Gas Chromatography

  • Chapter
  • First Online:
Nielsen's Food Analysis

Part of the book series: Food Science Text Series ((FSTS))

  • 74 Accesses

Abstract

Gas chromatography (GC) has been used for the determination of a wide range of food components, but it is ideally suited for the analysis of thermally stable volatile substances. The outstanding resolving properties of GC and the wide variety of detectors contribute to the sensitivity or selectivity in analysis. This chapter discusses details of GC sample preparation, hardware, columns, and chromatographic theory as it is uniquely applied to GC. Sample preparation generally involves the isolation of solutes from foods, which may be accomplished by headspace analysis, distillation, preparative chromatography, or extraction. Some analytes can then be directly analyzed, while others must be derivatized prior to analysis to increase volatility or temperature stability. The GC consists of a gas supply and regulators (pressure and flow control), injection port, column and column oven, detector, electronics, and a data recording and processing system. The analyst must be knowledgeable about the characteristics of each of these GC components and understand basic chromatographic theory to balance the properties of resolution, capacity, speed, and sensitivity. New GC developments and applications will likely be related to multidimensional GC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. James, AT, Martin, AJP (1952) Gas-liquid chromatography: the separation and microestimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem J 50:679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Poole, CF (Ed.). (2021). Gas chromatography (2nd ed.). Elsevier. https://doi.org/10.1016/C2019-0-02050-X

  3. Swinley, JP, De Coning, P., (2019). A practical guide to gas analysis by gas chromatography. Elsevier. eBook ISBN: 9780128188897

    Google Scholar 

  4. Wedad, Q L-Bukhaiti, A, Noman, A, Qasim, AS, AL-Farga, A (2017) Gas Chromatography: Principles, Advantages and Applications in Food Analysis. International J. Agriculture Innovations and Research 6(1) ISSN (Online) 2319-1473

    Google Scholar 

  5. Gordon, MH (1990) Principles and applications of gas chromatography in food analysis. E. Horwood, New York

    Google Scholar 

  6. O’Keeffe M (2000) Residue analysis in food: principles and applications. Harwood Academic, Amsterdam

    Google Scholar 

  7. Drawert F, Heimann W, Enberger R, Tressl R (1965) Enzymatische verandrung des naturlichen apfelaromass bei der aurfarbeitung. Naturwissenschaften 52:304

    Article  CAS  PubMed  Google Scholar 

  8. Fleming HP,Fore SP, Goldblatt LA (1968) The formation of carbonyl compounds in cucumbers. J Food Sci 33: 572

    Article  CAS  Google Scholar 

  9. Kazeniak SJ, Hall RM (1970) Flavor chemistry of tomato volatiles. J Food Sci 35:519

    Article  Google Scholar 

  10. Leahy MM, Reineccius GA (1984) Comparison of methods for the analysis of volatile compounds from aqueous model systems. In: Schreier P (ed) Analysis of volatiles: New methods and their application. DeGruyter, Berlin

    Google Scholar 

  11. Marsili R (1997) Techniques for analyzing food aroma. Marcel Dekker, New York

    Google Scholar 

  12. Mussinan CJ, Morello MJ (1998) Flavor analysis. American Chemical Society, Washington DC

    Book  Google Scholar 

  13. Sapers GM, Panasiuk O, Talley FB (1973) Flavor quality and stability of potato flakes: Effects of raw material and processing. J Food Sci 38:586

    Article  Google Scholar 

  14. Seo EW, Joel DL (1980) Pentane production as an index of rancidity in freeze-dried pork. J Food Sci 45:26

    Article  CAS  Google Scholar 

  15. Buttery RG, Teranishi R (1963) Measurement of fat oxidation and browning aldehydes in food vapors by direct injection gas-liquid chromatography. J Agric Food Chem 11:504

