Solid-Phase Microextraction

  • Chapter
  • First Online:
Microextraction Techniques

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 130 Accesses

Abstract

Sample preparation represents a pivotal stage within the analytical workflow. This chapter delves into the latest advancements in solid-phase microextraction (SPME), a technology renowned for its ability to facilitate uncomplicated, highly sensitive, swift, and solvent-free extraction of analytes from gaseous, liquid, and solid samples. This versatile approach extends its utility to trace-level analysis of compounds even within intricate matrices. Consequently, SPME has emerged as a preeminent sample preparation technique in the past decade, frequently employed in the form of an automated fiber-injection system in conjunction with chromatographic separation modules. Its primary application pertains to the extraction of volatile and semi-volatile organic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

SPME:

Solid-phase microextraction

GC:

Gas chromatography

LC:

Liquid chromatography

MS:

Mass spectrometry

FID:

Flame ionization detector

HS:

Headspace

DI:

Direct immersion

LOD:

Limit of detection

MOF:

Metal organic framework

COF:

Covalent organic framework

PDMS:

Polydimethylsiloxane

PAN:

Polyacrylonitrile

DVB:

divinylbenzene

MWCNTs:

Multiwalled carbon nanotubes

Car:

Carboxen

GO:

Graphene oxide

HLB:

Hydrophilic-lipophilic balance

NPs:

Nanoparticles

OPPs:

Organophosphorous pesticides

PAHs:

Polycyclic aromatic hydrocarbons

PAEs:

Phthalate esters

PCBs:

Polychlorinated biphenyls

PFASs:

Per- and polyfluorinated alkyl substances

PPY:

Polypyrrole

PANI:

Polyaniline

PAN:

Polyacrylonitrile

PEG:

Polyethylene glycol

PA:

Polyacrylate

TF-SPME:

Thin-film solid-phase microextraction

VOCs:

Volatile organic compounds

References

  1. Pawliszyn J (2003) Sample preparation: quo vadis? Anal Chem 75:2543–2558. https://doi.org/10.1021/ac034094h

    Article  CAS  PubMed  Google Scholar 

  2. Ramos L (2012) Critical overview of selected contemporary sample preparation techniques. J Chromatogr A 1221:84–98. https://doi.org/10.1016/j.chroma.2011.11.011

    Article  CAS  PubMed  Google Scholar 

  3. López-Lorente ÁI, Pena-Pereira F, Pedersen-Bjergaard S, et al (2022) The ten principles of green sample preparation. TrAC—Trends Anal Chem 148. https://doi.org/10.1016/j.trac.2022.116530

  4. Varga R, Somogyvári I, Eke Z, Torkos K (2011) Determination of antihypertensive and anti-ulcer agents from surface water with solid-phase extraction-liquid chromatography-electrospray ionization tandem mass spectrometry. Talanta 83:1447–1454. https://doi.org/10.1016/j.talanta.2010.11.030

    Article  CAS  PubMed  Google Scholar 

  5. Ribeiro C, Tiritan ME, Rocha E, Rocha MJ (2007) Development and validation of a HPLC-DAD method for determination of several endocrine disrupting compounds in estuarine water. J Liq Chromatogr Relat Technol 30:2729–2746. https://doi.org/10.1080/10826070701560652

    Article  CAS  Google Scholar 

  6. Abdulra’uf LB, Chai MK, Tan GH (2012) Applications of solid-phase microextraction for the analysis of pesticide residues in fruits and vegetables: a review. J AOAC Int 95:1272–1290. https://doi.org/10.5740/jaoacint.SGE_Abdulrauf

  7. Wang H, Yan H, Qiu M et al (2011) Determination of dicofol in aquatic products using molecularly imprinted solid-phase extraction coupled with GC-ECD detection. Talanta 85:2100–2105. https://doi.org/10.1016/j.talanta.2011.07.061

    Article  CAS  PubMed  Google Scholar 

  8. Murtada K (2020) Trends in nanomaterial-based solid-phase microextraction with a focus on environmental applications—a review. Trends Environ Anal Chem 25:e00077. https://doi.org/10.1016/j.teac.2019.e00077

  9. Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA et al (2018) Advances in solid phase microextraction and perspective on future directions. Anal Chem 90:302–360. https://doi.org/10.1021/acs.analchem.7b04502

    Article  CAS  PubMed  Google Scholar 

  10. Murtada K, Bowman D, Edwards M, Pawliszyn J (2022) Thin-film microextraction combined with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry screening for presence of multiclass organic pollutants in drinking water samples. Talanta 242:123301. https://doi.org/10.1016/j.talanta.2022.123301

  11. Murtada K, Galpin V, Grandy JJ et al (2021) Development of porous carbon/polydimethylsiloxane thin-film solid-phase microextraction membranes to facilitate on-site sampling of volatile organic compounds. Sustain Chem Pharm 21:100435. https://doi.org/10.1016/j.scp.2021.100435

  12. Risticevic S, Niri VH, Vuckovic D, Pawliszyn J (2009) Recent developments in solid-phase microextraction. Anal Bioanal Chem 393:781–795. https://doi.org/10.1007/s00216-008-2375-3

    Article  CAS  PubMed  Google Scholar 

  13. Risticevic S, Lord H, Górecki T et al (2010) Protocol for solid-phase microextraction method development. Nat Protoc 5:122–139. https://doi.org/10.1038/nprot.2009.179

    Article  CAS  PubMed  Google Scholar 

  14. Piri-Moghadam H, Alam MN, Pawliszyn J (2017) Review of geometries and coating materials in solid phase microextraction: Opportunities, limitations, and future perspectives. Anal Chim Acta 984:42–65. https://doi.org/10.1016/j.aca.2017.05.035

