Genome Editing Based CRISPR System in Crop Improvement

  • Chapter
  • First Online:
Plant Mutagenesis

Abstract

The primary objective of sustainable agriculture is to rise food production in order to ensure global food security. However, various environmental factors impose limitations on crop yields, which threaten food sustainability across the world. The appearance of next-generation sequencing techniques and the generation of extensive genomic sequencing input for diverse crop plant species, alongside the progress of transcriptome, proteome, and metabolome data, have opened up opportunities to create new varieties of crop through genetic engineering. Advances in genome editing techniques revolutionized plant breeding through targeted alteration of different genes among diverse crop plant species. The bacterial derived Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein 9 nuclease (Cas9), are among the most effective genome editing techniques that have been advanced in recent years. In addition to their universal application in all organisms tested thus far, CRISPR/Cas9 has also been praised for its simplicity, high efficiency, precision, versatility, and reproducibility. CRISPR/Cas9 has been used to achieve an extensive modifications, from subtle nucleotide changes as insertions/deletions within host genes, gene replacements and gene knock-ins by homologous recombination. Many agriculturally important and desirable traits result from random point mutations or indels at specific loci in either coding region of genes or respective promoters. Therefore, simulating these mutations in the genome of agricultural plants using gene editing methods can be a great progress in plant breeding. In this regard, the CRISPR/Cas platform has been used to target several genes implicated in phytopathogenic resistance, as well as abiotic stress and product quality. This chapter discusses the application of the CRISPR system in sustainable agriculture, along with challenges and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353(6299):aaf5573

    Google Scholar 

  • Ahmad S, Shahzad R, Jamil S, Tabassum J, Chaudhary MAM, Atif RM, Iqbal MM, Monsur MB, Lv Y, Sheng Z (2021) Regulatory aspects, risk assessment, and toxicity associated with RNAi and CRISPR methods. In: CRISPR and RNAi systems. Elsevier, pp 687–721

    Google Scholar 

  • Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:1–11

    Google Scholar 

  • Ancydiana PG, Shanthinie A, Arulganesh T, Kumam Y, Kumar KK, Arul L, Kokiladevi E, Varanavasiappan S, Manonmani S, Sudhakar D (2022) Targeted editing of ossweet13, a bacterial leaf blight susceptible gene in rice using crispr tool. Electro J Plant Breed 13(3):772–779

    Google Scholar 

  • Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157

    Article  CAS  Google Scholar 

  • Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plants 1(10):1–4

    Article  Google Scholar 

  • Bastet A, Robaglia C, Gallois JL (2017) EIF4E resistance: natural variation should guide gene editing. Trends Plant Sci 22(5):411–419

    Article  CAS  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84

    Article  CAS  Google Scholar 

  • Blanvillain-Baufumé S, Reschke M, Solé M, Auguy F, Doucoure H, Szurek B, Meynard D, Portefaix M, Cunnac S, Guiderdoni E, Boch J (2017) Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET 14-inducing TAL effectors. Plant Biotechnol J 15(3):306–317

    Google Scholar 

  • Bouzroud S, Gasparini K, Hu G, Barbosa MAM, Rosa BL, Fahr M, Bendaou N, Bouzayen M, Zsögön A, Smouni A (2020) Down regulation and loss of auxin response factor 4 function using CRISPR/Cas9 alters plant growth, stomatal function and improves tomato tolerance to salinity and osmotic stress. Genes 11(3):272

    Article  CAS  Google Scholar 

  • Brauer EK, Balcerzak M, Rocheleau H, Leung W, Schernthaner J, Subramaniam R, Ouellet T (2020) Genome editing of a deoxynivalenol-induced transcription factor confers resistance to Fusarium graminearum in wheat. Mol Plant-Microbe Interact 33(3):553–560

    Article  CAS  Google Scholar 

  • Cai L, Liu J, Wang S, Gong Z, Yang S, Xu F, Hu Z, Zhang M, Yang J (2023) The coiled-coil protein gene WPRb confers recessive resistance to Cucumber green mottle mosaic virus. Plant Physiol 191(1):369–381

    Article  CAS  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17(7):1140–1153

