Hollow-Fibre Liquid-Phase Microextraction

  • Chapter
  • First Online:
Microextraction Techniques

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 132 Accesses

Abstract

This chapter discusses microextraction using liquid membranes immobilized in a porous support membrane, including two- and three-phase hollow fibre liquid-phase microextraction (HF-LPME), 96-well LPME (or parallel artificial liquid membrane extraction (PALME)), and electromembrane extraction (EME). These techniques are essentially two- or three-phase liquid extraction systems, but downscaled to the level where the consumption of organic solvent per sample is less than 10 µL. Such microextraction systems are interesting for several reasons. First, they are ideal for green sample preparation, and therefore they are expected to be important in the near future in the context of sustainability. In addition, due to size and technical arrangement, they are easily implemented in microchip systems. Recently, several research papers have been investigating such microchip systems in combination with smartphone detection. This research has the potential to move analytical measurements out of today’s specialized laboratories. The fundamentals are discussed, to underline that microextraction with liquid membranes can be performed in partition-based systems, or in systems controlled by an external electrical field. In addition, this chapter discusses novel developments and new applications, based on examples from recent literature. The chapter is not comprehensive but is intended to give a flavour of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EME:

Electromembrane extraction

HF-LPME:

Hollow-fibre liquid-phase microextraction

LPME:

Liquid-phase microextraction

SDME:

Single drop microextraction

SPME:

Solid-phase microextraction

References

  1. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62(19):2145–2148. https://doi.org/10.1021/ac00218a019

    Article  CAS  Google Scholar 

  2. Liu H, Dasgupta PK (1996) Analytical chemistry in a drop. Solvent extraction in a microdrop. Anal Chem 68(11):1817–1821. https://doi.org/10.1021/ac960145h

  3. Jeannot MA, Cantwell FF (1996) Solvent microextraction into a single drop. Anal Chem 68(13):2236–2240. https://doi.org/10.1021/ac960042z

    Article  CAS  PubMed  Google Scholar 

  4. Pedersen-Bjergaard S, Rasmussen KE (1999) Liquid−Liquid−Liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Anal Chem 71(14):2650–2656. https://doi.org/10.1021/ac990055n

    Article  CAS  PubMed  Google Scholar 

  5. Lopes D, Morés L, da Silva M, Schneider M, Merib J, Carasek E (2022) Determination of hormones in urine by hollow fiber microporous membrane liquid–liquid extraction associated with 96-well plate system and HPLC-FLD detection. J Chromatogr B 1207. https://doi.org/10.1016/j.jchromb.2022.123406

  6. Gjelstad A, Rasmussen KE, Parmer MP, Pedersen-Bjergaard S (2013) Parallel artificial liquid membrane extraction: micro-scale liquid-liquid-liquid extraction in the 96-well format. Bioanalysis 5(11):1377–1385. https://doi.org/10.4155/bio.13.59

    Article  CAS  PubMed  Google Scholar 

  7. Pedersen-Bjergaard S, Rasmussen KE (2006) Electrokinetic migration across artificial liquid membranes: new concept for rapid sample preparation of biological fluids. J Chromatogr A 1109(2):183–190. https://doi.org/10.1016/j.chroma.2006.01.025

    Article  CAS  PubMed  Google Scholar 

  8. Goh SXL, Goh HA, Lee HK (2018) Automation of ionic liquid enhanced membrane bag-assisted-liquid-phase microextraction with liquid chromatography-tandem mass spectrometry for determination of glucocorticoids in water. Anal Chim Acta 1035:77–86. https://doi.org/10.1016/j.aca.2018.07.031

    Article  CAS  PubMed  Google Scholar 

  9. Jiang X, Lee HK (2004) Solvent bar microextraction. Anal Chem 76(18):5591–5596. https://doi.org/10.1021/ac040069f

    Article  CAS  PubMed  Google Scholar 

  10. Fashi A, Salarian AA, Zamani A (2018) Solvent-stir bar microextraction system using pure tris-(2-ethylhexyl) phosphate as supported liquid membrane: a new and efficient design for the extraction of malondialdehyde from biological fluids. Talanta 182:299–305. https://doi.org/10.1016/j.talanta.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  11. Pantůčková P, Kubáň P (2017) In-line coupling of supported liquid membrane extraction to capillary electrophoresis for simultaneous analysis of basic and acidic drugs in urine. J Chromatogr A 1519:137–144. https://doi.org/10.1016/j.chroma.2017.08.084

