Micro-solid-phase extraction

  • Chapter
  • First Online:
Microextraction Techniques

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 127 Accesses

Abstract

The direct determination of compounds of interest is challenging and, in the majority of cases, impossible. This fact is related to the low concentration of analytes as well as the presence of possible interferences in many sample types. Hence, there is a need for a sample preparation step before the final analysis. To this end, great attention has been devoted to designing and using miniaturized extraction techniques (METs) as alternatives to conventional procedures. METs can address the main drawbacks of conventional sample preparation methods. These include excessive consumption of organic solvents or reagents, need for multiple operations or steps, inconvenience or difficulty of automation, etc. Amongst the METs, micro-solid-phase extraction (µ-SPE) has garnered much attention thanks to its demonstrable advantages. In µ-SPE the consumption of materials (solvents, reagents, etc.) is reduced. Also, sorbents with small (e.g., micro- and nanoscale) dimensions are utilized. Moreover, the procedure involves use of miniaturized extraction devices and apparatus, etc. The contents of this chapter are focused on the fundamentals, configurations and applications of µ-SPE. Novel materials that have been used as sorbents in µ-SPE are investigated and discussed. Finally, current trends and prospects concerning the application of the technique are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

β:

Selectivity factor

µ-SPE:

Micro-solid-phase extraction

3D:

Three-dimensional

BA:

Benzoic acid

Bd:

Benzidine

BTEX:

Benzene, toluene, ethylbenzene, and xylenes

C18:

Octadecyl

COFs:

Covalent organic frameworks

DAD:

Diode array detection

DES:

Deep eutectic solvent

DPX:

Disposable pipette extraction

DSPE:

Dispersive solid-phase extraction

FID:

Flame ionization detection

FLD:

Fluorescence detection

GAC:

Green analytical chemistry

GC:

Gas chromatography

GFAAS:

Graphite furnace atomic absorption spectrometry

GO:

Graphene oxide

Gr:

Graphene

HG-AFLS:

Hydride generation-atomic fluorescence spectrometry

HPLC:

High-performance liquid chromatography

HVOCs:

Halogenated volatile organic compounds

IF:

Imprinting factor

IL:

Ionic liquid

LC-APCI:

Liquid chromatography atmospheric-pressure chemical ionization

LDHs:

Layered double hydroxides

LOD:

Limit of detection

LOQ:

Limit of quantification

MB-µ-SPE:

Membrane-based micro-solid-phase extraction

MEPS:

Microextraction by packed sorbent

METs:

Miniaturized extraction techniques

MICSM:

Molecularly-imprinted chitosan microspheres

MOFs:

Metal–organic frameworks

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

MSPD:

Matrix solid-phase dispersion

MWCNTs:

Multi-walled carbon nanotubes

NMBTEX:

Non-metabolized benzene, toluene, ethylbenzene and xylene isomer compounds

NSs:

Nanosheets

NTD:

Needle trap device

OPPs:

Organophosphorus pesticides

PAA:

Poly(acrylic acid)

PAHs:

Polycyclic aromatic hydrocarbons

PAN:

Polyacrylonitrile

PCBs:

Polychlorinated biphenyls

PT-SPE:

Pipette-tip solid-phase extraction

PVA:

Poly(vinyl alcohol)

QuEChERS:

Quick, easy, cheap, effective, rugged and safe

rGO:

Reduced graphene oxide

RSD:

Relative standard deviation

SA:

Salicylic acid

SBSE:

Stir bar sorptive extraction

SBSEME:

Sorbent-based sorptive extraction/microextraction

SC-SPE:

Spin column solid-phase extraction

Si/PANI:

Polyaniline silica

SPME:

Solid-phase microextraction

SWCNT:

Single-walled carbon nanotube

Tb:

1,3,5-Triformylbenzene

TCS:

Triclosan

TDMs:

Two-dimensional materials

TFME:

Thin-film microextraction

UHPLC:

Ultra-high-performance liquid chromatography

UV:

Ultraviolet

VWD:

Variable wavelength detection

References

  1. Bagheri AR, Aramesh N, Gong Z, Cerda V, Lee HK (2022) Two-dimensional materials as a platform in extraction methods: a review. Trends Anal Chem 152:116606. https://doi.org/10.1016/j.trac.2022.116606

    Article  CAS  Google Scholar 

  2. Nasiri M, Ahmadzadeh H, Amiri A (2020) Sample preparation and extraction methods for pesticides in aquatic environments: a review. Trends Anal Chem 123:115772. https://doi.org/10.1016/j.trac.2019.115772

    Article  CAS  Google Scholar 

  3. Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, Wang X, Li B, Chen L (2020) Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. Trends Anal Chem 128:115923. https://doi.org/10.1016/j.trac.2020.115923

    Article  CAS  Google Scholar 

  4. Bagheri AR, Aramesh N, Haddad PR (2021) Applications of covalent organic frameworks and their composites in the extraction of pesticides from different samples. J Chromatogr A 1661:462612. https://doi.org/10.1016/j.chroma.2021.462612

    Article  CAS  PubMed  Google Scholar 

  5. Jon CS, Meng LY, Li D (2019) Recent review on carbon nanomaterials functionalized with ionic liquids in sample pretreatment application. Trends Anal Chem 120:115641. https://doi.org/10.1016/j.trac.2019.115641

    Article  CAS  Google Scholar 

  6. Bagheri AR, Aramesh N, Liu Z, Chen C, Shen W, Tang S (2022) Recent advances in the application of covalent organic frameworks in extraction: a review. Crit Rev Anal Chem 1–34. https://doi.org/10.1080/10408347.2022.2089838

  7. Bagheri AR, Aramesh N, Chen J, Liu W, Shen W, Tang S, Lee HK (2022) Polyoxometalate-based materials in extraction, and electrochemical and optical detection methods: a review. Anal Chim Acta 1209:339509. https://doi.org/10.1016/j.aca.2022.339509

    Article  CAS  PubMed  Google Scholar 

  8. Bagheri AR, Aramesh N, Lee HK (2022) Chitosan- and/or cellulose-based materials in analytical extraction processes: a review. Trends Anal Chem 157:116770. https://doi.org/10.1016/j.trac.2022.116770

    Article  CAS  Google Scholar 

  9. Zhang J, Wang Y, Yu J, Wang Q, Khattak KN, Yang X (2022) Determination of pyrethroids in water samples by dispersive solid-phase extraction coupled with high-performance liquid chromatography. Water Environ Res 94:e10813. https://doi.org/10.1002/wer.10813

    Article  CAS  PubMed  Google Scholar 

  10. Gentili A (2020) Cyclodextrin-based sorbents for solid phase extraction. J Chromatogr A 1609:460654. https://doi.org/10.1016/j.chroma.2019.460654

    Article  CAS  PubMed  Google Scholar 

  11. Pena-Pereira F, Romero V, De La Calle I, Lavilla I, Bendicho C (2021) Graphene-based nanocomposites in analytical extraction processes. Trends Anal Chem 142:116303. https://doi.org/10.1016/j.trac.2021.116303