    Article  CAS  Google Scholar 

  • Chen C, Zhao Y, Tabor G, Nian H, Phillips J, Wolters P, Yang Q, Balint-Kurti P (2023) A leucine rich repeat receptor kinase gene confers quantitative susceptibility to maize southern leaf blight. New Phytol 238(3):1182–1197

    Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  Google Scholar 

  • Debbarma J, Sarki YN, Saikia B, Boruah HPD, Singha DL, Chikkaputtaiah C (2019) Ethylene response factor (ERF) family proteins in abiotic stresses and CRISPR–Cas9 genome editing of ERFs for multiple abiotic stress tolerance in crop plants: a review. Mol Biotechnol 61(2):153–172

    Article  CAS  Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096

    Article  Google Scholar 

  • Duy PN, Lan DT, Pham Thu H, Thi Thu HP, Nguyen Thanh H, Pham NP, Auguy F, Bui Thi Thu H, Manh TB, Cunnac S, Pham XH (2021) Improved bacterial leaf blight disease resistance in the major elite Vietnamese rice cultivar TBR225 via editing of the OsSWEET14 promoter. PloS One 16(9):e0255470

    Google Scholar 

  • Galli M, Hochstein S, Iqbal D, Claar M, Imani J, Kogel KH (2022a) CRISPR/Sp Cas9-mediated KO of epigenetically active MORC proteins increases barley resistance to Bipolaris spot blotch and Fusarium root rot. J Plant Dis Prot 129(4):1005–1011

    Article  CAS  Google Scholar 

  • Galli M, Martiny E, Imani J, Kumar N, Koch A, Steinbrenner J, Kogel KH (2022b) CRISPR/Sp Cas9-mediated double knockout of barley Microrchidia MORC1 and MORC6a reveals their strong involvement in plant immunity, transcriptional gene silencing and plant growth. Plant Biotechnol J 20(1):89–102

    Article  CAS  Google Scholar 

  • García-Murillo L, Valencia-Lozano E, Priego-Ranero NA, Cabrera-Ponce JL, Duarte-Aké FP, Vizuet-de-Rueda JC, Rivera-Toro DM, Herrera-Ubaldo H, de Folter S, Alvarez-Venegas R (2023) CRISPRa-mediated transcriptional activation of the SlPR-1 gene in edited tomato plants. Plant Sci 329:111617

    Google Scholar 

  • Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551(7681):464

    Article  CAS  Google Scholar 

  • Gauffier C, Lebaron C, Moretti A, Constant C, Moquet F, Bonnet G, Caranta C, Gallois JL (2016) A TILLING approach to generate broad-spectrum resistance to potyviruses in tomato is hampered by eIF4E gene redundancy. Plant J 85(6):717–729

    Article  CAS  Google Scholar 

  • Giacomelli L, Zeilmaker T, Scintilla S, Salvagnin U, Rouppe van der Voort J, Moser C (2022) Vitis vinifera plants edited in DMR6 genes show improved resistance to downy mildew. 2022–04

    Google Scholar 

  • Harrison MM, Jenkins BV, O’Connor-Giles KM, Wildonger J (2014) A CRISPR view of development. Genes Dev 28(17):1859–1872

    Article  CAS  Google Scholar 

  • Hashimoto M, Neriya Y, Yamaji Y, Namba S (2016) Recessive resistance to plant viruses: potential resistance genes beyond translation initiation factors. Front Microbiol 7:1695

    Article  Google Scholar 

  • Hasley JAR, Navet N, Tian M (2021) CRISPR/Cas9-mediated mutagenesis of sweet basil candidate susceptibility gene ObDMR6 enhances downy mildew resistance. PLoS ONE 16(6):e0253245

    Article  CAS  Google Scholar 

  • He F, Wang C, Sun H, Tian S, Zhao G, Liu C, Wan C, Guo J, Huang X, Zhan G, Yu X (2023) Simultaneous editing of three homoeologues of TaCIPK14 confers broad-spectrum resistance to stripe rust in wheat. Plant Biotechnol J 21(2):354–368

    Article  CAS  Google Scholar 

  • Hilaire J, Tindale S, Jones G, **arron-Cardenas G, Bačnik K, Ojo M, Frewer LJ (2022) Risk perception associated with an emerging agri-food risk in Europe: plant viruses in agriculture. Agric Food Secur 11(1):21