    Article  CAS  PubMed  Google Scholar 

  12. Lopes D, Dias AN, Simão V, Carasek E (2017) Determination of emerging contaminants in aqueous matrices with hollow fiber-supported dispersive liquid-liquid microextraction (HF-DLLME) and separation/detection by liquid chromatography: diode array detection. Microchem J 130:371–376. https://doi.org/10.1016/j.microc.2016.10.011

    Article  CAS  Google Scholar 

  13. Asl YA, Yamini Y, Seidi S (2016) Development of a microfluidic-chip system for liquid–phase microextraction based on two immiscible organic solvents for the extraction and preconcentration of some hormonal drugs. Talanta 160:592–599. https://doi.org/10.1016/j.talanta.2016.07.063

    Article  CAS  PubMed  Google Scholar 

  14. Berijani S, Assadi Y, Anbia M, Milani Hosseini MR, Aghaee E (2006) Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection. Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. J Chromatogr A 1123(1):1–9. https://doi.org/10.1016/j.chroma.2006.05.010

  15. Gjelstad A, Andersen TM, Rasmussen KE, Pedersen-Bjergaard S (2007) Microextraction across supported liquid membranes forced by pH gradients and electrical fields. J Chromatogr A 1157(1):38–45. https://doi.org/10.1016/j.chroma.2007.05.007

    Article  CAS  PubMed  Google Scholar 

  16. Ocaña-González JA, Aranda-Merino N, Pérez-Bernal JL, Ramos-Payán M (2023) Solid supports and supported liquid membranes for different liquid phase microextraction and electromembrane extraction configurations: a review. J Chromatogr A 1691:463825. https://doi.org/10.1016/j.chroma.2023.463825

    Article  CAS  PubMed  Google Scholar 

  17. Huang CX, Gjelstad A, Pedersen-Bjergaard S (2016) Organic solvents in electromembrane extraction: recent insights. Rev Anal Chem 35(4):169–183. https://doi.org/10.1515/revac-2016-0008

    Article  CAS  Google Scholar 

  18. Ho TS, Vasskog T, Anderssen T, Jensen E, Rasmussen KE, Pedersen-Bjergaard S (2007) 25,000-fold pre-concentration in a single step with liquid-phase microextraction. Anal Chim Acta 592(1):1–8. https://doi.org/10.1016/j.aca.2007.04.014

    Article  CAS  PubMed  Google Scholar 

  19. Wang P, **ao Y, Liu W, Wang J, Yang Y (2015) Vortex-assisted hollow fibre liquid-phase microextraction technique combined with high performance liquid chromatography-diode array detection for the determination of oestrogens in milk samples. Food Chem 172:385–390. https://doi.org/10.1016/j.foodchem.2014.09.092

    Article  CAS  PubMed  Google Scholar 

  20. Seyfinejad B, Ozkan SA, Jouyban A (2021) Ultrasound-assisted electromembrane extraction of clonazepam from plasma and determination using capillary electrophoresis. J Chromatogr B 1181:122928. https://doi.org/10.1016/j.jchromb.2021.122928

    Article  CAS  Google Scholar 

  21. Shang Q, Mei H, Feng X, Huang C, Pedersen-Bjergaard S, Shen X (2021) Ultrasound-assisted electromembrane extraction with supported semi-liquid membrane. Anal Chim Acta 1184:339038. https://doi.org/10.1016/j.aca.2021.339038

    Article  CAS  PubMed  Google Scholar 

  22. Román-Hidalgo C, Martín-Valero MJ, Fernández-Torres R, Bello-López MÁ (2018) Use of polymer inclusion membranes (PIMs) as support for electromembrane extraction of non-steroidal anti-inflammatory drugs and highly polar acidic drugs. Talanta 179:601–607. https://doi.org/10.1016/j.talanta.2017.11.066

    Article  CAS  Google Scholar 

  23. Alsharif AMA, Tan G-H, Choo Y-M, Lawal A (2017) Efficiency of hollow fiber liquid-phase microextraction chromatography methods in the separation of organic compounds: a review. J Chromatogr Sci 55(3):378–391. https://doi.org/10.1093/chromsci/bmw188

    Article  CAS  PubMed  Google Scholar 

  24. Romero A, Santos A, Tojo J, Rodríguez A (2008) Toxicity and biodegradability of imidazolium ionic liquids. J Hazard Mater 151(1):268–273. https://doi.org/10.1016/j.jhazmat.2007.10.079

    Article  CAS  PubMed  Google Scholar 

  25. Hansen FA, Pedersen-Bjergaard S (2020) Emerging extraction strategies in analytical chemistry. Anal Chem 92(1):2–15. https://doi.org/10.1021/acs.analchem.9b04677