    Article  CAS  Google Scholar 

  12. Daniels KD, Park M, Huang Z, Jia A, Flores GS, Lee HK, Snyder SA (2020) A review of extraction methods for the analysis of pharmaceuticals in environmental waters. Crit Rev Environ Sci Technol 50:2271–2299. https://doi.org/10.1080/10643389.2019.1705723

    Article  Google Scholar 

  13. Feng J, Feng J, Ji X, Li C, Han S, Sun H, Sun M (2021) Recent advances of covalent organic frameworks for solid-phase microextraction. Trends Anal Chem 137:116208. https://doi.org/10.1016/j.trac.2021.116208

    Article  CAS  Google Scholar 

  14. **g W, Wang J, Kuipers B, Bi W, Chen DY (2021) Recent applications of graphene and graphene-based materials as sorbents in trace analysis. Trends Anal Chem 137:116212. https://doi.org/10.1016/j.trac.2021.116212

    Article  CAS  Google Scholar 

  15. Li Y, Lan S, Zhu T (2021) Recent advances of graphene-based sorptive materials in extraction: a review. Trends Anal Chem 142:116319. https://doi.org/10.1016/j.trac.2021.116319

    Article  CAS  Google Scholar 

  16. Naing NN, Lee HK (2020) Microextraction and analysis of contaminants adsorbed on atmospheric fine particulate matter: a review. J Chromatogr A 1627:461433. https://doi.org/10.1016/j.chroma.2020.461433

    Article  CAS  PubMed  Google Scholar 

  17. Jiménez-Skrzypek G, Ortega-Zamora C, González-Sálamo J, Hernández-Borges J (2022) Miniaturized green sample preparation approaches for pharmaceutical analysis. J Pharm Biomed Anal 207:114405. https://doi.org/10.1016/j.jpba.2021.114405

    Article  CAS  PubMed  Google Scholar 

  18. Kotova AA, Thiebaut D, Vial J, Tissot A, Serre C (2022) Metal-organic frameworks as stationary phases for chromatography and solid phase extraction: a review. Coord Chem Rev 455:214364. https://doi.org/10.1016/j.ccr.2021.214364

    Article  CAS  Google Scholar 

  19. Naing NN, Tan SC, Lee HK (2020) Micro-solid-phase extraction. in Solid-Phase Extraction. Elsevier, 443–471

    Google Scholar 

  20. Sajid M, Nazal MK, Ihsanullah I (2020) Novel materials for dispersive (micro) solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples: a review. Anal Chim Acta 1141:246–262. https://doi.org/10.1016/j.aca.2020.07.064

    Article  CAS  PubMed  Google Scholar 

  21. Yan H, Yang C, Sun Y, Row KH (2014) Ionic liquid molecularly imprinted polymers for application in pipette-tip solid-phase extraction coupled with gas chromatography for rapid screening of dicofol in celery. J Chromatogr A 1361:53–59. https://doi.org/10.1016/j.chroma.2014.07.102

    Article  CAS  PubMed  Google Scholar 

  22. Yan H, Sun N, Liu S, Row KH, Song Y (2014) Miniaturized graphene-based pipette tip extraction coupled with liquid chromatography for the determination of sulfonamide residues in bovine milk. Food Chem 158:239–244. https://doi.org/10.1016/j.foodchem.2014.02.089

    Article  CAS  PubMed  Google Scholar 

  23. Yan Z, Wu M, Hu B, Yao M, Zhang L, Lu Q, Pang J (2018) Electrospun UiO-66/polyacrylonitrile nanofibers as efficient sorbent for pipette tip solid phase extraction of phytohormones in vegetable samples. J Chromatogr A 1542:19–27. https://doi.org/10.1016/j.chroma.2018.02.030

    Article  CAS  PubMed  Google Scholar 

  24. Sun N, Han Y, Yan H, Song Y (2014) A self-assembly pipette tip graphene solid-phase extraction coupled with liquid chromatography for the determination of three sulfonamides in environmental water. Anal Chim Acta 810:25–31. https://doi.org/10.1016/j.aca.2013.12.013

    Article  CAS  PubMed  Google Scholar 

  25. Turazzi FC, Mores L, Carasek E, Merib J, De Oliveira Barra GM (2019) A rapid and environmentally friendly analytical method based on conductive polymer as extraction phase for disposable pipette extraction for the determination of hormones and polycyclic aromatic hydrocarbons in river water samples using high-performance liquid chromatography/diode array detection. J Environ Chem Eng 7:103156. https://doi.org/10.1016/j.jece.2019.103156

    Article  CAS  Google Scholar 

  26. Carasek E, Morés L, Huelsmann RD (2021) Disposable pipette extraction: A critical review of concepts, applications, and directions. Anal Chim Acta 1192:339383. https://doi.org/10.1016/j.aca.2021.339383

    Article  CAS  PubMed  Google Scholar 

  27. Gomes IC, Martins RO, Machado LS, Cardoso AT, De Souza PS, Coltro WKT, De Tarso GP, Chaves AR (2022) Molecularly imprinted polymer as sorbent phase for disposable pipette extraction: A potential approach for creatinine analysis in human urine samples. J Pharm Biomed Anal 211:114625. https://doi.org/10.1016/j.jpba.2022.114625

    Article  CAS  PubMed  Google Scholar 

  28. Bordin DCM, Alves MNR, De Campos EG, De Martinis BS (2016) Disposable pipette tips extraction: fundamentals, applications and state of the art. J Sep Sci 39:1168–1172. https://doi.org/10.1002/jssc.201500932

    Article  CAS  PubMed  Google Scholar 

  29. Abdel-Rehim M (2004) New trend in sample preparation: on-line microextraction in packed syringe for liquid and gas chromatography applications: I. Determination of local anaesthetics in human plasma samples using gas chromatography–mass spectrometry. J Chromatogr B 801:317–321. https://doi.org/10.1016/j.jchromb.2003.11.042

    Article  CAS  Google Scholar 

  30. Pereira JA, Gonçalves J, Porto-Figueira P, Figueira JA, Alves V, Perestrelo R, Medina S, Câmara JS (2019) Current trends on microextraction by packed sorbent-fundamentals, application fields, innovative improvements and future applications. Analyst 144:5048–5074. https://doi.org/10.1039/C8AN02464B

    Article  CAS  PubMed  Google Scholar 

  31. Abdel-Rehim M (2011) Microextraction by packed sorbent (MEPS): a tutorial. Anal Chim Acta 701:119–128. https://doi.org/10.1016/j.aca.2011.05.037

    Article  CAS  PubMed  Google Scholar 

  32. Moein MM, Abdel-Rehim A, Abdel-Rehim M (2015) Microextraction by packed sorbent (MEPS). Trends Anal Chem 67:34–44. https://doi.org/10.1016/j.aca.2011.05.037

    Article  CAS  Google Scholar 

  33. Dalvand K, Ghiasvand A (2019) Simultaneous analysis of PAHs and BTEX in soil by a needle trap device coupled with GC-FID and using response surface methodology involving Box-Behnken design. Anal Chim Acta 1083:119–129. https://doi.org/10.1016/j.aca.2019.07.063