    Article  CAS  PubMed  Google Scholar 

  15. Duan C, Shen Z, Wu D, Guan Y (2011) Recent developments in solid-phase microextraction for on-site sampling and sample preparation. TrAC—Trends Anal Chem 30:1568–1574. https://doi.org/10.1016/j.trac.2011.08.005

    Article  CAS  Google Scholar 

  16. Theodoridis G, Koster EH, de Jong GJ (2000) Solid-phase microextraction for the analysis of biological samples. J Chromatogr B Biomed Sci Appl 745:49–82. https://doi.org/10.1016/S0378-4347(00)00203-6

    Article  CAS  PubMed  Google Scholar 

  17. Xu J, Chen G, Huang S et al (2016) Application of in vivo solid-phase microextraction in environmental analysis. TrAC—Trends Anal Chem 85:26–35. https://doi.org/10.1016/j.trac.2016.03.003

    Article  CAS  Google Scholar 

  18. Kataoka H, Ishizaki A, Saito K (2016) Recent progress in solid-phase microextraction and its pharmaceutical and biomedical applications. Anal Methods 8:5773–5788. https://doi.org/10.1039/c6ay00380j

    Article  CAS  Google Scholar 

  19. Llompart M, Celeiro M, García-Jares C, Dagnac T (2019) Environmental applications of solid-phase microextraction. TrAC—Trends Anal Chem 112:1–12. https://doi.org/10.1016/j.trac.2018.12.020

    Article  CAS  Google Scholar 

  20. Prosen H, Zupančič-Kralj L (1999) Solid-phase microextraction. TrAC—Trends Anal Chem 18:272–282. https://doi.org/10.1016/S0165-9936(98)00109-5

    Article  CAS  Google Scholar 

  21. De Fátima AM (2000) Solid-phase microextraction: A promising technique for sample preparation in environmental analysis. J Chromatogr A 889:3–14. https://doi.org/10.1016/S0021-9673(00)00453-2

    Article  Google Scholar 

  22. Lord H, Pawliszyn J (2000) Evolution of solid-phase microextraction technology

    Google Scholar 

  23. Olcer YA, Tascon M, Eroglu AE, Boyacı E (2019) Thin film microextraction: towards faster and more sensitive microextraction. TrAC—Trends Anal Chem 113:93–101. https://doi.org/10.1016/j.trac.2019.01.022

    Article  CAS  Google Scholar 

  24. Wardencki W, Michulec M, Curyło J (2004) A review of theoretical and practical aspects of solid-phase microextraction in food analysis. Int J Food Sci Technol 39:703–717. https://doi.org/10.1111/j.1365-2621.2004.00839.x

    Article  CAS  Google Scholar 

  25. Marrubini G, Dugheri S, Cappelli G et al (2020) Experimental designs for solid-phase microextraction method development in bioanalysis: A review. Anal Chim Acta 1119:77–100. https://doi.org/10.1016/j.aca.2020.04.012

    Article  CAS  PubMed  Google Scholar 

  26. Louch D, Motlagh S, Pawliszyn J (1992) Dynamics of organic compound extraction from water using liquid-coated fused silica fibers. Anal Chem 64:1187–1199. https://doi.org/10.1021/ac00034a020

    Article  CAS  Google Scholar 

  27. Semenov SN, Koziel JA, Pawliszyn J (2000) Kinetics of solid-phase extraction and solid-phase microextraction in thin adsorbent layer with saturation sorption isotherm. J Chromatogr A 873:39–51. https://doi.org/10.1016/S0021-9673(99)01338-2

    Article  CAS  PubMed  Google Scholar 

  28. Pawliszyn J (1997) Solid phase microextraction: theory and practice. Wiley-VCH Publishers, Inc., New York

    Google Scholar 

  29. Paschke A, Popp P, Schüürmann G (1998) Water solubility and octanol/water-partitioning of hydrophobic chlorinated organic substances determined by using SPME/GC. Fresenius J Anal Chem 360:52–57. https://doi.org/10.1007/s002160050641

    Article  CAS  Google Scholar 

  30. Langenfeld JJ, Hawthorne SB, Miller DJ (1996) Quantitative analysis of fuel-related hydrocarbons in surface water and wastewater samples by solid-phase microextraction. Anal Chem 68:144–155. https://doi.org/10.1021/ac950862w

    Article  CAS  PubMed  Google Scholar 

  31. Dean JR, Tomlinson WR, Makovskaya V et al (1996) Solid-phase microextraction as a method for estimating the octanol-water partition coefficient. Anal Chem 68:130–133. https://doi.org/10.1021/ac950778g

    Article  CAS  PubMed  Google Scholar 

  32. Pörschmann J, Kopinke FD, Pawliszyn J (1998) Solid-phase microextraction for determining the binding state of organic pollutants in contaminated water rich in humic organic matter. J Chromatogr A 816:159–167. https://doi.org/10.1016/S0021-9673(98)00525-1

    Article  Google Scholar 

  33. Górecki T, Pawliszyn J (1997) Effect of sample volume on quantitative analysis by solid-phase microextraction: Part 1. Theoretical considerations. Analyst 122:1079–1086. https://doi.org/10.1039/a701303e

  34. Górecki T, Khaled A, Pawliszyn J (1998) The effect of sample volume on quantitative analysis by solid phase microextraction. Part 2. Experimental verification. Analyst 123:2819–2824. https://doi.org/10.1039/a806788k

  35. Nazdrajić E, Murtada K, Pawliszyn J (2021) The effect of sorbent particles in a binder on the mass transfer kinetics in separation media. In silico study and experimental verification. Anal Chem 93:14764–14772. https://doi.org/10.1021/acs.analchem.1c03373

    Article  CAS  PubMed  Google Scholar 

  36. Knox JH, Scott HP (1983) B and C terms in the Van Deemter equation for liquid chromatography. J Chromatogr A 282:297–313. https://doi.org/10.1016/S0021-9673(00)91609-1