    Article  CAS  Google Scholar 

  16. Engel W, Bahr W, Schieberle P (1999) Solvent assisted flavor evaporation-a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Z Lebensm Unters Forsch 209:237–241

    Article  CAS  Google Scholar 

  17. Reineccius GA, Keeney PA, Weiseberger W (1972) Factors affecting the concentration of pyrazines in cocoa beans. J Agric Food Chem 20:202

    Article  CAS  Google Scholar 

  18. Engel W, Bahr W, Schieberle P (1999) Solvent assisted flavour evaporation - a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur Food Res Tech 209:237–241

    Article  CAS  Google Scholar 

  19. Majors RE (1986) Sample preparation for HPLC and GC using solid-phase extraction. LC--GC 4:972

    Google Scholar 

  20. Markel C, Hagen DF, Bunnelle VA (1991) New technologies in solid-phase extraction. LC--GC 9:332

    Google Scholar 

  21. Li KM, Rivory LP, Clarke SJ (2006) Solid-phase extraction (SPE) techniques for sample preparation in clinical and pharmaceutical analysis: a brief overview. Curr Pharma Anal 2: 95–102

    Article  CAS  Google Scholar 

  22. Pawliszyn J (1997) Solid phase microextraction: theory and practice. VCH Publishers, New York

    Google Scholar 

  23. Zhang Z, Yang ML, Pawliszyn J (1994) Solid phase-microextraction: a solvent-free alternative for sample preparation. Anal Chem 66:844A–857A

    Google Scholar 

  24. Fang Y, Qian MC (2005) Sensitive quantification of sulfur compounds in wine by headspace solid-phase microextraction technique. J Chromatogr A 1080:177–185

    Article  CAS  PubMed  Google Scholar 

  25. Verhoeven H, Beuerle T, Schwab W (1997) Solid-phase microextraction: artifact formation and its avoidance. J Chromatogr 46:63–66

    Article  CAS  Google Scholar 

  26. Song J, Fan L, Beaudry RM (1998) Application of solid phase microextraction and gas chromatography/time-of-flight mass spectrometry for rapid analysis of flavor volatiles in tomato and strawberry fruits. J Agric Food Chem 46:3721–3726

    Article  CAS  Google Scholar 

  27. Jetti RR, Yang EN, Kurnianta A, Finn C, Qian MC (2007) Quantification of selected aroma-active compounds in strawberries by headspace solid-phase microextraction gas chromatography and correlation with sensory descriptive analysis. J Food Sci 72:S487-S496

    Article  CAS  PubMed  Google Scholar 

  28. Kataoka H, Lord HL, Pawliszyn J (2000) Application of solid-phase microextraction in food analysis. J Chromatogr A 880:35–62

    Article  CAS  PubMed  Google Scholar 

  29. Vas G, Vekey K (2004) Solid-phase microextraction: A powerful sample preparation tool prior to mass spectrometric analysis. J Mass Spectrom 39:233–254

    Article  CAS  PubMed  Google Scholar 

  30. Pfanncoch E, Whitecavage J (2002) Stir bar sorptive extraction capacity and competition effects. Gerstel Global, Baltimore, MD, pp. 1–8

    Google Scholar 

  31. David F, Tienpont B, Sandra P (2003) Stir-bar sorptive extraction of trace organic compounds from aqueous matrices. LC-GC Europe 16:410

    Google Scholar 

  32. Ou C, Du X, Shellie K, Ross C, Qian MC (2010) Volatile compounds and sensory attributes of wine from cv. Merlot (Vitis vinifera l.) grown under differential levels of water deficit with or without a kaolin-based, foliar reflectant particle film. J Agric and Food Chem 58:12890–12898

    Article  CAS  Google Scholar 

  33. Song J, Smart RE, Dambergs RG, Sparrow AM, Wells RB, Wang H, Qian MC (2014) Pinot noir wine composition from different vine vigour zones classified by remote imaging technology. Food Chem 153:52–59