    Article  Google Scholar 

  • Hoffie RE, Otto I, Perovic D, Budhagatapalli N, Habekuß A, Ordon F, Kumlehn J (2021) Targeted knockout of eukaryotic translation initiation factor 4E confers Bymovirus resistance in winter barley. Front Genome Ed 34

    Google Scholar 

  • Hong Y, Meng J, He X, Zhang Y, Liu Y, Zhang C, Qi H, Luan Y (2021) Editing miR482b and miR482c simultaneously by CRISPR/Cas9 enhanced tomato resistance to Phytophthora infestans. Phytopathology 111(6):1008–1016

    Article  CAS  Google Scholar 

  • Huang X, Wang Y, Wang N (2022) Highly efficient generation of canker-resistant sweet orange enabled by an improved CRISPR/Cas9 system. Front Plant Sci 12:769907

    Google Scholar 

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacterial 169(12):5429–5433

    Article  CAS  Google Scholar 

  • Ji X, Zhang H, Zhang Y, Wang Y, Gao C (2015) Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat. Plants. 1(10):1–4

    Article  Google Scholar 

  • Jia H, Orbović V, Wang N (2019) CRISPR-LbCas12a-mediated modification of citrus. Plant Biotechnol J 17(10):1928–1937

    Article  CAS  Google Scholar 

  • Jia H, Orbovic V, Jones JB, Wang N (2016) Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4: dCs LOB 1.3 infection. Plant Biotechnol J 14(5):1291–1301

    Google Scholar 

  • Jia H, Zhang Y, Orbović V, Xu J, White FF, Jones JB, Wang N (2017) Genome editing of the disease susceptibility gene Cs LOB 1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15(7):817–823

    Article  CAS  Google Scholar 

  • **ek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–822

    Article  CAS  Google Scholar 

  • Jones RA, Naidu RA (2019) Global dimensions of plant virus diseases: current status and future perspectives. Annu Rev Virol 6:387–409

    Article  CAS  Google Scholar 

  • Kan J, Cai Y, Cheng C, Chen S, Jiang C, He Z, Yang P (2023) CRISPR/Cas9-guided knockout of eIF4E improves Wheat yellow mosaic virus resistance without yield penalty. Plant Biotechnol J

    Google Scholar 

  • Kan J, Cai Y, Cheng C, Jiang C, ** Y, Yang P (2022) Simultaneous editing of host factor gene TaPDIL5-1 homoeoalleles confers wheat yellow mosaic virus resistance in hexaploid wheat. New Phytol 234(2):340–344

    Article  CAS  Google Scholar 

  • Khan H, McDonald MC, Williams SJ, Solomon PS (2020) Assessing the efficacy of CRISPR/Cas9 genome editing in the wheat pathogen Parastagonspora nodorum. Fungal Biol Biotechnol 7:1–8

    Article  Google Scholar 

  • Khan ZA, Kumar R, Dasgupta I (2022) CRISPR/Cas-mediated resistance against viruses in plants. Int J Mol Sci 23(4):2303

    Article  CAS  Google Scholar 

  • Khatodia S, Bhatotia K, Tuteja N (2017) Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops. Bioengineered 8(3):274–279

    Article  CAS  Google Scholar 

  • Kieu NP, Lenman M, Wang ES, Petersen BL, Andreasson E (2021) Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Sci Rep 11(1):1–12

    Article  Google Scholar 

  • Kis A, Hamar É, Tholt G, Bán R, Havelda Z (2019) Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system. Plant Biotechnol J 17(6):1004

    Article  Google Scholar 

  • Kitomi Y, Hanzawa E, Kuya N, Inoue H, Hara N, Kawai S, Kanno N, Endo M, Sugimoto K, Yamazaki T (2020) Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields. Proc Natl Acad Sci USA 117(35):21242–21250

    Article  CAS  Google Scholar 

  • Klap C, Yeshayahou E, Bolger AM, Arazi T, Gupta SK, Shabtai S, Usadel B, Salts Y, Barg R (2017) Tomato facultative parthenocarpy results from Sl AGAMOUS-LIKE 6 loss of function. Plant Biotechnol J 15(5):634–647