    Article  CAS  PubMed  Google Scholar 

  34. Zeinali S, Khalilzadeh M, Pawliszyn J (2022) The evolution of needle-trap devices with focus on aerosol investigations. Trends Anal Chem 153:116643. https://doi.org/10.1016/j.trac.2022.116643

    Article  CAS  Google Scholar 

  35. Zeinali S, Ghosh C, Pawliszyn J (2022) Simultaneous determination of exhaled breath vapor and exhaled breath aerosol using filter-incorporated needle-trap devices: a comparison of gas-phase and droplet-bound components. Anal Chim Acta 1203:339671. https://doi.org/10.1016/j.aca.2022.339671

    Article  CAS  PubMed  Google Scholar 

  36. Poormohammadi A, Bahrami A, Farhadian M, Shahna FG, Ghiasvand A (2017) Development of Carbotrap B-packed needle trap device for determination of volatile organic compounds in air. J Chromatogr A 1527:33–42. https://doi.org/10.1016/j.chroma.2017.10.062

    Article  CAS  PubMed  Google Scholar 

  37. Lord HL, Zhan W, Pawliszyn J (2010) Fundamentals and applications of needle trap devices: a critical review. Anal Chim Acta 677:3–18. https://doi.org/10.1016/j.aca.2010.06.020

    Article  CAS  PubMed  Google Scholar 

  38. Kaykhaii M, Hashemi SH, Miniaturized solid phase extraction. in Emerging Freshwater Pollutants. Elsevier, 49–61

    Google Scholar 

  39. Esrafili A, Ghambarian M, Tajik M, Baharfar M (2020) Spin-column micro-solid phase extraction of chlorophenols using MFU-4l metal-organic framework. Microchim Acta 187:1–9. https://doi.org/10.1007/s00604-019-4023-3

    Article  CAS  Google Scholar 

  40. Namera A, Nakamoto A, Nishida M, Saito T, Kishiyama I, Miyazaki S, Yahata M, Yashiki M, Nagao M (2008) Extraction of amphetamines and methylenedioxyamphetamines from urine using a monolithic silica disk-packed spin column and high-performance liquid chromatography-diode array detection. J Chromatogr A 1208:71–75. https://doi.org/10.1016/j.chroma.2008.08.091

    Article  CAS  PubMed  Google Scholar 

  41. Crowell AM, Maclellan DL, Doucette AA (2015) A two-stage spin cartridge for integrated protein precipitation, digestion and SDS removal in a comparative bottom-up proteomics workflow. J Proteome Res 118:140–150. https://doi.org/10.1016/j.jprot.2014.09.030

    Article  CAS  Google Scholar 

  42. Giyahban F, Amini S, Ebrahimzadeh H, Kandeh SH (2021) Spin-column micro-solid phase extraction of phthalate esters using electrospun polyacrylonitrile/iron (III)/Mg-based metal-organic framework 88B followed by GC analysis. Microchem J 170:106634. https://doi.org/10.1016/j.microc.2021.106634

    Article  CAS  Google Scholar 

  43. Seidi S, Tajik M, Baharfar M, Rezazadeh M (2019) Micro solid-phase extraction (pipette tip and spin column) and thin film solid-phase microextraction: miniaturized concepts for chromatographic analysis. Trends Anal Chem 118:810–827. https://doi.org/10.1016/j.trac.2019.06.036

    Article  CAS  Google Scholar 

  44. Basheer C, Alnedhary AA, Rao BM, Valliyaveettil S, Lee HK (2006) Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectrometry. Anal Chem 78:2853–2858. https://doi.org/10.1021/ac060240i

    Article  CAS  PubMed  Google Scholar 

  45. Lim TH, Hu L, Yang C, He C, Lee HK (2013) Membrane assisted micro-solid phase extraction of pharmaceuticals with amino and urea-grafted silica gel. J Chromatogr A 1316:8–14. https://doi.org/10.1016/j.chroma.2013.09.034

    Article  CAS  PubMed  Google Scholar 

  46. Martín-Esteban A (2021) Membrane-protected molecularly imprinted polymers: towards selectivity improvement of liquid-phase microextraction. Trends Anal Chem 138:116236. https://doi.org/10.1016/j.trac.2021.116236

    Article  CAS  Google Scholar 

  47. Sajid M (2017) Porous membrane protected micro-solid-phase extraction: a review of features, advancements and applications. Anal Chim Acta 965:36–53. https://doi.org/10.1016/j.aca.2017.02.023

    Article  CAS  PubMed  Google Scholar 

  48. Chisvert A, Cárdenas S, Lucena R (2019) Dispersive micro-solid phase extraction. Trends Anal Chem 112:226–233. https://doi.org/10.1016/j.trac.2018.12.005

    Article  CAS  Google Scholar 

  49. Ghorbani M, Aghamohammadhassan M, Ghorbani H, Zabihi A (2020) Trends in sorbent development for dispersive micro-solid phase extraction. Microchem J 158:105250. https://doi.org/10.1016/j.microc.2020.105250

    Article  CAS  Google Scholar 

  50. Criado-García L, Arce L (2016) Extraction of toxic compounds from saliva by magnetic-stirring-assisted micro-solid-phase extraction step followed by headspace-gas chromatography-ion mobility spectrometry. Anal Bioanal Chem 408:6813–6822. https://doi.org/10.1007/s00216-016-9808-1

    Article  CAS  PubMed  Google Scholar 

  51. Khezeli T, Daneshfar A (2017) Development of dispersive micro-solid phase extraction based on micro and nano sorbents. Trends Anal Chem 89:99–118. https://doi.org/10.1016/j.trac.2017.01.004

    Article  CAS  Google Scholar 

  52. Hakme E, Poulsen ME (2021) Evaluation of the automated micro-solid phase extraction clean-up system for the analysis of pesticide residues in cereals by gas chromatography- Orbitrap mass spectrometry. J Chromatogr A 1652:462384. https://doi.org/10.1016/j.chroma.2021.462384

    Article  CAS  PubMed  Google Scholar 

  53. Fernandes SR, Barreiros L, Sá P, Miró M, Segundo MA (2022) Automatic and renewable micro-solid-phase extraction based on bead injection lab-on-valve system for determination of tranexamic acid in urine by UHPLC coupled with tandem mass spectrometry. Anal Bioanal Chem 414:649–659. https://doi.org/10.1007/s00216-021-03606-y

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Y, Zhang Y, Akakuru OU, Xu X, Wu A (2021) Research progress and mechanism of nanomaterials-mediated in-situ remediation of cadmium-contaminated soil: a critical review. J Environ Sci 104:351–364. https://doi.org/10.1016/j.jes.2020.12.021

    Article  CAS  Google Scholar 

  55. Acauan LH, Kaiser AL, Wardle BL (2021) Direct synthesis of carbon nanomaterials via surface activation of bulk copper. Carbon 177:1–10. https://doi.org/10.1016/j.carbon.2021.02.045

    Article  CAS  Google Scholar 

  56. Wang G, Liu L, Zhang Z (2021) Interface mechanics in carbon nanomaterials-based nanocomposites. Compos Part A Appl Sci 141:106212. https://doi.org/10.1016/j.compositesa.2020.106212