    Article  CAS  Google Scholar 

  37. Zhang YP, Luan CC, Lu ZY, et al (2022) Brass wires with different surface wettability used for in-tube solid-phase microextraction. J Chromatogr A 1670:462948. https://doi.org/10.1016/j.chroma.2022.462948

  38. **e W, Mullett WM, Miller-Stein CM, Pawliszyn J (2009) Automation of in-tip solid-phase microextraction in 96-well format for the determination of a model drug compound in human plasma by liquid chromatography with tandem mass spectrometric detection. J Chromatogr B Anal Technol Biomed Life Sci 877:415–420. https://doi.org/10.1016/j.jchromb.2008.12.036

    Article  CAS  Google Scholar 

  39. Yu J, Xu XB, Murtada K, Pawliszyn J (2022) Untargeted analysis of microbial metabolites and unsaturated fatty acids in salmon via hydrophilic-lipophilic balanced solid-phase microextraction arrow. Food Chem 380:132219. https://doi.org/10.1016/j.foodchem.2022.132219

  40. Zhang M, Cheng D, He X et al (2010) Magnetic silica-coated sub-microspheres with immobilized metal ions for the selective removal of bovine hemoglobin from bovine blood. Chem Asian J 5:1332–1340. https://doi.org/10.1002/asia.200900463

    Article  CAS  PubMed  Google Scholar 

  41. Yiantzi E, Murtada K, Terzidis K, et al (2022) Vacuum-assisted headspace thin-film microextraction: theoretical formulation and method optimization for the extraction of polycyclic aromatic hydrocarbons from water samples. Anal Chim Acta 1189:339217. https://doi.org/10.1016/j.aca.2021.339217

  42. Roy KS, Nazdrajić E, Shimelis OI et al (2021) Optimizing a high-throughput solid-phase microextraction system to determine the plasma protein binding of drugs in human plasma. Anal Chem 93:11061–11065. https://doi.org/10.1021/acs.analchem.1c01986

    Article  CAS  PubMed  Google Scholar 

  43. Xu XB, Murtada K, Pawliszyn J (2021) Determination of selected volatile terpenes in fish samples via solid phase microextraction arrow coupled with GC-MS. Talanta 221:121446. https://doi.org/10.1016/j.talanta.2020.121446

  44. Grandy JJ, Murtada K, Belinato JR et al (2020) Development and validation of an improved, thin film solid phase microextraction based, standard gas generating vial for the repeatable generation of gaseous standards. J Chromatogr A 1632. https://doi.org/10.1016/j.chroma.2020.461541

  45. Murtada K, Pawliszyn J (2022) Protocol for the development of TFME-GC methods for analyzing multiclass organic constituents in water samples. Green Anal Chem 2:100016. https://doi.org/10.1016/j.greeac.2022.100016

  46. Khaled A, Gionfriddo E, Acquaro V et al (2019) Development and validation of a fully automated solid phase microextraction high throughput method for quantitative analysis of multiresidue veterinary drugs in chicken tissue. Anal Chim Acta 1056:34–46. https://doi.org/10.1016/j.aca.2018.12.044

    Article  CAS  PubMed  Google Scholar 

  47. Khaled A, Gómez-Ríos GA, Pawliszyn J (2020) Optimization of coated blade spray for rapid screening and quantitation of 105 VETERINARY DRUGS IN BIOLOGICAL TISSUE SAmples. Anal Chem 92:5937–5943. https://doi.org/10.1021/acs.analchem.0c00093

    Article  CAS  PubMed  Google Scholar 

  48. Xu J, Zheng J, Tian J et al (2013) New materials in solid-phase microextraction. TrAC—Trends Anal Chem 47:68–83. https://doi.org/10.1016/j.trac.2013.02.012

    Article  CAS  Google Scholar 

  49. Zheng J, Huang J, Yang Q et al (2018) Fabrications of novel solid phase microextraction fiber coatings based on new materials for high enrichment capability. TrAC—Trends Anal Chem 108:135–153. https://doi.org/10.1016/j.trac.2018.08.021

    Article  CAS  Google Scholar 

  50. Feng J, Sun M, Li J et al (2011) A novel silver-coated solid-phase microextraction metal fiber based on electroless plating technique. Anal Chim Acta 701:174–180. https://doi.org/10.1016/j.aca.2011.05.040

    Article  CAS  PubMed  Google Scholar 

  51. Sun M, Feng J, Bu Y et al (2015) Palladium-coated stainless-steel wire as a solid-phase microextraction fiber. J Sep Sci 38:1584–1590. https://doi.org/10.1002/jssc.201401283

    Article  CAS  PubMed  Google Scholar 

  52. Xu HL, Li Y, Jiang DQ, Yan XP (2009) Hydrofluoric acid etched stainless steel wire for solid-phase microextraction. Anal Chem 81:4971–4977. https://doi.org/10.1021/ac900743s

    Article  CAS  PubMed  Google Scholar 

  53. Yazdi MN, Yamini Y, Asiabi H (2018) Fabrication of polypyrrole-silver nanocomposite for hollow fiber solid phase microextraction followed by HPLC/UV analysis for determination of parabens in water and beverages samples. J Food Compos Anal 74:18–26. https://doi.org/10.1016/j.jfca.2018.08.006

    Article  CAS  Google Scholar 

  54. Yang Y, Li Y, Liu H et al (2014) Electrodeposition of gold nanoparticles onto an etched stainless steel wire followed by a self-assembled monolayer of octanedithiol as a fiber coating for selective solid-phase microextraction. J Chromatogr A 1372:25–33. https://doi.org/10.1016/j.chroma.2014.10.095

    Article  CAS  Google Scholar 

  55. Lu Q, Lin R, Du C et al (2020) Metal probe microextraction coupled to dielectric barrier discharge ionization-mass spectrometry for detecting drug residues in organisms. Anal Chem 92:5921–5928. https://doi.org/10.1021/acs.analchem.0c00004