    Article  CAS  Google Scholar 

  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420

    Article  CAS  Google Scholar 

  • Koonin EV, Krupovic M, Agol VI (2021) The Baltimore classification of viruses 50 years later: how does it stand in the light of virus evolution? Microbiol Mol Biol Rev 85(3):e00053-e121

    Article  CAS  Google Scholar 

  • Koseoglou E, van der Wolf JM, Visser RG, Bai Y (2022) Susceptibility reversed: modified plant susceptibility genes for resistance to bacteria. Trends Plant Sci 27(1):69–79

    Article  CAS  Google Scholar 

  • Kumam Y, Rajadurai G, Kumar KK, Varanavasiappan S, Reddy MK, Krishnaveni D, Mangrauthia SK, Raveendran M, Arul L, Kokiladevi E, Sudhakar D (2022) Genome editing of indica rice ASD16 for imparting resistance against rice tungro disease. J Plant Biochem Biotechnol 1–14

    Google Scholar 

  • Kusch S, Panstruga R (2017) mlo-based resistance: an apparently universal “weapon” to defeat powdery mildew disease. Mol Plant-Microbe Interact 30(3):179–189

    Google Scholar 

  • Kushalappa AC, Hegde NG, Gunnaiah R, Sathe A, Yogendra KN, Ajjamada L (2022) Apoptotic-like PCD inducing HRC gene when silenced enhances multiple disease resistance in plants. Sci Rep 12(1):20402

    Article  CAS  Google Scholar 

  • Li C, Li W, Zhou Z, Chen H, **e C, Lin Y (2020) A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene‐free bacterial blight‐resistant rice. Plant Biotechnol J 18(2):313

    Google Scholar 

  • Li R, Maioli A, Yan Z, Bai Y, Valentino D, Milani AM, Pompili V, Comino C, Lanteri S, Moglia A, Acquadro A (2022) CRISPR/Cas9-based knock-out of the PMR4 gene reduces susceptibility to late blight in two tomato cultivars. Int J Mol Sci 23(23):14542

    Google Scholar 

  • Li Z, Zou L, Ye G, **ong L, Ji Z, Zakria M, Hong N, Wang G, Chen G (2014) A potential disease susceptibility gene CsLOB of citrus is targeted by a major virulence effector PthA of Xanthomonas citri subsp. citri. Mol Plant 7(5):912–915

    Google Scholar 

  • Liao S, Qin X, Luo L, Han Y, Wang X, Usman B, Nawaz G, Zhao N, Liu Y, Li R (2019) CRISPR/Cas9-induced mutagenesis of semi-rolled leaf1, 2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in rice (Oryza sativa L.). Agronomy 9(11):728

    Google Scholar 

  • Liu S, Zhang X, **ao S, Ma J, Shi W, Qin T, ** H, Nie X, You C, Xu Z, Wang T (2021) A single-nucleotide mutation in a GLUTAMATE RECEPTOR-LIKE gene confers resistance to Fusarium Wilt in Gossypium hirsutum. Adv Sci 8(7):2002723

    Article  CAS  Google Scholar 

  • Lo A, Qi L (2017) Genetic and epigenetic control of gene expression by CRISPR/Cas systems. F1000 Research 6

    Google Scholar 

  • Lou D, Wang H, Liang G, Yu D (2017) OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8:993

    Article  Google Scholar 

  • Macho A, Wang P, Zhu JK (2022) Modification of the susceptibility gene TaPsIPK1-a win-win for wheat disease resistance and yield. Stress Biol 2(1):40

    Article  CAS  Google Scholar 

  • Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, Čermák T, Voytas DF, Choi IR, Chadha-Mohanty P (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol J 16(11):1918–1927

    Article  CAS  Google Scholar 

  • Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, Horvath P (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13(11):722–736

    Article  CAS  Google Scholar 

  • Méndez‐López E, Donaire L, Gosálvez B, Díaz‐Vivancos P, Sánchez‐Pina MA, Tilsner J, Aranda MA (2023) Tomato SlGSTU38 interacts with the PepMV coat protein and promotes viral infection. New Phytol 238(1):332–348

    Google Scholar 

  • Nachshon U (2018) Cropland soil salinization and associated hydrology: trends, processes and examples. Water 10(8):1030