    Article  CAS  Google Scholar 

  57. Sotolongo AC, Messina MM, Ibañez FJ, Wuilloud RG (2020) Hybrid ionic liquid-3D graphene-Ni foam for on-line preconcentration and separation of Hg species in water with atomic fluorescence spectrometry detection. Talanta 210:120614. https://doi.org/10.1016/j.talanta.2019.120614

    Article  CAS  PubMed  Google Scholar 

  58. Yuan Y, Wang M, Jia N, Zhai C, Han Y, Yan H (2019) Graphene/multi-walled carbon nanotubes as an adsorbent for pipette-tip solid-phase extraction for the determination of 17β-estradiol in milk products. J Chromatogr A 1600:73–79. https://doi.org/10.1016/j.chroma.2019.04.055

    Article  CAS  PubMed  Google Scholar 

  59. Tsai PC, Pundi A, Brindhadevi K, Ponnusamy VK (2021) Novel semi-automated graphene nanosheets based pipette-tip assisted micro-solid phase extraction as eco-friendly technique for the rapid detection of emerging environmental pollutant in waters. Chemosphere 276:130031. https://doi.org/10.1016/j.chemosphere.2021.130031

    Article  CAS  PubMed  Google Scholar 

  60. Seidi S, Sadat Karimi E, Rouhollahi A, Baharfar M, Shanehsaz M, Tajik M (2019) Synthesis and characterization of polyamide-graphene oxide-polypyrrole electrospun nanofibers for spin-column micro solid phase extraction of parabens in milk samples. J Chromatogr A 1599:25–34. https://doi.org/10.1016/j.chroma.2019.04.014

    Article  CAS  PubMed  Google Scholar 

  61. Tan SC, Lee HK (2021) Fully automated graphitic carbon nitride-based disposable pipette extraction-gas chromatography-mass spectrometric analysis of six polychlorinated biphenyls in environmental waters. J Chromatogr A 1637:461824. https://doi.org/10.1016/j.chroma.2020.461824

    Article  CAS  PubMed  Google Scholar 

  62. Arabsorkhi B, Sereshti H (2018) Determination of tetracycline and cefotaxime residues in honey by micro-solid phase extraction based on electrospun nanofibers coupled with HPLC. Microchem J 140:241–247. https://doi.org/10.1016/j.microc.2018.04.030

    Article  CAS  Google Scholar 

  63. Golzari Aqda T, Behkami S, Raoofi M, Bagheri H (2019) Graphene oxide-starch-based micro-solid phase extraction of antibiotic residues from milk samples. J Chromatogr A 1591:7–14. https://doi.org/10.1016/j.chroma.2018.11.069

    Article  CAS  PubMed  Google Scholar 

  64. Yuan Y, Han Y, Yang C, Han D, Yan H (2020) Deep eutectic solvent functionalized graphene oxide composite adsorbent for miniaturized pipette-tip solid-phase extraction of toluene and xylene exposure biomarkers in urine prior to their determination with HPLC-UV. Microchim Acta 187:1–9. https://doi.org/10.1007/s00604-020-04370-z

    Article  CAS  Google Scholar 

  65. Liu L, Tang W, Tang B, Han D, Row KH, Zhu T (2017) Pipette-tip solid-phase extraction based on deep eutectic solvent modified graphene for the determination of sulfamerazine in river water. J Sep Sci 40:1887–1895. https://doi.org/10.1002/jssc.201601436

    Article  CAS  PubMed  Google Scholar 

  66. Lv Y, Zhu T (2020) Polyethyleneimine-modified porous aromatic framework and silane coupling agent grafted graphene oxide composite materials for determination of phenolic acids in Chinese Wolfberry drink by HPLC. J Sep Sci 43:774–781. https://doi.org/10.1002/jssc.201900766

    Article  CAS  PubMed  Google Scholar 

  67. Qi M, Tu C, Li Z, Wang W, Chen J, Wang AJ (2018) Determination of sulfonamide residues in honey and milk by HPLC coupled with novel graphene oxide/polypyrrole foam material-pipette tip solid phase extraction. Food Anal Methods 11:2885–2896. https://doi.org/10.1007/s12161-018-1271-5

    Article  Google Scholar 

  68. Zhang Y, Zhao YG, Chen WS, Cheng HL, Zeng XQ, Zhu Y (2018) Three-dimensional ionic liquid-ferrite functionalized graphene oxide nanocomposite for pipette-tip solid phase extraction of 16 polycyclic aromatic hydrocarbons in human blood sample. J Chromatogr A 1552:1–9. https://doi.org/10.1016/j.chroma.2018.03.039

    Article  CAS  PubMed  Google Scholar 

  69. Zhang H, Wu X, Yuan Y, Han D, Qiao F, Yan H (2018) An ionic liquid functionalized graphene adsorbent with multiple adsorption mechanisms for pipette-tip solid-phase extraction of auxins in soybean sprouts. Food Chem 265:290–297. https://doi.org/10.1016/j.foodchem.2018.05.090

    Article  CAS  PubMed  Google Scholar 

  70. Hashemi SH, Kaykhaii M, Keikha AJ, Parkaz A (2018) Application of Box-Behnken design in the optimization of a simple graphene oxide/zinc oxide nanocomposite-based pipette tip micro-solid phase extraction for the determination of Rhodamine B and Malachite green in seawater samples by spectrophotometry. Anal Method 10:5707–5714. https://doi.org/10.1039/C8AY02309C

    Article  CAS  Google Scholar 

  71. Oliveira TC, Lanças FM (2023) Determination of selected herbicides in sugarcane-derived foods by graphene-oxide based disposable pipette extraction followed by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1687:463690. https://doi.org/10.1016/j.chroma.2022.463690

    Article  CAS  PubMed  Google Scholar 

  72. Tan SC, Lee HK (2020) Graphitic carbon nitride as sorbent for the emulsification-enhanced disposable pipette extraction of eight organochlorine pesticides prior to GC-MS analysis. Microchim Acta 187:1–10. https://doi.org/10.1007/s00604-019-4107-0

    Article  CAS  Google Scholar 

  73. Jordan-Sinisterra M, Lanças FM (2022) Microextraction by packed sorbent of selected pesticides in coffee samples employing ionic liquids supported on graphene nanosheets as extraction phase. Anal Bioanal Chem 414:413–423. https://doi.org/10.1007/s00216-021-03245-3

    Article  CAS  PubMed  Google Scholar 

  74. Ayazi Z, Shekari Esfahlan F, Matin P (2018) Graphene oxide reinforced polyamide nanocomposite coated on paper as a novel layered sorbent for microextraction by packed sorbent. Int. J. Environ.l Anal. Chem 98:1118–1134. https://doi.org/10.1080/03067319.2018.1535061

    Article  CAS  Google Scholar 

  75. Ahmadi M, Moein MM, Madrakian T, Afkhami A, Bahar S, Abdel-Rehim M (2018) Reduced graphene oxide as an efficient sorbent in microextraction by packed sorbent: determination of local anesthetics in human plasma and saliva samples utilizing liquid chromatography-tandem mass spectrometry. J Chromatogr B 1095:177–182. https://doi.org/10.1016/j.jchromb.2018.07.036