    Article  CAS  PubMed  Google Scholar 

  56. Jiang N, Wang J, Li W et al (2019) Silver nanoparticles-coated monolithic column for in-tube solid-phase microextraction of monounsaturated fatty acid methyl esters. J Chromatogr A 1585:19–26. https://doi.org/10.1016/j.chroma.2018.11.059

    Article  CAS  PubMed  Google Scholar 

  57. Gutiérrez-Serpa A, Napolitano-Tabares PI, Pino V et al (2018) Silver nanoparticles supported onto a stainless steel wire for direct-immersion solid-phase microextraction of polycyclic aromatic hydrocarbons prior to their determination by GC-FID. Microchim Acta 185:. https://doi.org/10.1007/s00604-018-2880-9

  58. Karimi M, Aboufazeli F, Zhad HRLZ et al (2013) Determination of polycyclic aromatic hydrocarbons in Persian gulf and Caspian sea: Gold nanoparticles fiber for a head space solid phase micro extraction. Bull Environ Contam Toxicol 90:291–295. https://doi.org/10.1007/s00128-012-0906-2

    Article  CAS  PubMed  Google Scholar 

  59. Zhang Y, Yang Y, Li Y et al (2015) Growth of cedar-like Au nanoparticles coating on an etched stainless steel wire and its application for selective solid-phase microextraction. Anal Chim Acta 876:55–62. https://doi.org/10.1016/j.aca.2015.03.044

    Article  CAS  PubMed  Google Scholar 

  60. Djozan D, Abdollahi L (2003) Anodized zinc wire as a solid-phase microextraction fiber. Chromatographia 57:799–804. https://doi.org/10.1007/BF02491768

    Article  CAS  Google Scholar 

  61. Gholivand MB, Piryaei M, Abolghasemi MM (2011) Anodized aluminum wire as a solid-phase microextraction fiber for rapid determination of volatile constituents in medicinal plant. Anal Chim Acta 701:1–5. https://doi.org/10.1016/j.aca.2011.05.046

    Article  CAS  PubMed  Google Scholar 

  62. Zhang G, Zou L, Xu H (2015) Anodic alumina coating for extraction of volatile organic compounds in human exhaled breath vapor. Talanta 132:528–534. https://doi.org/10.1016/j.talanta.2014.09.035

    Article  CAS  PubMed  Google Scholar 

  63. Zhang H, Chingin K, Li J et al (2018) Selective enrichment of phosphopeptides and phospholipids from biological matrixes on TiO2 nanowire arrays for direct molecular characterization by internal extractive electrospray ionization mass spectrometry. Anal Chem 90:12101–12107. https://doi.org/10.1021/acs.analchem.8b03022

    Article  CAS  PubMed  Google Scholar 

  64. Song W, Guo M, Zhang Y et al (2015) Fabrication and application of zinc-zinc oxide nanosheets coating on an etched stainless steel wire as a selective solid-phase microextraction fiber. J Chromatogr A 1384:28–36. https://doi.org/10.1016/j.chroma.2015.01.059

    Article  CAS  PubMed  Google Scholar 

  65. Wang F, Zheng J, Qiu J et al (2017) In situ hydrothermally grown TiO2@C core−shell nanowire coating for highly sensitive solid phase microextraction of polycyclic aromatic hydrocarbons. ACS Appl Mater Interfaces 9:1840–1846. https://doi.org/10.1021/acsami.6b14748

    Article  CAS  PubMed  Google Scholar 

  66. Budziak D, Martendal E, Carasek E (2007) Application of NiTi alloy coated with ZrO2 as a new fiber for solid-phase microextraction for determination of halophenols in water samples. Anal Chim Acta 598:254–260. https://doi.org/10.1016/j.aca.2007.07.061

    Article  CAS  PubMed  Google Scholar 

  67. Ghasemi E, Farahani H (2012) Head space solid phase microextraction based on nano-structured lead dioxide: application to the speciation of volatile organoselenium in environmental and biological samples. J Chromatogr A 1258:16–20. https://doi.org/10.1016/j.chroma.2012.08.027

    Article  CAS  PubMed  Google Scholar 

  68. Gholivand MB, Shamsipur M, Shamizadeh M et al (2014) Cobalt oxide nanoparticles as a novel high-efficiency fiber coating for solid phase microextraction of benzene, toluene, ethylbenzene and xylene from aqueous solutions. Anal Chim Acta 822:30–36. https://doi.org/10.1016/j.aca.2014.02.032

    Article  CAS  PubMed  Google Scholar 

  69. Song A, Wang J, Lu G et al (2018) Oxidized multiwalled carbon nanotubes coated fibers for headspace solid-phase microextraction of amphetamine-type stimulants in human urine. Forensic Sci Int 290:49–55. https://doi.org/10.1016/j.forsciint.2018.06.031

    Article  CAS  PubMed  Google Scholar 

  70. Chen T, Xu H (2019) In vivo investigation of pesticide residues in garlic using solid phase microextraction-gas chromatography-mass spectrometry. Anal Chim Acta 1090:72–81. https://doi.org/10.1016/j.aca.2019.09.011

    Article  CAS  PubMed  Google Scholar 

  71. Naeemullah TM (2019) Development of tetraethylene pentamine functionalized multi-wall carbon nanotubes as a new adsorbent in a syringe system for removal of bisphenol A by using multivariate optimization techniques. Microchem J 147:1147–1154. https://doi.org/10.1016/j.microc.2019.04.040

    Article  CAS  Google Scholar 

  72. Riahi-Zanjani B, Balali-Mood M, Asoodeh A et al (2018) Develo** a new sensitive solid-phase microextraction fiber based on carbon nanotubes for preconcentration of morphine. Appl Nanosci 8:2047–2056. https://doi.org/10.1007/s13204-018-0882-x