    Google Scholar 

  • Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7(1):1–6

    Article  CAS  Google Scholar 

  • Ni Z, Cao Y, ** X, Fu Z, Li J, Mo X, He Y, Tang J, Huang S (2021) Engineering resistance to bacterial blight and bacterial leaf streak in rice. Rice 14(1):38

    Article  CAS  Google Scholar 

  • Nicaise V (2014) Crop immunity against viruses: outcomes and future challenges. Front Plant Sci 5:660

    Article  Google Scholar 

  • Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, Noda T, Abudayyeh OO, Gootenberg JS, Mori H (2018) Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361(6408):1259–1262

    Article  CAS  Google Scholar 

  • Oliva R, Ji C, Atienza-Grande G, Huguet-Tapia JC, Perez-Quintero A, Li T, Eom JS, Li C, Nguyen H, Liu B, Auguy F (2019) Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol 37(11):1344-1350

    Google Scholar 

  • Ortigosa A, Gimenez‐Ibanez S, Leonhardt N, Solano R (2019) Design of a bacterial speck resistant tomato by CRISPR/Cas9‐mediated editing of Sl JAZ 2. Plant Biotechnol J 17(3):665–673

    Google Scholar 

  • Parajuli S, Huo H, Gmitter Jr FG, Duan Y, Luo F, Deng Z (2022) Editing the CsDMR6 gene in citrus results in resistance to the bacterial disease citrus canker. Hortic Res 9:uhac082

    Google Scholar 

  • Pechar GS, Donaire L, Gosalvez B, García-Almodovar C, Sánchez-Pina MA, Truniger V, Aranda MA (2022) Editing melon eIF4E associates with virus resistance and male sterility. Plant Biotechnol J 20(10):2006–2022

    Article  CAS  Google Scholar 

  • Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J 15(12):1509–1519

    Article  CAS  Google Scholar 

  • Peng J, Nie J, Chen X, Zhang L, Yao X, Li P, Shi H, Song C, Dong H (2022) Editing of the rice importin gene IMPα1b results in sequestration of TAL effectors from plant cell nuclei. Phytopathol Res 4(1):1–16

    Google Scholar 

  • Pessina S, Lenzi L, Perazzolli M, Campa M, Dalla Costa L, Urso S, Valè G, Salamini F, Velasco R, Malnoy M (2016) Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine. Hortic Res 3

    Google Scholar 

  • Pompili V, Dalla Costa L, Piazza S, Pindo M, Malnoy M (2020) Reduced fire blight susceptibility in apple cultivars using a high‐efficiency CRISPR/Cas9‐FLP/FRT‐based gene editing system. Plant Biotechnol J 18(3):845–858

    Google Scholar 

  • Price AA, Sampson TR, Ratner HK, Grakoui A, Weiss DS (2015) Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc Natl Acad Sci USA 112:6164–6169

    Article  CAS  Google Scholar 

  • Pyott DE, Sheehan E, Molnar A (2016) Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol Plant Pathol 17(8):1276–1288

    Article  CAS  Google Scholar 

  • Razzaq HA, Ijaz S, Haq IU, Khan IA (2022) Functional inhibition of the StERF3 gene by dual targeting through CRISPR/Cas9 enhances resistance to the late blight disease in Solanum Tuberosum L. Mol Biol Rep 49(12):11675–11684

    Article  CAS  Google Scholar 

  • Rodriguez-Moreno L, Ebert MK, Bolton MD, Thomma BP (2018) Tools of the crook-infection strategies of fungal plant pathogens. Plant J 93(4):664–674

    Article  CAS  Google Scholar 

  • Sakuma T, Masaki K, Abe-Chayama H, Mochida K, Yamamoto T, Chayama K (2016) Highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vectors for inactivation of hepatitis B virus. Genes Cells 21(11):1253–1262

    Article  CAS  Google Scholar 

  • Santillán Martínez MI, Bracuto V, Koseoglou E, Appiano M, Jacobsen E, Visser RG, Wolters AMA, Bai Y (2020) CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC Plant Biol 20(1):1–13

    Article  Google Scholar 

  • Santosh Kumar VV, Verma RK, Yadav SK, Yadav P, Watts A, Rao MV, Chinnusamy V (2020) CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol Mol Biol Plants 26:1099–1110