    Article  CAS  PubMed  Google Scholar 

  34. David F, Sandra P (2007) Stir bar sorptive extraction for trace analysis. J Chromatogr A 1152:54–69

    Article  CAS  PubMed  Google Scholar 

  35. Kreck M, Scharrer A, Bilke S, Mosandl A (2001) Stir bar sorptive extraction (SBSE)-enantio-mdgc-ms - a rapid method for the enantioselective analysis of chiral flavour compounds in strawberries. Eur Food Res Technol 213:389–394

    Article  CAS  Google Scholar 

  36. Malowicki SMM, Martin R,Qian MC (2008) Volatile composition in raspberry cultivars grown in the pacific northwest determined by stir bar sorptive extraction-gas chromatography-mass spectrometry. J Agric Food Chem 56:4128–4133

    Article  CAS  PubMed  Google Scholar 

  37. Malowicki SMM, Martin R, Qian MC (2008) Comparison of sugar, acids, and volatile composition in raspberry bushy dwarf virus-resistant transgenic raspberries and the wild type ‘meeker’ (Rubus idaeus l.). J Agric Food Chem 56:6648–6655

    Article  CAS  PubMed  Google Scholar 

  38. Zhou Q, Qian Y, Qian MC (2015) Analysis of volatile phenols in alcoholic beverage by ethylene glycol-polydimethylsiloxane based stir bar sorptive extraction and gas chromatography–mass spectrometry. J Chromatogr A 1390:22–27

    Article  CAS  PubMed  Google Scholar 

  39. Dupuy HP, Fore SP, Goldblatt LA (1971) Elution and analysis of volatiles in vegetable oils by gas chromatography. J Amer Oil Chem Soc 48:876

    Article  CAS  Google Scholar 

  40. Legendre MG, Fisher GS,Fuller WH, Dupuy HP,Rayner ET (1979) Novel technique for the analysis of volatiles in aqueous and nonaqueous systems. J Amer Oil Chem Soc 56:552

    Article  CAS  Google Scholar 

  41. Widmer HM (1990) Recent developments in instrumental analysis. In Flavor science and technology, Bessiere YThomas AF, Eds. John Wiley & Sons: Chichester, England, 1990; p 181.

    Google Scholar 

  42. Blau K, King GS (1993) Handbook of derivatives for chromatography, Vol 2. Wiley, New York.

    Google Scholar 

  43. Du X, Qian M (2008) Quantification of 2,5-dimethyl-4-hydroxy-3(2h)-furanone using solid-phase extraction and direct microvial insert thermal desorption gas chromatography-mass spectrometry. J Chromatogr. A 1208:197–201

    Article  CAS  PubMed  Google Scholar 

  44. Fang Y, Qian MC (2006) Quantification of selected aroma-active compounds in pinot noir wines from different grape maturities. J Agric Food Chem 54:8567–8573

    Article  CAS  PubMed  Google Scholar 

  45. Armstrong DW, He L, Liu Y-S (1999) Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Anal Chem 71:3873–3876

    Article  CAS  PubMed  Google Scholar 

  46. Berthod A, Ruiz-Angel M, Carda-Broch S (2008) Ionic liquids in separation techniques. J Chromatogr A 1184:6–18

    Article  CAS  PubMed  Google Scholar 

  47. Delmonte P, Kia A-RF, Kramer JK, Mossoba MM, Sidisky L, Rader JI (2011) Separation characteristics of fatty acid methyl esters using slb-il111, a new ionic liquid coated capillary gas chromatographic column. J Chromatogr A 1218:545–554

    Article  CAS  PubMed  Google Scholar 

  48. Bicchi C, Manzin V, D’Amato A, Rubiolo P (1995) Cyclodextrin derivatives in gc separation of enantiomers of essential oil, aroma and flavour compounds. Flavour and Fragrance J 10:127–137