    Article  CAS  Google Scholar 

  73. Ma X, Huang P, Dang X et al (2019) MWCNTs/MnO2 nanocomposite-based polythiophene coating for solid-phase microextraction and determination of polycyclic aromatic hydrocarbons in soil. Microchem J 146:1026–1032. https://doi.org/10.1016/j.microc.2019.02.031

    Article  CAS  Google Scholar 

  74. Zhang S, Yang Q, Li Z et al (2018) Solid phase microextraction of phthalic acid esters from vegetable oils using iron (III)-based metal-organic framework/graphene oxide coating. Food Chem 263:258–264. https://doi.org/10.1016/j.foodchem.2018.04.132

    Article  CAS  PubMed  Google Scholar 

  75. Li JH, Xu H (2017) A novel polyaniline/polypyrrole/graphene oxide fiber for the determination of volatile organic compounds in headspace gas of lung cell lines. Talanta 167:623–629. https://doi.org/10.1016/j.talanta.2017.03.005

    Article  CAS  PubMed  Google Scholar 

  76. Lv F, Gan N, Cao Y et al (2017) A molybdenum disulfide/reduced graphene oxide fiber coating coupled with gas chromatography–mass spectrometry for the saponification-headspace solid-phase microextraction of polychlorinated biphenyls in food. J Chromatogr A 1525:42–50. https://doi.org/10.1016/j.chroma.2017.10.026

    Article  CAS  PubMed  Google Scholar 

  77. Xu L, Huang S, Liu Y et al (2020) Hollow carbon nanobubbles-coated solid-phase microextraction fibers for the sensitive detection of organic pollutants. Anal Chim Acta 1097:85–93. https://doi.org/10.1016/j.aca.2019.10.056

    Article  CAS  PubMed  Google Scholar 

  78. Ji R, Wu Y, Bian Y, et al (2021) Nitrogen-doped porous biochar derived from marine algae for efficient solid-phase microextraction of chlorobenzenes from aqueous solution. J Hazard Mater 407:124785. https://doi.org/10.1016/j.jhazmat.2020.124785

  79. Dong ZM, Cheng L, Sun T et al (2021) Carboxylation modified meso-porous carbon aerogel templated by ionic liquid for solid-phase microextraction of trace tetracyclines residues using HPLC with UV detection. Microchim Acta 188. https://doi.org/10.1007/s00604-021-04707-2

  80. Jiang H, Hu X, Li Y et al (2019) Large-pore ordered mesoporous carbon as solid-phase microextraction coating for analysis of polycyclic aromatic hydrocarbons from aqueous media. Talanta 195:647–654. https://doi.org/10.1016/j.talanta.2018.11.090

    Article  CAS  PubMed  Google Scholar 

  81. Zheng J, Chen L, **e X et al (2020) Polydopamine modified ordered mesoporous carbon for synergistic enhancement of enrichment efficiency and mass transfer towards phenols. Anal Chim Acta 1095:109–117. https://doi.org/10.1016/j.aca.2019.10.036

    Article  CAS  PubMed  Google Scholar 

  82. Pang Y, Zang X, Li H et al (2020) Solid-phase microextraction of organophosphorous pesticides from food samples with a nitrogen-doped porous carbon derived from g-C3N4 templated MOF as the fiber coating. J Hazard Mater 384:121430. https://doi.org/10.1016/j.jhazmat.2019.121430

  83. Wei F, He Y, Qu X et al (2019) In situ fabricated porous carbon coating derived from metal-organic frameworks for highly selective solid-phase microextraction. Anal Chim Acta 1078:70–77. https://doi.org/10.1016/j.aca.2019.05.061

    Article  CAS  PubMed  Google Scholar 

  84. Zhang N, Huang C, Tong P et al (2018) Moisture stable Ni-Zn MOF/g-C3N4 nanoflowers: A highly efficient adsorbent for solid-phase microextraction of PAHs. J Chromatogr A 1556:37–46. https://doi.org/10.1016/j.chroma.2018.04.066

    Article  CAS  PubMed  Google Scholar 

  85. Li YA, Yang F, Liu ZC et al (2014) A porous Cd(ii)-MOF-coated quartz fiber for solid-phase microextraction of BTEX. J Mater Chem A 2:13868–13872. https://doi.org/10.1039/c4ta01940g

    Article  CAS  Google Scholar 

  86. Wei S, Kou X, Liu Y, et al (2020) Facile construction of superhydrophobic hybrids of metal-organic framework grown on nanosheet for high-performance extraction of benzene homologues. Talanta 211:120706. https://doi.org/10.1016/j.talanta.2019.120706

  87. Liu G, Liu H, Tong Y, et al (2020) Headspace solid-phase microextraction of semi-volatile ultraviolet filters based on a superhydrophobic metal-organic framework stable in high-temperature steam. Talanta 219:121175. https://doi.org/10.1016/j.talanta.2020.121175

  88. Suwannakot P, Lisi F, Ahmed E et al (2020) Metal-organic framework-enhanced solid-phase microextraction mass spectrometry for the direct and rapid detection of perfluorooctanoic acid in environmental water samples. Anal Chem 92:6900–6908. https://doi.org/10.1021/acs.analchem.9b05524

    Article  CAS  PubMed  Google Scholar 

  89. Niu J, Li Z, Yang H et al (2016) A water resistant solid-phase microextraction fiber with high selectivity prepared by a metal organic framework with perfluorinated pores. J Chromatogr A 1441:16–23. https://doi.org/10.1016/j.chroma.2016.02.076

    Article  CAS  PubMed  Google Scholar 

  90. Jia Y, Su H, Wang Z et al (2016) Metal-organic framework@microporous organic network as adsorbent for solid-phase microextraction. Anal Chem 88:9364–9367. https://doi.org/10.1021/acs.analchem.6b03156