    Article  CAS  Google Scholar 

  • Saputri VHL, Sutopo W, Hisjam M, Ma’aram A (2019) Sustainable agri-food supply chain performance measurement model for GMO and Non-GMO using data envelopment analysis method. Appl Sci 9(6):1199

    Google Scholar 

  • Sharma A, Gupta AK, Devi B (2023) Current trends in management of bacterial pathogens infecting plants. Antonie van Leeuwenhoek 1–24

    Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15(2):207–216

    Article  CAS  Google Scholar 

  • Shnaider Y, Elad Y, Rav David D, Pashkovsky E, Leibman D, Kravchik M, Shtarkman-Cohen M, Gal-On A, Spiegelman Z (2023) Development of powdery mildew (Podosphaera xanthii) resistance in cucumber (Cucumis sativus) using CRISPR/Cas9-mediated mutagenesis of CsaMLO8. Phytopathol 113(5):786-790

    Google Scholar 

  • Su Z, Bernardo A, Tian B, Chen H, Wang S, Ma H, Cai S, Liu D, Zhang D, Li T, Trick H (2019) A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet 51(7):1099–1105

    Google Scholar 

  • Sun Q, Lin L, Liu D, Wu D, Fang Y, Wu J, Wang Y (2018) CRISPR/Cas9-mediated multiplex genome editing of the BnWRKY11 and BnWRKY70 genes in Brassica napus L. Int J Mol Sci 19(9):2716

    Google Scholar 

  • Sundin GW, Wang N, Charkowski AO, Castiblanco LF, Jia H, Zhao Y (2016) Perspectives on the transition from bacterial phytopathogen genomics studies to applications enhancing disease management: From promise to practice. Phytopathology 106(10):1071–1082

    Article  CAS  Google Scholar 

  • Taheri F, Azadi H, D’Haese M (2017) A world without hunger: organic or GM crops? Sustainability 9(4):580

    Article  Google Scholar 

  • Tao H, Shi X, He F, Wang D, **ao N, Fang H, Wang R, Zhang F, Wang M, Li A, Liu X (2021) Engineering broad-spectrum disease‐resistant rice by editing multiple susceptibility genes. J Integr Plant Biol 63(9):1639–1648

    Google Scholar 

  • Távora FT, Meunier AC, Vernet A, Portefaix M, Milazzo J, Adreit H, Tharreau D, Franco OL, Mehta A (2022) CRISPR/Cas9-Targeted knockout of rice susceptibility genes OsDjA2 and OsERF104 reveals alternative sources of resistance to Pyricularia oryzae. Rice Sci 29(6):535–544

    Article  Google Scholar 

  • Tek MI, Calis O, Fidan H, Shah MD, Celik S, Wani SH (2022) CRISPR/Cas9 based mlo-mediated resistance against Podosphaera xanthii in cucumber (Cucumis sativus L.). Front Plant Sci 13:5234

    Google Scholar 

  • Thomazella DPDT, Seong K, Mackelprang R, Dahlbeck D, Geng Y, Gill US, Qi T, Pham J, Giuseppe P, Lee CY, Ortega A (2021) Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Proc Natl Acad Sci USA 118(27):e2026152118

    Article  Google Scholar 

  • Tripathi JN, Ntui VO, Shah T, Tripathi L (2021) CRISPR/Cas9‐mediated editing of DMR6 orthologue in banana (Musa spp.) confers enhanced resistance to bacterial disease. Plant Biotechnol J 19(7):1291

    Google Scholar 

  • Wan DY, Guo Y, Cheng Y, Hu Y, **ao S, Wang Y, Wen YQ (2020) CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera). Hortic Res 7

    Google Scholar 

  • Wang A, Krishnaswamy S (2012) Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol Plant Pathol 13(7):795–803

    Article  CAS  Google Scholar 

  • Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11(4):e0154027

    Article  Google Scholar 

  • Wang J, Mei J, Ren G (2019a) Plant microRNAs: biogenesis, homeostasis, and degradation. Front Plant Sci 10:360

    Article  Google Scholar 

  • Wang J, Tian D, Gu K, Yang X, Wang L, Zeng X, Yin Z (2017) Induction of Xa10-like genes in rice cultivar Nipponbare confers disease resistance to rice bacterial blight. Mol Plant-Microbe Interact 30(6):466–477

    Article  CAS  Google Scholar 

  • Wang L, Chen S, Peng A, **e Z, He Y, Zou X (2019b) CRISPR/Cas9-mediated editing of CsWRKY22 reduces susceptibility to Xanthomonas citri subsp. citri in Wan**cheng orange (Citrus sinensis (L.) Osbeck). Plant Biotechnol Rep 13:501–510.