    Article  CAS  PubMed  Google Scholar 

  26. Wang J, Huang S, Wang P, Yang Y (2016) Method development for the analysis of phthalate esters in tea beverages by ionic liquid hollow fibre liquid-phase microextraction and liquid chromatographic detection. Food Control 67:278–284. https://doi.org/10.1016/j.foodcont.2016.03.015

    Article  CAS  Google Scholar 

  27. Sun JN, Chen J, Shi YP (2014) Ionic liquid-based electromembrane extraction and its comparison with traditional organic solvent based electromembrane extraction for the determination of strychnine and brucine in human urine. J Chromatogr A 1352:1–7. https://doi.org/10.1016/j.chroma.2014.05.037

    Article  CAS  PubMed  Google Scholar 

  28. Sun JN, Shi YP, Chen J (2015) Development of ionic liquid based electromembrane extraction and its application to the enrichment of acidic compounds in pig kidney tissues. RSC Adv 5(47):37682–37690. https://doi.org/10.1039/c5ra01029b

    Article  CAS  Google Scholar 

  29. De Boeck M, Dubrulle L, Dehaen W, Tytgat J, Cuypers E (2018) Fast and easy extraction of antidepressants from whole blood using ionic liquids as extraction solvent. Talanta 180:292–299. https://doi.org/10.1016/j.talanta.2017.12.044

    Article  CAS  PubMed  Google Scholar 

  30. Andruch V, Makoś-Chełstowska P, Płotka-Wasylka J (2022) Remarks on use of the term “deep eutectic solvent” in analytical chemistry. Microchem J 179:107498. https://doi.org/10.1016/j.microc.2022.107498

    Article  CAS  Google Scholar 

  31. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 1:70–71. https://doi.org/10.1039/B210714G

    Article  Google Scholar 

  32. van Osch DJGP, Zubeir LF, van den Bruinhorst A, Rocha MAA, Kroon MC (2015) Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chem 17(9):4518–4521. https://doi.org/10.1039/C5GC01451D

    Article  CAS  Google Scholar 

  33. van Osch DJGP, Dietz CHJT, van Spronsen J, Kroon MC, Gallucci F, van Sint AM, Tuinier R (2019) A search for natural hydrophobic deep eutectic solvents based on natural components. ACS Sustain Chem Eng 7(3):2933–2942. https://doi.org/10.1021/acssuschemeng.8b03520

    Article  CAS  Google Scholar 

  34. Makoś P, Przyjazny A, Boczkaj G (2018) Hydrophobic deep eutectic solvents as “green” extraction media for polycyclic aromatic hydrocarbons in aqueous samples. J Chromatogr A 1570:28–37. https://doi.org/10.1016/j.chroma.2018.07.070

    Article  CAS  PubMed  Google Scholar 

  35. Makoś P, Słupek E, Gębicki J (2020) Hydrophobic deep eutectic solvents in microextraction techniques: a review. Microchem J 152:104384. https://doi.org/10.1016/j.microc.2019.104384

    Article  CAS  Google Scholar 

  36. Seidi S, Alavi L, Jabbari A, Shanehsaz M (2019) Three-phase carrier-mediated hollow fiber microextraction based on deep eutectic solvent followed by HPLC–UV for determination of raloxifene and ethinylestradiol in pharmaceutical wastewater treatment plants. J Iran Chem Soc 16(5):1007–1018. https://doi.org/10.1007/s13738-018-01572-4

    Article  CAS  Google Scholar 

  37. Zhang SM, Zhang XX, Chen X, Hu S, Bai XH (2020) Deep eutectic solvent-based hollow fiber liquid-phase microextraction for quantification of Q-markers of cinnamic acid derivatives in traditional Chinese medicines and research of their plasma protein binding rates. Microchem J 155:104696. https://doi.org/10.1016/j.microc.2020.104696

    Article  CAS  Google Scholar 

  38. Hansen FA, Santigosa-Murillo E, Ramos-Payán M, Muñoz M, Leere Øiestad E, Pedersen-Bjergaard S (2021) Electromembrane extraction using deep eutectic solvents as the liquid membrane. Anal Chim Acta 1143:109–116. https://doi.org/10.1016/j.aca.2020.11.044

    Article  CAS  PubMed  Google Scholar 

  39. Hansen FA, Tirandaz S, Pedersen-Bjergaard S (2021) Selectivity and efficiency of electromembrane extraction of polar bases with different liquid membranes—link to analyte properties. J Sep Sci 44(13):2631–2641. https://doi.org/10.1002/jssc.202100167