    Article  CAS  Google Scholar 

  49. Amirav A, **g H (1995) Pulsed flame photometer detector for gas chromatography. Anal Chem 67:3305–3318

    Article  CAS  Google Scholar 

  50. Buffington R, Wilson MK (1987) Detectors for gas chromatography. Hewlett-Packard Corp., Avondale, PA

    Google Scholar 

  51. Shellie R, Marriott P (2003) Opportunities for ultra-high resolution analysis of essential oils using comprehensive two-dimensional gas chromatography: a review. Flavour Fragrance J 18:179–191

    Article  CAS  Google Scholar 

  52. Merritt C (1971) Application in flavor research. In: Zlatkis A, Pretorius V, (Eds) Preparative gas chromatography, Wiley-Interscience, New York, 1971; pp. 235–276

    Google Scholar 

  53. Kempfert KD (1989) Evaluation of apparent senitivity enhancement in gc/ftir using multidimensional gc techniques. J Chromatogr Sci 27:63–70

    Article  CAS  Google Scholar 

  54. Ryan D, Shellie R, Tanchida P, Cassilli A, Mondello L, Marriott P (2004) Analysis of roasted coffee bean volatiles by using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatography A 1054:57–65

    Article  CAS  Google Scholar 

  55. Phillips JB, Xu J (1995) Comprehensive multi-dimensional gas chromatography (review). J Chromatogr A 703:327–334

    Article  CAS  Google Scholar 

  56. Shellie R, Mondello L, Marriott P, Dugo G (2002) Characterisation of lavender essential oils by using gas chromatography-mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography. J Chromatogr 970:225–234

    Article  CAS  Google Scholar 

  57. Adahchour M, Brandt M, Baier H-U, Vreuls RJJ, Batenburg AM, Brinkman UAT (2005) Comprehensive two-dimensional gas chromatography coupled to a rapid-scanning quadrupole mass spectrometer: Principles and applications. J Chromatogr A 1067:245–254

    Article  CAS  PubMed  Google Scholar 

  58. Campo E, Cacho J, Ferreira V (2007) Solid phase extraction, multidimensional gas chromatography mass spectrometry determination of four novel aroma powerful ethyl esters. J Chromatogr A 1140:180–188

    Article  CAS  PubMed  Google Scholar 

  59. Campo E, Ferreira V, Lopez R, Escudero A, Cacho J (2006) Identification of three novel compounds in wine by means of a laboratory-constructed multidimensional gas chromatographic system. J Chromatogr A 1122:202–208

    Article  CAS  PubMed  Google Scholar 

  60. Adahchour M, Wiewel J, Verdel R, Vreuls RJJ, Brinkman UAT (2005) Improved determination of flavour compounds in butter by solid-phase (micro)extraction and comprehensive two-dimensional gas chromatography. J Chromatogr A 1086:99–106

    Article  CAS  PubMed  Google Scholar 

  61. Hodges K (1991) Sensory-directed analytical concentration techniques for aroma-flavor characterization and quantification. In: Risch SJ, Hotchkiss JH (Eds), Food packaging interactions ii, American Chemical Society, Washington, DC. p 174

    Chapter  Google Scholar 

  62. Verzera A, Condurso C, Romeo V, Tripodi G, Ziino M. (2010). Solid-phase microextraction coupled to fast gas chromatography for the determination of migrants from polystyrene-packaging materials into yoghurt. Food Anal Methods 3(2):80–84

    Article  Google Scholar 

  63. PubChem 2023 https://pubchem.ncbi.nlm.nih.gov/compound

Download references

Acknowledgments

The authors of this chapter thank Devin G. Peterson (Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA) for his contributions to the chapter in previous editions of the book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Reineccius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reineccius, G.A., Qian, M.C. (2024). Gas Chromatography. In: Ismail, B.P., Nielsen, S.S. (eds) Nielsen's Food Analysis. Food Science Text Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50643-7_14

Download citation

Publish with us

Policies and ethics

Navigation