    Google Scholar 

  • Wang S, Zong Y, Lin Q, Zhang H, Chai Z, Zhang D, Chen K, Qiu J-L, Gao C (2020) Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC–Cas9. Nat Biotechnol 38(12):1460–1465

    Article  CAS  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951

    Article  CAS  Google Scholar 

  • Wang Y, Geng M, Pan R, Zhang T, Lu X, Zhen X, Che Y, Li R, Liu J, Chen Y, Guo J (2022) Engineering bacterial blight-resistant plants through CRISPR/Cas9-targeted editing of the MeSWEET10a promoter in cassava. bioRxiv 2022-03

    Google Scholar 

  • Wei Z, Abdelrahman M, Gao Y, Ji Z, Mishra R, Sun H, Sui Y, Wu C, Wang C, Zhao K (2021) Engineering broad-spectrum resistance to bacterial blight by CRISPR-Cas9-mediated precise homology directed repair in rice. Mol Plant 14(8):1215–1218

    Google Scholar 

  • Xu X, Xu Z, Li Z, Zakria M, Zou L, Chen G (2021) Increasing resistance to bacterial leaf streak in rice by editing the promoter of susceptibility gene OsSULRT3; 6. Plant Biotechnol J 19(6):1101

    Google Scholar 

  • Xu Z, Xu X, Gong Q, Li Z, Li Y, Wang S, Yang Y, Ma W, Liu L, Zhu B, Zou L (2019) Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Mol Plant 12(11):1434–1446

    Google Scholar 

  • Yang C, Zhang Y, Huang C (2019) Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5. J Integr Agric 18(3):688–697

    Google Scholar 

  • Yang P, Lüpken T, Habekuss A, Hensel G, Steuernagel B, Kilian B, Ariyadasa R, Himmelbach A, Kumlehn J, Scholz U, Ordon F (2014) PROTEIN DISULFIDE ISOMERASE LIKE 5–1 is a susceptibility factor to plant viruses. Proc Natl Acad Sci USA 111(6):2104–2109

    Article  CAS  Google Scholar 

  • Yoon YJ, Venkatesh J, Lee JH, Kim J, Lee HE, Kim DS, Kang BC (2020) Genome editing of eIF4E1 in tomato confers resistance to pepper mottle virus. Front Plant Sci 11:1098

    Article  Google Scholar 

  • Yu K, Liu Z, Gui H, Geng L, Wei J, Liang D, Lv J, Xu J, Chen X (2021) Highly efficient generation of bacterial leaf blight-resistant and transgene-free rice using a genome editing and multiplexed selection system. BMC Plant Biol 21(1):1–10

    Google Scholar 

  • Yu W, Wang L, Zhao R, Sheng J, Zhang S, Li R, Shen L (2019) Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biol 19(1):1–13

    Article  Google Scholar 

  • Zafar K, Khan MZ, Amin I, Mukhtar Z, Yasmin S, Arif M, Ejaz K, Mansoor S (2020) Precise CRISPR-Cas9 mediated genome editing in super basmati rice for resistance against bacterial blight by targeting the major susceptibility gene. Front Plant Sci 11:575

    Google Scholar 

  • Zeilmaker T, Ludwig NR, Elberse J, Seidl MF, Berke L, Van Doorn A, Schuurink RC, Snel B, Van den Ackerveken G (2015) DOWNY MILDEW RESISTANT 6 and DMR 6-LIKE OXYGENASE 1 are partially redundant but distinct suppressors of immunity in Arabidopsis. Plant J 81(2):210–222

    Article  CAS  Google Scholar 

  • Zeng X, Luo Y, Vu NTQ, Shen S, **a K, Zhang M (2020) CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty. BMC Plant Biol 20(1):1–11

    Google Scholar 

  • Zeng Y, Wen J, Zhao W, Wang Q, Huang W (2020b) Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR–Cas9 system. Front Plant Sci 10:1663