    Article  CAS  Google Scholar 

  76. Karimiyan H, Uheida A, Hadjmohammadi M, Moein MM, Abdel-Rehim M (2019) Polyacrylonitrile/graphene oxide nanofibers for packed sorbent microextraction of drugs and their metabolites from human plasma samples. Talanta 201:474–479. https://doi.org/10.1016/j.talanta.2019.04.027

    Article  CAS  PubMed  Google Scholar 

  77. Zare FD, Allahdadlalouni M, Baktash MY, Bagheri H (2020) Reduced graphene oxide-melamine formaldehyde as a highly efficient platform for needle trap microextraction of volatile organic compounds. Microchim Acta 157:104932. https://doi.org/10.1016/j.microc.2020.104932

    Article  CAS  Google Scholar 

  78. Dincer BY, Balcı S, Tomul F (2020) In-situ mesoporous silica pillared clay synthesis and effect of titanium and iron incorporation to structural properties. Micropor Mesopor Mater 305:110342. https://doi.org/10.1016/j.micromeso.2020.110342

    Article  CAS  Google Scholar 

  79. Zhang M, Yang J, Geng X, Li Y, Zha Z, Cui S, Yang J (2019) Magnetic adsorbent based on mesoporous silica nanoparticles for magnetic solid phase extraction of pyrethroid pesticides in water samples. J Chromatogr A 1598:20–29

    Article  CAS  PubMed  Google Scholar 

  80. Teo HL, Wong L, Liu Q, Teo TL, Lee TK, Lee HK (2016) Simple and accurate measurement of carbamazepine in surface water by use of porous membrane-protected micro-solid-phase extraction coupled with isotope dilution mass spectrometry. Anal Chim Acta 912:49–57. https://doi.org/10.1016/j.aca.2016.01.028

    Article  CAS  PubMed  Google Scholar 

  81. Augusto Santos Aguiar Júnior C, Dos Santos ALR, De Faria AM (2020) Disposable pipette extraction using a selective sorbent for carbendazim residues in orange juice. Food Chem 309:125756. https://doi.org/10.1016/j.foodchem.2019.125756

  82. Khesina ZB, Iartsev SD, Revelsky AI, Buryak AK (2021) Microextraction by packed sorbent optimized by statistical design of experiment as an approach to increase the sensitivity and selectivity of HPLC-UV determination of parabens in cosmetics. J Pharm Biomed Anal 195:113843. https://doi.org/10.1016/j.jpba.2020.113843

    Article  CAS  PubMed  Google Scholar 

  83. Shen Q, Yang H, Li Y, Li S, Chen K, Wang H, Wang H, Ma J (2022) Rapid determination of antiviral drugs in yellow catfish (Pelteobagrus fulvidraco) using graphene/silica nanospheres (G/KCC-1) based pipette tip solid-phase extraction with ultra-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B 1189:123097. https://doi.org/10.1016/j.jchromb.2022.123097

    Article  CAS  Google Scholar 

  84. Lin H, Chen X, Ma J, Zhang X, Li T, Zhang Y, Wang H (2021) Determination of propofol in human plasma with C18 pipette-tip based solid-phase extraction followed by liquid chromatography atmospheric-pressure chemical ionization tandem mass spectrometry analysis. J Pharm Biomed Anal 193:113714. https://doi.org/10.1016/j.jpba.2020.113714

    Article  CAS  PubMed  Google Scholar 

  85. Cruz JC, Miranda LFC, Queiroz MEC (2021) Pipette tip micro-solid phase extraction (octyl-functionalized hybrid silica monolith) and ultra-high-performance liquid chromatography-tandem mass spectrometry to determine cannabidiol and tetrahydrocannabinol in plasma samples. J Sep Sci 44:1621–1632. https://doi.org/10.1002/jssc.202000906

    Article  CAS  PubMed  Google Scholar 

  86. Jordan-Sinisterra M, Vargas Medina DA, Lanças FM (2022) Microextraction by packed sorbent of polycyclic aromatic hydrocarbons in brewed coffee samples with a new zwitterionic ionic liquid-modified silica sorbent. J Food Compos Anal 114:104832. https://doi.org/10.1016/j.jfca.2022.104832

    Article  CAS  Google Scholar 

  87. Ghiasvand A, Heidari N, Abdolhosseini S, Hamdi A, Haddad P (2018) Evaluation of a cooling/heating-assisted microextraction instrument using a needle trap device packed with aminosilica/graphene oxide nanocomposites, covalently attached to cotton. Analyst 143:2632–2640. https://doi.org/10.1039/C8AN00063H

    Article  CAS  PubMed  Google Scholar 

  88. Poormohammadi A, Bahrami A, Ghiasvand A, Shahna FG, Farhadian M (2019) Preparation of Carbotrap/silica composite for needle trap field sampling of halogenated volatile organic compounds followed by gas chromatography/mass spectrometry determination. J Environ Health Sci Eng 17:1045–1053. https://doi.org/10.1007/s40201-019-00418-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. He T, Li Q, Lin T, Li J, Bai S, An S, Kong X, Song Y-F (2023) Recent progress on highly efficient removal of heavy metals by layered double hydroxides. Chem Eng J 462:142041. https://doi.org/10.1016/j.cej.2023.142041

  90. Wang MM, Chen Q, Zhang DD, Chen XW, Chen ML (2017) Tetra-nickel substituted polyoxotungsate as an efficient sorbent for the isolation of His6-tagged proteins from cell lysate. Talanta 171:173–178. https://doi.org/10.1016/j.talanta.2017.04.079

    Article  CAS  PubMed  Google Scholar 

  91. Li T, Miras HN, Song YF (2017) Polyoxometalate (POM)-layered double hydroxides (LDH) composite materials: design and catalytic applications. Catalysts 7:260. https://doi.org/10.3390/catal7090260

    Article  CAS  Google Scholar 

  92. Tang S, Lee HK (2013) Application of dissolvable layered double hydroxides as sorbent in dispersive solid-phase extraction and extraction by co-precipitation for the determination of aromatic acid anions. Anal Chem 85:7426–7433. https://doi.org/10.1021/ac4013573

    Article  CAS  PubMed  Google Scholar 

  93. Tang S, Chia GH, Chang Y, Lee HK (2014) Automated dispersive solid-phase extraction using dissolvable Fe3O4-layered double hydroxide core-shell microspheres as sorbent. Anal Chem 86:11070–11076. https://doi.org/10.1021/ac503323e

    Article  CAS  PubMed  Google Scholar 

  94. Manouchehri M, Seidi S, Rouhollahi A, Noormohammadi H, Shanehsaz M (2020) Micro solid phase extraction of parabens from breast milk samples using Mg-Al layered double hydroxide functionalized partially reduced graphene oxide nanocomposite. Food Chem 314:126223. https://doi.org/10.1016/j.foodchem.2020.126223