    Article  CAS  PubMed  Google Scholar 

  91. Bagheri H, Javanmardi H, Abbasi A, Banihashemi S (2016) A metal organic framework-polyaniline nanocomposite as a fiber coating for solid phase microextraction. J Chromatogr A 1431:27–35. https://doi.org/10.1016/j.chroma.2015.12.077

    Article  CAS  PubMed  Google Scholar 

  92. Kong J, Zhu F, Huang W et al (2019) Sol–gel based metal-organic framework zeolite imidazolate framework-8 fibers for solid-phase microextraction of nitro polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in water samples. J Chromatogr A 1603:92–101. https://doi.org/10.1016/j.chroma.2019.06.063

    Article  CAS  PubMed  Google Scholar 

  93. Lin C, Qi G, Wang L et al (2020) Facile preparation of stainless steel microextraction fiber via in situ growth of metal–organic framework UiO-66 and its application to sensitive analysis of polycyclic musks. J Sep Sci 43:2240–2246. https://doi.org/10.1002/jssc.201901118

    Article  CAS  PubMed  Google Scholar 

  94. Hu Y, Lian H, Zhou L, Li G (2015) In situ solvothermal growth of metal-organic framework-5 supported on porous copper foam for noninvasive sampling of plant volatile sulfides. Anal Chem 87:406–412. https://doi.org/10.1021/ac502146c

    Article  CAS  PubMed  Google Scholar 

  95. Sun S, Huang L, **ao H et al (2019) In situ self-transformation metal into metal-organic framework membrane for solid-phase microextraction of polycyclic aromatic hydrocarbons. Talanta 202:145–151. https://doi.org/10.1016/j.talanta.2019.04.063

    Article  CAS  PubMed  Google Scholar 

  96. Qiu J, Zhang T, Wang F, et al (2020) Sheathed in situ heteroepitaxial growth metal-organic framework probe for detection of polycyclic aromatic hydrocarbons in river water and living fish. Sci Total Environ 729:138971. https://doi.org/10.1016/j.scitotenv.2020.138971

  97. Guo JX, Qian HL, Zhao X et al (2019) In situ room-temperature fabrication of a covalent organic framework and its bonded fiber for solid-phase microextraction of polychlorinated biphenyls in aquatic products. J Mater Chem A 7:13249–13255. https://doi.org/10.1039/c9ta02974e

    Article  CAS  Google Scholar 

  98. Gao W, Li G, Liu H, et al (2021) Covalent organic frameworks with tunable pore sizes enhanced solid-phase microextraction direct ionization mass spectrometry for ultrasensitive and rapid analysis of tetrabromobisphenol A derivatives. Sci Total Environ 764:144388. https://doi.org/10.1016/j.scitotenv.2020.144388

  99. Sun X, Ji W, Hou S, Wang X (2020) Facile synthesis of trifluoromethyl covalent organic framework for the efficient microextraction of per-and polyfluorinated alkyl substances from milk products. J Chromatogr A 1623:461197. https://doi.org/10.1016/j.chroma.2020.461197

  100. Ji W, Guo YS, **e HM, et al (2020) Rapid microwave synthesis of dioxin-linked covalent organic framework for efficient micro-extraction of perfluorinated alkyl substances from water. J Hazard Mater 397:122793. https://doi.org/10.1016/j.jhazmat.2020.122793

  101. Wang M, Zhou X, Zang X et al (2018) Determination of pesticides residues in vegetable and fruit samples by solid-phase microextraction with a covalent organic framework as the fiber coating coupled with gas chromatography and electron capture detection. J Sep Sci 41:4038–4046. https://doi.org/10.1002/jssc.201800644

    Article  CAS  PubMed  Google Scholar 

  102. Liu L, Meng WK, Li L et al (2019) Facile room-temperature synthesis of a spherical mesoporous covalent organic framework for ultrasensitive solid-phase microextraction of phenols prior to gas chromatography-tandem mass spectrometry. Chem Eng J 369:920–927. https://doi.org/10.1016/j.cej.2019.03.148

    Article  CAS  Google Scholar 

  103. Wen L, Wu P, Wang LL et al (2020) Solid-phase microextraction using a β-ketoenamine-linked covalent organic framework coating for efficient enrichment of synthetic musks in water samples. Anal Methods 12:2434–2442. https://doi.org/10.1039/c9ay02755f

    Article  CAS  PubMed  Google Scholar 

  104. Liu L, Meng WK, Zhou YS et al (2019) Β-Ketoenamine-linked covalent organic framework coating for ultra-high-performance solid-phase microextraction of polybrominated diphenyl ethers from environmental samples. Chem Eng J 356:926–933. https://doi.org/10.1016/j.cej.2018.09.081

    Article  CAS  Google Scholar 

  105. Ma TT, Shen XF, Yang C et al (2019) Covalent immobilization of covalent organic framework on stainless steel wire for solid-phase microextraction GC-MS/MS determination of sixteen polycyclic aromatic hydrocarbons in grilled meat samples. Talanta 201:413–418. https://doi.org/10.1016/j.talanta.2019.04.031

    Article  CAS  PubMed  Google Scholar 

  106. Wang W, Wang J, Zhang S et al (2016) A novel Schiff base network-1 nanocomposite coated fiber for solid-phase microextraction of phenols from honey samples. Talanta 161:22–30. https://doi.org/10.1016/j.talanta.2016.08.009

    Article  CAS  PubMed  Google Scholar 

  107. Zhao X, Cui H, Wang Y et al (2018) Development Strategies and Prospects of Nano-based Smart Pesticide Formulation. J Agric Food Chem 66:6504–6512. https://doi.org/10.1021/acs.jafc.7b02004

