheat and wheat flour into starch and gluten: Overview of the main processes and the factors involved. Journal of Cereal Science, 41, 221–237.

    Article  Google Scholar 

  • Van Esch, F. (1991). The efficiency of hydrocyclones for the separation of different starches. Starch-Stärke, 43, 427–431.

    Article  Google Scholar 

  • Verberne, P., & Zwitserloot, W. (1978). A new hydrocyclone process for the separation of starch and gluten from wheat flour. Starch-Stärke, 30, 337–338.

    Article  CAS  Google Scholar 

  • Wang, J., Sun, B., & Tsao, R. (2019). Bioactive factors and processing technology for cereal foods. Springer.

    Book  Google Scholar 

  • Watson, S. (1964). Corn starch isolation. Methods in Carbohydrate Chemistry, 6, 3–5.

    Google Scholar 

  • Watson, S., Hirata, Y., & Williams, C. (1955). A study of the lactic acid fermentation in commercial corn stee**. Cereal Chemistry, 32, 382–394.

    CAS  Google Scholar 

  • Watson, S., Williams, C., & Wakely, R. (1951). Laboratory stee** procedures used in a wet milling research program. Cereal Chemistry, 28, 105–118.

    CAS  Google Scholar 

  • Watson, S. A. (1984). Corn and sorghum starches: Production. In Starch: Chemistry and technology. Elsevier.

    Google Scholar 

  • Watson, S. A. (2003). Description, development, structure, and composition of the corn kernel. In Corn: Chemistry and technology (pp. 69–106). American Association of Cereal Chemists.

    Google Scholar 

  • Wadhawan, C. K. (1988). Fundamental studies on vitality of gluten for breadmaking. University of Manitoba.

    Google Scholar 

  • Wang, Q., Li, L., & Zheng, X. (2021). Recent advances in heat-moisture modified cereal starch: Structure, functionality and its applications in starchy food systems. Food Chemistry, 344, 128700.

    Article  CAS  PubMed  Google Scholar 

  • Waterschoot, J., Gomand, S. V., Fierens, E., & Delcour, J. A. (2015). Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch-Stärke, 67, 14–29.

    Article  CAS  Google Scholar 

  • Weegels, P., Marseille, J., & Hamer, R. (1992). Enzymes as a processing aid in the separation of wheat flour into starch and gluten. Starch-Stärke, 44, 44–48.

    Article  CAS  Google Scholar 

  • Whistler, R. L., Bemiller, J. N., & Paschall, E. F. (2012). Starch: Chemistry and technology. Academic.

    Google Scholar 

  • Witt, W., & Kröner, H. (1988). Beseitigung von Weizenstärkeindustrie-Abwässern–Ein Wirtschaftlichkeitsvergleich. Starch-Stärke, 40, 139–147.

    Article  Google Scholar 

  • Wong, R., & Lelievre, J. (1982). Comparison of the crystallinities of wheat starches with different swelling capacities. Starch-Stärke, 34, 159–161.

    Article  CAS  Google Scholar 

  • Yang, H., et al. (1998). Effects of starch properties and thermal-processing conditions on surimi–starch gels. 31(4), 344–353.

    Google Scholar 

  • Zhang, R., Ma, S., Li, L., Zhang, M., Tian, S., Wang, D., Liu, K., Liu, H., Zhu, W., & Wang, X. (2021). Comprehensive utilization of corn starch processing by-products: A review. Grain & Oil Science and Technology, 4, 89–107.

    Article  CAS  Google Scholar 

  • Zobel, H. F. (1984). Starch: Chemistry and technology (Vol. 12, p. 285). Academic.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshad Farid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farid, A., Hayat, M., Ghazanfar, S., Javed, R. (2024). Manufacturing of Starch from Rice, Corn, Potato, and Wheat and Its Industrial Applications. In: Hashmi, M.Z., Saeed, A., Musharraf, S.G., Shuhong, W. (eds) Recent Advances in Industrial Biochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-50989-6_10

Download citation

Publish with us

Policies and ethics

Navigation