    Article  CAS  PubMed  Google Scholar 

  95. Mirzaee MT, Seidi S, Alizadeh R (2021) Pipette-tip SPE based on Graphene/ZnCr LDH for Pb (II) analysis in hair samples followed by GFAAS. Anal Biochem 612:113949. https://doi.org/10.1016/j.ab.2020.113949

    Article  CAS  PubMed  Google Scholar 

  96. Huang Q, Chen Y, Yu H, Yan L, Zhang J, Wang B, Du B, **ng L (2018) Magnetic graphene oxide/MgAl-layered double hydroxide nanocomposite: one-pot solvothermal synthesis, adsorption performance and mechanisms for Pb2+, Cd2+, and Cu2+. Chem Eng J 341:1–9. https://doi.org/10.1016/j.cej.2018.01.156

    Article  CAS  Google Scholar 

  97. Liu Y, Wu H, Min L, Song S, Yang L, Ren Y, Wu Y, Zhao R, Wang H, Jiang Z (2020) 2D layered double hydroxide membranes with intrinsic breathing effect toward CO2 for efficient carbon capture. J Membr Sci 598:117663. https://doi.org/10.1016/j.memsci.2019.117663

    Article  CAS  Google Scholar 

  98. **e Y, Yuan X, Wu Z, Zeng G, Jiang L, Peng X, Li H (2019) Adsorption behavior and mechanism of Mg/Fe layered double hydroxide with Fe3O4-carbon spheres on the removal of Pb (II) and Cu (II). J Colloid Interface Sci 536:440–455. https://doi.org/10.1016/j.jcis.2018.10.066

    Article  CAS  PubMed  Google Scholar 

  99. Seidi S, Sanàti SE (219) Nickel-iron layered double hydroxide nanostructures for micro solid phase extraction of nonsteroidal anti-inflammatory drugs, followed by quantitation by HPLC-UV. Microchim. Acta 186:297. https://doi.org/10.1007/s00604-019-3419-4.

  100. Guo X, Ren T, Ji J, Yang Y, Di X (2022) An alternative analytical strategy based on QuEChERS and dissolvable layered double hydroxide dispersive micro-solid phase extraction for trace determination of sulfonylurea herbicides in wolfberry by LC-MS/MS. Food Chem 396:133652. https://doi.org/10.1016/j.foodchem.2022.133652

    Article  CAS  PubMed  Google Scholar 

  101. Wang X, Zhou W, Wang C, Chen Z (2018) In situ immobilization of layered double hydroxides onto cotton fiber for solid phase extraction of fluoroquinolone drugs. Talanta 186:545–553. https://doi.org/10.1016/j.talanta.2018.04.100

    Article  CAS  PubMed  Google Scholar 

  102. Seidi S, Doroudian M (2020) Electrospun NiFe layered double hydroxide/Nylon 6 composite nanofibers as a sorbent for micro solid phase extraction by packed sorbent of non-steroidal anti-inflammatory drugs in human blood. J Chromatogr A 1614:460718. https://doi.org/10.1016/j.chroma.2019.460718

    Article  CAS  PubMed  Google Scholar 

  103. Bagheri AR, Aramesh N, Bilal M (2020) New frontiers and prospects of metal-organic frameworks for removal, determination, and sensing of pesticides. Environ Res 194:110654. https://doi.org/10.1016/j.envres.2020.110654

    Article  CAS  PubMed  Google Scholar 

  104. Bagheri AR, Ghaedi M (2020) Application of Cu-based metal-organic framework (Cu-BDC) as a sorbent for dispersive solid-phase extraction of gallic acid from orange juice samples using HPLC-UV method. Arab J Chem 13:5218–5228. https://doi.org/10.1016/j.arabjc.2020.02.020

    Article  CAS  Google Scholar 

  105. Liang W, Wied P, Carraro F, Sumby CJ, Nidetzky B, Tsung CK, Falcaro P, Doonan CJ (2021) Metal-organic framework-based enzyme biocomposites. Chem Rev 121:1077–1129. https://doi.org/10.1021/acs.chemrev.0c01029

    Article  CAS  PubMed  Google Scholar 

  106. Thorarinsdottir AE, Harris TD (2020) Metal-organic framework magnets. Chem Rev 120:8716–8789. https://doi.org/10.1021/acs.chemrev.9b00666

    Article  CAS  PubMed  Google Scholar 

  107. Amini S, Ebrahimzadeh H, Seidi S, Jalilian N (2021) Application of electrospun polyacrylonitrile/Zn-MOF-74@ GO nanocomposite as the sorbent for online micro solid-phase extraction of chlorobenzenes in water, soil, and food samples prior to liquid chromatography analysis. Food Chem 363:130330. https://doi.org/10.1016/j.foodchem.2021.130330

    Article  CAS  PubMed  Google Scholar 

  108. Gao G, **ng Y, Liu T, Wang J, Hou X (2019) UiO-66 (Zr) as sorbent for porous membrane protected micro-solid-phase extraction androgens and progestogens in environmental water samples coupled with LC-MS/MS analysis: the application of experimental and molecular simulation method. Microchem J 146:126–133. https://doi.org/10.1016/j.microc.2018.12.050

    Article  CAS  Google Scholar 

  109. Soury S, Bahrami A, Alizadeh S, Shahna FG, Nematollahi D (2019) Development of a needle trap device packed with zinc based metal-organic framework sorbent for the sampling and analysis of polycyclic aromatic hydrocarbons in the air. Microchem J 148:346–354. https://doi.org/10.1016/j.microc.2019.05.019

    Article  CAS  Google Scholar 

  110. Zhou P, Zhang W, Wang X (2021) Development of a syringe membrane-based microextraction method based on metal-organic framework mixed-matrix membranes for preconcentration/extraction of polycyclic aromatic hydrocarbons in tea infusion. Food Chem 361:130105. https://doi.org/10.1016/j.foodchem.2021.130105

    Article  CAS  PubMed  Google Scholar 

  111. Kaykhaii M, Hashemi SH, Andarz F, Piri A, Sargazi G (2021) Chromium-based metal organic framework for pipette tip micro-solid phase extraction: an effective approach for determination of methyl and propyl parabens in wastewater and shampoo samples. BMC Chem 15:60. https://doi.org/10.1186/s13065-021-00786-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang J, Yu C, Chen Z, Luo X, Zhao H, Wu F (2021) Zeolitic imidazolate framework-8/fluorinated graphene coated SiO2 composites for pipette tip solid-phase extraction of chlorophenols in environmental and food samples. Talanta 228:122229. https://doi.org/10.1016/j.talanta.2021.122229

    Article  CAS  PubMed  Google Scholar 

  113. Sun M, Sun H, Feng J, Feng J, Fan J, Sun M, Feng Y (2022) Carbonized metal-organic framework-74/carbon aerogel composites for the efficient extraction of triazole fungicides from fruits and vegetables. J Chromatogr A 1683:463552. https://doi.org/10.1016/j.chroma.2022.463552

    Article  CAS  PubMed  Google Scholar 

  114. Feng S, Zhang A, Wu F, Luo X, Zhang J (2022) Boronic acid grafted metal-organic framework for selective enrichment of cis-diol-containing compounds. J Chromatogr A 1677:463281. https://doi.org/10.1016/j.chroma.2022.463281