    Article  CAS  PubMed  Google Scholar 

  40. Hay AO, Trones R, Herfindal L, Skrede S, Hansen FA (2022) Determination of methotrexate and its metabolites in human plasma by electromembrane extraction in conductive vials followed by LC-MS/MS. Adv Sample Prep 2:100011. https://doi.org/10.1016/j.sampre.2022.100011

    Article  Google Scholar 

  41. Rye TK, Martinovic G, Eie LV, Hansen FA, Halvorsen TG, Pedersen-Bjergaard S (2021) Electromembrane extraction of peptides using deep eutectic solvents as liquid membrane. Anal Chim Acta 1175:338717. https://doi.org/10.1016/j.aca.2021.338717

    Article  CAS  PubMed  Google Scholar 

  42. Ballesteros-Gómez A, Sicilia MD, Rubio S (2010) Supramolecular solvents in the extraction of organic compounds: a review. Anal Chim Acta 677(2):108–130. https://doi.org/10.1016/j.aca.2010.07.027

    Article  CAS  PubMed  Google Scholar 

  43. Rezaei F, Yamini Y, Moradi M, Daraei B (2013) Supramolecular solvent-based hollow fiber liquid phase microextraction of benzodiazepines. Anal Chim Acta 804:135–142. https://doi.org/10.1016/j.aca.2013.10.026

    Article  CAS  PubMed  Google Scholar 

  44. Li X, Huang A, Liao X, Chen J, **ao Y (2020) Restricted access supramolecular solvent based magnetic solvent bar liquid-phase microextraction for determination of non-steroidal anti-inflammatory drugs in human serum coupled with high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1634:461700. https://doi.org/10.1016/j.chroma.2020.461700

    Article  CAS  PubMed  Google Scholar 

  45. Rubio S (2020) Twenty years of supramolecular solvents in sample preparation for chromatography: achievements and challenges ahead. Anal Bioanal Chem 412(24):6037–6058. https://doi.org/10.1007/s00216-020-02559-y

    Article  CAS  PubMed  Google Scholar 

  46. Nemulenzi O, Mhaka B, Cukrowska E, Ramström O, Tutu H, Chimuka L (2009) Potential of combining of liquid membranes and molecularly imprinted polymers in extraction of 17β-estradiol from aqueous samples. J Sep Sci 32(11):1941–1948. https://doi.org/10.1002/jssc.200800659

    Article  CAS  PubMed  Google Scholar 

  47. Yaripour S, Nojavan S, Khoshayand MR, Mohammadi A (2020) Electromembrane extraction of phenytoin from biological fluids: a survey on the effects of molecularly imprinted polymer and carbon nanotubes on extraction efficiency. Microchem J 156:104800. https://doi.org/10.1016/j.microc.2020.104800

    Article  CAS  Google Scholar 

  48. Worawit C, Alahmad W, Miró M, Varanusupakul P (2020) Combining graphite with hollow-fiber liquid-phase microextraction for improving the extraction efficiency of relatively polar organic compounds. Talanta 215:120902. https://doi.org/10.1016/j.talanta.2020.120902

    Article  CAS  PubMed  Google Scholar 

  49. Tahmasebi Z, Davarani SSH, Asgharinezhad AA (2018) Highly efficient electrochemical determination of propylthiouracil in urine samples after selective electromembrane extraction by copper nanoparticles-decorated hollow fibers. Biosens Bioelectron 114:66–71. https://doi.org/10.1016/j.bios.2018.05.014

    Article  CAS  PubMed  Google Scholar 

  50. López-Lorente ÁI, Pena-Pereira F, Pedersen-Bjergaard S, Zuin VG, Ozkan SA, Psillakis E (2022) The ten principles of green sample preparation. Trends Anal Chem 148:116530. https://doi.org/10.1016/j.trac.2022.116530

    Article  CAS  Google Scholar 

  51. Poole C, Mester Z, Miró M, Pedersen-Bjergaard S, Pawliszyn J (2016) Glossary of terms used in extraction (IUPAC Recommendations 2016). Pure Appl Chem 88(5):517–558. https://doi.org/10.1515/pac-2015-0903

    Article  CAS  Google Scholar 

  52. Cabal LFR, Medina DAV, Costa JL, Lanças FM, Santos-Neto ÁJ (2019) Determination of ring-substituted amphetamines through automated online hollow fiber liquid-phase microextraction-liquid chromatography. Anal Bioanal Chem 411(29):7889–7897. https://doi.org/10.1007/s00216-019-02196-0