    Article  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van Der Oost J, Regev A, Koonin EV (2015a) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771

    Article  CAS  Google Scholar 

  • Zetsche B, Volz SE, Zhang F (2015b) A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33(2):139–142

    Article  CAS  Google Scholar 

  • Zhan X, Zhang F, Zhong Z, Chen R, Wang Y, Chang L, Bock R, Nie B, Zhang J (2019) Generation of virus-resistant potato plants by RNA genome targeting. Plant Biotechnol J 17(9):1814–1822

    Article  CAS  Google Scholar 

  • Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Bi J, Zhang F, Luo X, Wang J (2019a) Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breed 39:1–10

    Article  Google Scholar 

  • Zhang M, Liu Q, Yang X, Xu J, Liu G, Yao X, Ren R, Xu J, Lou L (2020a) CRISPR/Cas9-mediated mutagenesis of Clpsk1 in watermelon to confer resistance to Fusarium oxysporum f. sp. niveum. Plant Cell Rep 39:589–595

    Article  CAS  Google Scholar 

  • Zhang T, Zhao Y, Ye J, Cao X, Xu C, Chen B, An H, Jiao Y, Zhang F, Yang X, Zhou G (2019b) Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants. Plant Biotechnol J 17(7):1185

    Article  Google Scholar 

  • Zhang X, Cheng J, Lin Y, Fu Y, **e J, Li B, Bian X, Feng Y, Liang W, Tang Q, Zhang H (2021a) Editing homologous copies of an essential gene affords crop resistance against two cosmopolitan necrotrophic pathogens. Plant Biotechnol J 19(11):2349–2361

    Article  CAS  Google Scholar 

  • Zhang X, Li N, Liu X, Wang J, Zhang Y, Liu D, Wang Y, Cao H, Zhao B, Yang W (2021b) Tomato protein Rx4 mediates the hypersensitive response to Xanthomonas euvesicatoria pv. perforans race T3. Plant J 105(6):1630–1644

    Google Scholar 

  • Zhang X, Low YC, Lawton MA, Simon JE, Di R (2021c) CRISPR-editing of sweet basil (Ocimum basilicum L.) homoserine kinase gene for improved downy mildew disease resistance. Front Genome Ed 3:629769

    Google Scholar 

  • Zhang Y, Li J, Chen S, Ma X, Wei H, Chen C, Gao N, Zou Y, Kong D, Li T (2020b) An APETALA2/ethylene responsive factor, OsEBP89 knockout enhances adaptation to direct-seeding on wet land and tolerance to drought stress in rice. Mol Genet Genom 295:941–956

    Article  CAS  Google Scholar 

  • Zhou J, Peng Z, Long J, Sosso D, Liu BO, Eom JS, Huang S, Liu S, Vera Cruz C, Frommer WB, White FF (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82(4):632–643

    Article  CAS  Google Scholar 

  • Zhou X, Liao H, Chern M, Yin J, Chen Y, Wang J, Zhu X, Chen Z, Yuan C, Zhao W, Wang J (2018) Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proc Natl Acad Sci USA 115(12):3174–3179

    Article  CAS  Google Scholar 

  • Zhou Y, Xu S, Jiang N, Zhao X, Bai Z, Liu J, Yao W, Tang Q, **ao G, Lv C, Wang K (2022) Engineering of rice varieties with enhanced resistances to both blast and bacterial blight diseases via CRISPR/Cas9. Plant Biotechnol J 20(5):876–885

    Article  CAS  Google Scholar 

  • Zhu QH, ** S, Yuan Y, Liu Q, Zhang X, Wilson I (2022) CRISPR/Cas9-mediated saturated mutagenesis of the cotton MIR482 family for dissecting the functionality of individual members in disease response. Plant Direct. 6(6):e410

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran E. Shariatpanahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zamani, K., Mohsenpour, M., Shariatpanahi, M.E. (2024). Genome Editing Based CRISPR System in Crop Improvement. In: Kumar, N. (eds) Plant Mutagenesis. Sustainable Landscape Planning and Natural Resources Management. Springer, Cham. https://doi.org/10.1007/978-3-031-50729-8_5

Download citation

Publish with us

Policies and ethics

Navigation