    Article  CAS  PubMed  Google Scholar 

  115. Khodayari P, Jalilian N, Ebrahimzadeh H, Amini S (2022) Electrospun cellulose acetate /polyacrylonitrile /thymol /Mg-metal organic framework nanofibers as efficient sorbent for pipette-tip micro-solid phase extraction of anti-cancer drugs. React Funct Polym 173:105217. https://doi.org/10.1016/j.reactfunctpolym.2022.105217

    Article  CAS  Google Scholar 

  116. Fornari F, Bianchi F, Riboni N, Casoli F, Bacchi A, Mazzeo PP, Pelagatti P, Careri M (2022) Metal-organic framework-based magnetic dispersive micro-solid-phase extraction for the gas chromatography-mass spectrometry determination of polycyclic aromatic compounds in water samples. J Chromatogr A 1671:463010. https://doi.org/10.1016/j.chroma.2022.463010

    Article  CAS  PubMed  Google Scholar 

  117. Li L, Li Y, Zhang S, Wang T, Hou X (2023) Monolithic and compressible MIL-101 (Cr)/cellulose aerogel/melamine sponge based microextraction in packed syringe towards trace nitroimidazoles in water samples prior to UPLC-MS/MS analysis. Talanta 253:123935. https://doi.org/10.1016/j.talanta.2022.123935

    Article  CAS  PubMed  Google Scholar 

  118. Soury S, Firoozichahak A, Nematollahi D, Alizadeh S, Kakaei H, Abbasi A (2021) Needle-trap device packed with the MIL-100(Fe) metal-organic framework for the extraction of the airborne organochlorine pesticides. Microchemi. J 171:106866. https://doi.org/10.1016/j.microc.2021.106866

    Article  CAS  Google Scholar 

  119. Rahimpoor R, Firoozichahak A, Alizadeh S, Nematollahi D (2022) Urinary bio-monitoring of amphetamine derivatives by needle trap device packed with the zirconium-based metal-organic framework. Sci Rep 12:1–10. https://doi.org/10.1038/s41598-022-17861-1

    Article  CAS  Google Scholar 

  120. Rahimpoor R, Firoozichahak A, Nematollahi D, Alizadeh S, Mohammad Alizadeh P, Alinaghi Langari AA (2021) Bio-monitoring of non-metabolized BTEX compounds in urine by dynamic headspace-needle trap device packed with 3D Ni/Co-BTC bimetallic metal-organic framework as an efficient absorbent. Microchem J 166:106229. https://doi.org/10.1016/j.microc.2021.106229

    Article  CAS  Google Scholar 

  121. Giesbers M, Carrasco-Correa EJ, Simó-Alfonso EF, Herrero-Martínez JM (2019) Hybrid monoliths with metal-organic frameworks in spin columns for extraction of non-steroidal drugs prior to their quantitation by reversed-phase HPLC. Microchim Acta 186:1–9. https://doi.org/10.1007/s00604-019-3923-6

    Article  CAS  Google Scholar 

  122. Zhang Y, Yuan ZL, Deng XY, Wei HD, Wang WL, Xu Z, Feng Y, Shi X (2022) Metal-organic framework mixed-matrix membrane-based extraction combined HPLC for determination of bisphenol A in milk and milk packaging. Food Chem 386:132753. https://doi.org/10.1016/j.foodchem.2022.132753

    Article  CAS  PubMed  Google Scholar 

  123. Mirzajani R, Kardani F, Ramezani Z (2020) Fabrication of UMCM-1 based monolithic and hollow fiber-Metal-organic framework deep eutectic solvents/molecularly imprinted polymers and their use in solid phase microextraction of phthalate esters in yogurt, water and edible oil by GC-FID. Food Chem 314:126179. https://doi.org/10.1016/j.foodchem.2020.126179

    Article  CAS  PubMed  Google Scholar 

  124. Sharma RK, Yadav P, Yadav M, Gupta R, Rana P, Srivastava A, Zbořil R, Varma RS, Antonietti M, Gawande MB (2020) Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Mater Horiz 7:411–454. https://doi.org/10.1039/C9MH00856J

    Article  CAS  Google Scholar 

  125. Bagheri AR, Aramesh N, Sher F, Bilal M (2021) Covalent organic frameworks as robust materials for mitigation of environmental pollutants. Chemosphere 270:129523. https://doi.org/10.1016/j.chemosphere.2020.129523

    Article  CAS  PubMed  Google Scholar 

  126. Xu H, Gao J, Jiang D (2015) Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nature Chem 7:905. https://doi.org/10.1038/nchem.2352

    Article  CAS  Google Scholar 

  127. Kandambeth S, Shinde DB, Panda MK, Lukose B, Heine T, Banerjee R (2013) Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds. Angew Chem Int Ed 52:13052–13056. https://doi.org/10.1002/anie.201306775

    Article  CAS  Google Scholar 

  128. Chen X, Addicoat M, ** E, Zhai L, Xu H, Huang N, Guo Z, Liu L, Irle S, Jiang D (2015) Locking covalent organic frameworks with hydrogen bonds: General and remarkable effects on crystalline structure, physical properties, and photochemical activity. J Am Chem Soc 137:3241–3247. https://doi.org/10.1021/ja509602c

    Article  CAS  PubMed  Google Scholar 

  129. Wang R, Li C, Li Q, Zhang S, Lv F, Yan Z (2020) Electrospinning fabrication of covalent organic framework composite nanofibers for pipette tip solid phase extraction of tetracycline antibiotics in grass carp and duck. J Chromatogr A 1622:461098. https://doi.org/10.1016/j.chroma.2020.461098

    Article  CAS  PubMed  Google Scholar 

  130. Kurd N, Bahrami A, Afkhami A, Shahna FG, Assari MJ, Farhadian M (2022) Application of Fe3O4@TbBd nanobeads in microextraction by packed sorbent (MEPS) for determination of BTEXs biomarkers by HPLC-UV in urine samples. J Chromatogr B 1197:123197. https://doi.org/10.1016/j.jchromb.2022.123197

    Article  CAS  Google Scholar 

  131. Safarpour Khotbesara N, Bahrami A, Habibi Mohraz M, Afkhami A, Farhadian M (2022) Development of a needle trap device packed with the Schiff base network-1/single-walled carbon nanotube for sampling phenolic compounds in air. Microchem J 172:106984. https://doi.org/10.1016/j.microc.2021.106984

    Article  CAS  Google Scholar 

  132. Kang B, Liu H, Chen G, Hetong L, Chen S, Chen T (2022) Novel covalent organic frameworks based electrospun composite nanofiber membranes as pipette-tip strong anion exchange sorbent for determination of inorganic arsenic in rice. Food Chem 408:135192. https://doi.org/10.1016/j.foodchem.2022.135192