    Article  CAS  PubMed  Google Scholar 

  108. Wu M, Chen G, Liu P et al (2016) Polydopamine-based immobilization of a hydrazone covalent organic framework for headspace solid-phase microextraction of pyrethroids in vegetables and fruits. J Chromatogr A 1456:34–41. https://doi.org/10.1016/j.chroma.2016.05.100

    Article  CAS  PubMed  Google Scholar 

  109. Khataei MM, Yamini Y, Ghaemmaghami M (2020) Reduced graphene-decorated covalent organic framework as a novel coating for solid-phase microextraction of phthalate esters coupled to gas chromatography-mass spectrometry. Microchim Acta 187. https://doi.org/10.1007/s00604-020-4224-9

  110. Guo H, Chen G, Ma J, Jia Q (2019) A triazine based organic framework with micropores and mesopores for use in headspace solid phase microextraction of phthalate esters. Microchim Acta 186:4–10. https://doi.org/10.1007/s00604-018-3060-7

    Article  CAS  Google Scholar 

  111. Zhang S, Yang Q, Li Z et al (2017) Covalent organic frameworks as a novel fiber coating for solid-phase microextraction of volatile benzene homologues. Anal Bioanal Chem 409:3429–3439. https://doi.org/10.1007/s00216-017-0286-x

    Article  CAS  PubMed  Google Scholar 

  112. Merkle S, Kleeberg K, Fritsche J (2015) Recent developments and applications of solid phase microextraction (SPME) in food and environmental analysis—a review. Chromatography 2:293–381. https://doi.org/10.3390/chromatography2030293

    Article  CAS  Google Scholar 

  113. Xu CH, Chen GS, **ong ZH et al (2016) Applications of solid-phase microextraction in food analysis. TrAC—Trends Anal Chem 80:12–29. https://doi.org/10.1016/j.trac.2016.02.022

    Article  CAS  Google Scholar 

  114. Volante M, Cattaneo M, Bianchi M, Zoccola G (1998) Some applications of solid phase micro extraction (SPME) in the analysis of pesticide residues in food. J Environ Sci Heal—Part B Pestic Food Contam Agric Wastes 33:279–292. https://doi.org/10.1080/03601239809373144

    Article  CAS  Google Scholar 

  115. Kumar A, Gaurav MAK, Matysik F-M (2009) Analysis of biological samples using solid-phase microextraction. Bioanal Rev 1:35–55. https://doi.org/10.1007/s12566-009-0004-z

    Article  Google Scholar 

  116. Moein MM, Said R, Bassyouni F, Abdel-Rehim M (2014) Solid phase microextraction and related techniques for drugs in biological samples. J Anal Methods Chem. https://doi.org/10.1155/2014/921350

  117. Lei XL, Wang JD (2002) Solid-phase microextraction for the analysis of drugs and biological samples. Se Pu 20:210–215

    Google Scholar 

  118. Kori AH, Jagirani MS, Soylak M (2023) Graphene-Based Nanomaterials: A Sustainable Material for Solid-Phase Microextraction (SPME) for Environmental Applications. Anal Lett 1–16. https://doi.org/10.1080/00032719.2023.2173221

  119. Zheng J, Kuang Y, Zhou S et al (2023) Latest improvements and expanding applications of solid-phase microextraction. Anal Chem 95:218–237. https://doi.org/10.1021/acs.analchem.2c03246

    Article  CAS  PubMed  Google Scholar 

  120. Wu J, Luo S, Huang X (2023) Fabrication of monolith-based electrodes for simultaneous solid-phase microextraction of phenylurea and sulfonylurea herbicides assisted by electric field. Chem Eng J 455:140786. https://doi.org/10.1016/j.cej.2022.140786

  121. Grandy JJ, Galpin V, Singh V, Pawliszyn J (2020) Development of a drone-based thin-film solid-phase microextraction water sampler to facilitate on-site screening of environmental pollutants. Anal Chem 92:12917–12924. https://doi.org/10.1021/acs.analchem.0c01490

    Article  CAS  PubMed  Google Scholar 

  122. Ouyang G, Pawliszyn J (2008) A critical review in calibration methods for solid-phase microextraction. Anal Chim Acta 627:184–197. https://doi.org/10.1016/j.aca.2008.08.015

    Article  CAS  PubMed  Google Scholar 

  123. Barroso MF, Noronha JP, Delerue-Matos C, Oliveira MBPP (2011) Flavored waters: Influence of ingredients on antioxidant capacity and terpenoid profile by HS-SPME/GC-MS. J Agric Food Chem 59:5062–5072. https://doi.org/10.1021/jf1048244

    Article  CAS  PubMed  Google Scholar 

  124. Liu XJ, ** QZ, Liu YF et al (2011) Changes in volatile compounds of peanut oil during the roasting process for production of aromatic roasted peanut oil. J Food Sci 76:404–412. https://doi.org/10.1111/j.1750-3841.2011.02073.x

    Article  CAS  Google Scholar 

  125. Melgarejo P, Calín-Sánchez Á, Vázquez-Araújo L et al (2011) Volatile composition of pomegranates from 9 Spanish cultivars using headspace solid phase microextraction. J Food Sci 76:114–120. https://doi.org/10.1111/j.1750-3841.2010.01945.x

    Article  CAS  Google Scholar 

  126. Sabik H, Fortin J, Martin N (2012) Identification of pyrazine derivatives in a typical maple syrup using headspace solid-phase microextraction with gas chromatography-mass spectrometry. Food Chem 133:1006–1010. https://doi.org/10.1016/j.foodchem.2011.07.132

    Article  CAS  Google Scholar 

  127. Beltran J, López FJ, Hernández F (2000) Solid-phase microextraction in pesticide residue analysis. J Chromatogr A 885:389–404. https://doi.org/10.1016/S0021-9673(00)00142-4