    Article  CAS  PubMed  Google Scholar 

  53. Fuchs D, Pedersen-Bjergaard S, Jensen H, Rand KD, Honore Hansen S, Petersen NJ (2016) Fully automated electro membrane extraction autosampler for LC-MS systems allowing soft extractions for high-throughput applications. Anal Chem 88(13):6797–6804. https://doi.org/10.1021/acs.analchem.6b01243

    Article  CAS  PubMed  Google Scholar 

  54. Lopes D, Dias AN, Merib J, Carasek E (2018) Hollow-fiber renewal liquid membrane extraction coupled with 96-well plate system as innovative high-throughput configuration for the determination of endocrine disrupting compounds by high-performance liquid chromatography-fluorescence and diode array detection. Anal Chim Acta 1040:33–40. https://doi.org/10.1016/j.aca.2018.07.032

    Article  CAS  PubMed  Google Scholar 

  55. Luo G, Li Y, Bao JJ (2016) Development and application of a high-throughput sample cleanup process based on 96-well plate for simultaneous determination of 16 steroids in biological matrices using liquid chromatography–triple quadrupole mass spectrometry. Anal Bioanal Chem 408(4):1137–1149. https://doi.org/10.1007/s00216-015-9213-1

    Article  CAS  PubMed  Google Scholar 

  56. Gjelstad A, Rasmussen KE, Parmer MP, Pedersen-Bjergaard S (2013) Parallel artificial liquid membrane extraction: micro-scale liquid–liquid–liquid extraction in the 96-well format. Bioanalysis 5(11):1377–1385. https://doi.org/10.4155/bio.13.59

    Article  CAS  PubMed  Google Scholar 

  57. Drouin N, Mandscheff JF, Rudaz S, Schappler J (2017) Development of a new extraction device based on parallel-electromembrane extraction. Anal Chem 89(12):6346–6350. https://doi.org/10.1021/acs.analchem.7b01284

    Article  CAS  PubMed  Google Scholar 

  58. Restan MS, Jensen H, Shen X, Huang C, Martinsen OG, Kuban P, Gjelstad A, Pedersen-Bjergaard S (2017) Comprehensive study of buffer systems and local pH effects in electromembrane extraction. Anal Chim Acta 984:116–123. https://doi.org/10.1016/j.aca.2017.06.049

    Article  CAS  PubMed  Google Scholar 

  59. Miková B, Dvořák M, Ryšavá L, Kubáň P (2020) Hollow fiber liquid-phase microextraction at-line coupled to capillary electrophoresis for direct analysis of human body fluids. Anal Chem 92(10):7171–7178. https://doi.org/10.1021/acs.analchem.0c00697

    Article  CAS  PubMed  Google Scholar 

  60. Zhou WL, Ding L, Cheng YH, Xu Z, Chen ML, Fu XS (2022) Application of an improved hollow fiber liquid phase microextraction technique coupled to LC-MS/MS to studying migration of fluorescent whitening agents from plastic food contact materials. Food Addit Contam Part A 39(7):1337–1347. https://doi.org/10.1080/19440049.2022.2066192

    Article  CAS  Google Scholar 

  61. Drobnjak M, Hansen F, Øiestad EL, Løvli T, Trones R, Martinsen ØG, Pedersen-Bjergaard S (2020) Electromembrane extraction with vials of conducting polymer. LCGC North Am 38(8):435–439

    CAS  Google Scholar 

  62. Skaalvik TG, Øiestad EL, Trones R, Pedersen-Bjergaard S, Hegstad S (2021) Determination of psychoactive drugs in serum using conductive vial electromembrane extraction combined with UHPLC-MS/MS. J Chromatogr B 1183:122926. https://doi.org/10.1016/j.jchromb.2021.122926

    Article  CAS  Google Scholar 

  63. Zarghampour F, Yamini Y, Alipanahpour Dil E, Shokrollahi A, Javadian G (2023) A new microfluidic-chip device followed by sensitive image analysis of smart phone for simultaneous determination of dyes with different acidic–basic properties. Talanta 254:124168. https://doi.org/10.1016/j.talanta.2022.124168

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stig Pedersen-Bjergaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hansen, F.A., Pedersen-Bjergaard, S. (2024). Hollow-Fibre Liquid-Phase Microextraction. In: Rodríguez-Delgado, M.Á., Socas-Rodríguez, B., Herrera-Herrera, A.V. (eds) Microextraction Techniques. Integrated Analytical Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-50527-0_8

Download citation

Publish with us

Policies and ethics

Navigation