    Article  CAS  PubMed  Google Scholar 

  133. Tian X, Dai Y, Cheng Y, Zhang L, Kong R-M, **a L, Kong C, Li G (2022) Combination of pipette tip solid phase extraction and high performance liquid chromatography for determination of plant growth regulators in food samples based on the electrospun covalent organic framework/polyacrylonitrile nanofiber as highly efficient sorbent. J Chromatogr A 1661:462692. https://doi.org/10.1016/j.chroma.2021.462692

    Article  CAS  PubMed  Google Scholar 

  134. Chen Z, Yu C, ** J, Tang S, Bao T, Zhang J (2019) A hybrid material prepared by controlled growth of a covalent organic framework on amino-modified MIL-68 for pipette tip solid-phase extraction of sulfonamides prior to their determination by HPLC. Microchim Acta 186:393. https://doi.org/10.1007/s00604-019-3513-7

    Article  CAS  Google Scholar 

  135. Zhang Y, Liao W, Dai Y, Wang W, Wang A (2020) Covalent organic framework Schiff base network-1-based pipette tip solid phase extraction of sulfonamides from milk and honey. J Chromatogr A 1634:461665. https://doi.org/10.1016/j.chroma.2020.461665

    Article  CAS  PubMed  Google Scholar 

  136. Yan Z, Hu B, Li Q, Zhang S, Pang J, Wu C (2019) Facile synthesis of covalent organic framework incorporated electrospun nanofiber and application to pipette tip solid phase extraction of sulfonamides in meat samples. J Chromatogr A 1584:33–41. https://doi.org/10.1016/j.chroma.2018.11.039

    Article  CAS  PubMed  Google Scholar 

  137. Militao IM, Roddick FA, Bergamasco R, Fan L (2021) Removing PFAS from aquatic systems using natural and renewable material-based adsorbents: a review. J Environ Chem Eng 9:105271. https://doi.org/10.1016/j.jece.2021.105271

    Article  CAS  Google Scholar 

  138. Li G, Row KH (2021) Deep eutectic solvents cross-linked molecularly imprinted chitosan microsphere for the micro-solid phase extraction of p-hydroxybenzoic acid from pear rind. J Sep Sc 44:549–556. https://doi.org/10.1002/jssc.202000984

    Article  CAS  Google Scholar 

  139. Hejabri Kandeh S, Amini S, Ebrahimzadeh H (2021) Simultaneous trace-level monitoring of seven opioid analgesic drugs in biological samples by pipette-tip micro solid phase extraction based on PVA-PAA/CNT-CNC composite nanofibers followed by HPLC-UV analysis. Microchim Acta 188:1–10. https://doi.org/10.1007/s00604-021-04931-w

    Article  CAS  Google Scholar 

  140. Wang Q, Wang T, Zhang Y, Ma J, Tuo Y (2022) Preparation and evaluation of a chitosan modified biochar as an efficient adsorbent for pipette tip-solid phase extraction of triazine herbicides from rice. Food Chem 396:133716. https://doi.org/10.1016/j.foodchem.2022.133716

    Article  CAS  PubMed  Google Scholar 

  141. Li L, Zhang H, Zhang M, Wang T, Hou X (2022) MIL-88B(Fe)/cellulose microspheres as sorbent for the fully automated dispersive pipette extraction towards trace sulfonamides in milk samples prior to UPLC-MS/MS analysis. Anal Chim Acta 1232:340420. https://doi.org/10.1016/j.aca.2022.340420

    Article  CAS  PubMed  Google Scholar 

  142. Wang Z, Liao Y, Liu J, Huang X (2022) On-site separation and enrichment of heavy metal ions in environmental waters with multichannel in-tip microextraction device based on chitosan cryogel. Microchem J 175:107107. https://doi.org/10.1016/j.microc.2021.107107

    Article  CAS  Google Scholar 

  143. Ayazi Z, Matin P (2021) Montmorillonite grafted on a cellulosic paper as a novel layered sorbent for microextraction by packed sorbent in combination with HPLC for determination of carvedilol in biological samples. Microchem J 171:106795. https://doi.org/10.1016/j.microc.2021.106795

    Article  CAS  Google Scholar 

  144. Roostaie A, Abdolrasouli MH, Mohammadiazar S, Hossenipour A (2022) Polybutylene succinate/modified cellulose bionanocomposites as sorbent for needle trap microextraction. J Chromatogr A 1689:463715. https://doi.org/10.1016/j.chroma.2022.463715

    Article  CAS  PubMed  Google Scholar 

  145. Amini S, Ebrahimzdeh H, Seidi S, Jalilian N (2020) Preparation of electrospun polyacrylonitrile/Ni-MOF-74 nanofibers for extraction of atenolol and captopril prior to HPLC-DAD. Microchim Acta 187:1–12. https://doi.org/10.1007/s00604-020-04483-5

    Article  CAS  Google Scholar 

  146. Mompó-Roselló O, Ribera-Castelló A, Simó-Alfonso EF, Ruiz-Angel MJ, García-Alvarez-Coque MC, Herrero-Martínez JM (2020) Extraction of β-blockers from urine with a polymeric monolith modified with 1-allyl-3-methylimidazolium chloride in spin column format. Talanta 214:120860. https://doi.org/10.1016/j.talanta.2020.120860

    Article  CAS  PubMed  Google Scholar 

  147. Sajid M, Płotka-Wasylka J (2022) Green analytical chemistry metrics: a review. Talanta 238:123046. https://doi.org/10.1016/j.talanta.2021.123046

    Article  CAS  PubMed  Google Scholar 

  148. Werner J, Zgoła-Grześkowiak A, Płatkiewicz J, Płotka-Wasylka J, Jatkowska N, Kalyniukova A, Zaruba S, Andruch V (2023) Deep eutectic solvents in analytical sample preconcentration Part B: Solid-phase (micro)extraction. Microchem J 191:108898. https://doi.org/10.1016/j.microc.2023.108898

    Article  CAS  Google Scholar 

  149. Nemati M, Tuzen M, Farazajdeh MA, Kaya S, Afshar Mogaddam MR (2022) Development of dispersive solid-liquid extraction method based on organic polymers followed by deep eutectic solvents elution; application in extraction of some pesticides from milk samples prior to their determination by HPLC-MS/MS. Anal Chim Acta 1199:339570. https://doi.org/10.1016/j.aca.2022.339570

    Article  CAS  PubMed  Google Scholar 

  150. Jouyban A, Nemati M, Farazajdeh MA, Yazdani A, Afshar Mogaddam MR (2022) Salt-induced homogenous solid phase extraction of hydroxylated metabolites of polycyclic aromatic hydrocarbons from urine samples using a deep eutectic solvent as an elution solvent prior to HPLC-FLD analysis. Microchem J 172:106932. https://doi.org/10.1016/j.microc.2021.106932

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from their respective universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hian Kee Lee .

Editor information

Editors and Affiliations

Ethics declarations

The authors have declared no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bagheri, A.R., Lee, H.K. (2024). Micro-solid-phase extraction. In: Rodríguez-Delgado, M.Á., Socas-Rodríguez, B., Herrera-Herrera, A.V. (eds) Microextraction Techniques. Integrated Analytical Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-50527-0_2

Download citation

Publish with us

Policies and ethics

Navigation