    Article  CAS  PubMed  Google Scholar 

  128. Souza Silva ÉA, Pawliszyn J (2012) Optimization of fiber coating structure enables direct immersion solid phase microextraction and high-throughput determination of complex samples. Anal Chem 84:6933–6938. https://doi.org/10.1021/ac301305u

    Article  CAS  PubMed  Google Scholar 

  129. Chen T, Yu X, Tian X, et al (2022) Study on the environmental fate of three insecticides in garlic by in vivo sampling rate calibrated-solid phase microextraction-gas chromatography-mass spectrometry. Food Chem 367:130740. https://doi.org/10.1016/j.foodchem.2021.130740

  130. Kasperkiewicz A, Pawliszyn J (2021) Multiresidue pesticide quantitation in multiple fruit matrices via automated coated blade spray and liquid chromatography coupled to triple quadrupole mass spectrometry. Food Chem 339:127815. https://doi.org/10.1016/j.foodchem.2020.127815

  131. Gómez-Ríos GA, Pawliszyn J (2014) Development of coated blade spray ionization mass spectrometry for the quantitation of target analytes present in complex matrices. Angew Chemie—Int Ed 53:14503–14507. https://doi.org/10.1002/anie.201407057

    Article  CAS  Google Scholar 

  132. Kasperkiewicz A, Gómez-Ríos GA, Hein D, Pawliszyn J (2019) Breaching the 10 Second Barrier of Total Analysis Time for Complex Matrices via Automated Coated Blade Spray. Anal Chem 91:13039–13046. https://doi.org/10.1021/acs.analchem.9b03225

    Article  CAS  PubMed  Google Scholar 

  133. Ouyang G, Vuckovic D, Pawliszyn J (2011) Nondestructive sampling of living systems using in vivo solid-phase microextraction. Chem Rev 111:2784–2814. https://doi.org/10.1021/cr100203t

    Article  CAS  PubMed  Google Scholar 

  134. Es-Haghi A, Zhang X, Musteata FM et al (2007) Evaluation of bio-compatible poly(ethylene glycol)-based solid-phase microextraction fiber for in vivo pharmacokinetic studies of diazepam in dogs. Analyst 132:672–678. https://doi.org/10.1039/b701423f

    Article  CAS  PubMed  Google Scholar 

  135. Musteata FM, Musteata ML, Pawliszyn J (2006) Fast in vivo microextraction: A new tool for clinical analysis. Clin Chem 52:708–715. https://doi.org/10.1373/clinchem.2005.064758

    Article  CAS  PubMed  Google Scholar 

  136. Mullett WM, Pawliszyn J (2002) Direct determination of benzodiazepines in biological fluids by restricted-access solid-phase microextraction. Anal Chem 74:1081–1087. https://doi.org/10.1021/ac010747n

    Article  CAS  PubMed  Google Scholar 

  137. Musteata ML, Musteata FM, Pawliszyn J (2007) Biocompatible solid-phase microextraction coatings based on polyacrylonitrile and solid-phase extraction phases. Anal Chem 79:6903–6911. https://doi.org/10.1021/ac070296s

    Article  CAS  PubMed  Google Scholar 

  138. Mirnaghi FS, Chen Y, Sidisky LM, Pawliszyn J (2011) Optimization of the coating procedure for a high-throughput 96-blade solid phase microextraction system coupled with LC-MS/MS for analysis of complex samples. Anal Chem 83:6018–6025. https://doi.org/10.1021/ac2010185

    Article  CAS  PubMed  Google Scholar 

  139. Rocío-Bautista P, Famiglini G, Termopoli V et al (2021) Direct coupling of Bio-SPME to liquid electron ionization-MS/MS via a modified microfluidic open interface. J Am Soc Mass Spectrom 32:262–269. https://doi.org/10.1021/jasms.0c00303

    Article  CAS  PubMed  Google Scholar 

  140. Yu M, Roszkowska A, Pawliszyn J (2022) In vivo solid-phase microextraction and applications in environmental sciences. ACS Environ Au 2:30–41. https://doi.org/10.1021/acsenvironau.1c00024

    Article  CAS  PubMed  Google Scholar 

  141. Queiroz MEC, Souza ID de, Oliveira IG de, Grecco CF (2022) In vivo solid phase microextraction for bioanalysis. TrAC—Trends Anal Chem 153:. https://doi.org/10.1016/j.trac.2022.116656

  142. Riboni N, Fornari F, Bianchi F, Careri M (2020) Recent advances in in vivo SPME sampling. Separations 7. https://doi.org/10.3390/separations7010006

  143. Napylov A, Reyes-Garces N, Gomez-Rios G et al (2020) In vivo solid-phase microextraction for sampling of oxylipins in brain of awake, moving rats. Angew Chemie—Int Ed 59:2392–2398. https://doi.org/10.1002/anie.201909430

    Article  CAS  Google Scholar 

  144. Musteata FM, de Lannoy I, Gien B, Pawliszyn J (2008) Blood sampling without blood draws for in vivo pharmacokinetic studies in rats. J Pharm Biomed Anal 47:907–912. https://doi.org/10.1016/j.jpba.2008.03.028

    Article  CAS  PubMed  Google Scholar 

  145. Yuan ZC, Li W, Wu L et al (2020) Solid-phase microextraction fiber in face mask for in vivo sampling and direct mass spectrometry analysis of exhaled breath aerosol. Anal Chem 92:11543–11547. https://doi.org/10.1021/acs.analchem.0c02118

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant program and Canada Research Chairs program for their support.

Conflict of Interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khaled Murtada or Janusz Pawliszyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murtada, K., Pawliszyn, J. (2024). Solid-Phase Microextraction. In: Rodríguez-Delgado, M.Á., Socas-Rodríguez, B., Herrera-Herrera, A.V. (eds) Microextraction Techniques. Integrated Analytical Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-50527-0_4

Download citation

Publish with us

Policies and ethics

Navigation