Biodegradable Polymers for 3D Printing of Tissue Engineering Scaffolds: Challenges and Future Directions

  • Conference paper
  • First Online:
TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings (TMS 2024)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

Tissue engineering holds great promise for tissue regeneration and organ replacement. The integration of biodegradable polymers with 3D printing has revolutionized scaffold fabrication, enabling precise control over architecture and functionality. This review explores the current status and future potential of biodegradable polymers in 3D printed tissue engineering scaffolds, highlighting their fascinating properties, such as tunable mechanics and biocompatibility. We discuss various 3D printing techniques and their benefits and limitations for tissue engineering applications. Current advancements in bone, cartilage, and organ tissue engineering showcase the potential of 3D printed personalized approaches. Addressing challenges in scaffold resolution, material properties, vascularization, and scalability requires innovative solutions, including multi-functional scaffolds and bioprinting. This transformative review envisions a future driven by biodegradable polymers and 3D printing, revolutionizing regenerative medicine and offering hope to patients in need of tissue repair and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mandrycky C, Phong K, Zheng Y (2017) Tissue engineering toward organ-specific regeneration and disease modeling. MRS Commun 7(3):332–347. https://doi.org/10.1557/mrc.2017.58

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jonathan EM, Ohifuemen AO, Jacob JN, Isaac AY, Ifijen IH (2023). Polymeric biodegradable biomaterials for tissue bioengineering and bone rejuvenation. In TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_25

  3. Mani MP, Sadia M, Jaganathan SK, Khudzari AZ, Supriyanto E, Saidin S, Ramakrishna S, Ismail AF, Faudzi AAM (2022) A review on 3D printing in tissue engineering applications. J Polym Eng 42(3):243–265. https://doi.org/10.1515/polyeng-2021-0059

  4. Bertsch C, Maréchal H, Gribova V, Lévy B, Debry C, Lavalle P, Fath L (2023) Biomimetic bilayered scaffolds for tissue engineering: from current design strategies to medical applications. Adv Healthcare Mater 12(17):e202203115. https://doi.org/10.1002/adhm.202203115

    Article  Google Scholar 

  5. Do AV, Khorsand B, Geary SM, Salem AK (2015) 3D printing of scaffolds for tissue regeneration applications. Adv Healthcare Mater 4(12):1742–1762. https://doi.org/10.1002/adhm.201500168

    Article  Google Scholar 

  6. Ifijen IH, Omonmhenle SI (2023) Polystyrene-Based photonic crystals with chemical, thermal, and Bio-Responsive properties. Biomed Mater & Devices Adv Online Publ. https://doi.org/10.1007/s44174-023-00100-0

    Article  Google Scholar 

  7. Egharevba O, Ong SK, Okieimen FE et al (2023) Exploring the exceptional properties of Polypropylene/Polystyrene-grafted-Natural rubber (NR-g-PS) blends. Adv Online Publ, Chemistry Africa. https://doi.org/10.1007/s42250-023-00718-z

    Book  Google Scholar 

  8. Ifijen IH, Ikhuoria EU, Omorogbe SO, Otabor GO, Aigbodion AI, Ibrahim SD (2023). A review of P(St-MMA-AA) synthesis via emulsion polymerization, 3D P(St-MMA-AA) photonic crystal fabrication, and photonic application. In TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_30

  9. Ifijen IH, Jonathan EM, Jacob JN, Udokpoh NU, Archibong UD (2022) Synthesis of polydispersed P(St-MMA-AA) microspheres and fabrication of colloidal crystals with Non-Compact morphology. Tanzan J Sci 48(1):140–147. https://doi.org/10.4314/tjs.v48i1.13

    Article  Google Scholar 

  10. Ifijen IH, Ikhuoria EU (2020) A simple technique for the fabrication of P(St-BA-AA) colloidal crystal microdots on ink-jet paper. Heliyon 6(6):e04196. https://doi.org/10.1016/j.heliyon.2020.e04196

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ifijen IH, Omorogbe SO, Maliki M, Odiachi IJ, Aigbodion AI, Ikhuoria EU (2020) Stabilizing capability of gum arabic on the synthesis of Poly(StyreneMethylmethacrylate-Acrylic Acid) latex for the generation of colloidal crystal films. Tanzan J Sci 46(2):345–353. https://doi.org/10.4314/tjs.v46i2.13

    Article  Google Scholar 

  12. Ifijen IH, Ikhuoria EU (2020) Monodisperse polystyrene microspheres: studies on the effects of reaction parameters on particle diameter and colloidal stability. Tanzan J Sci 46(1):19–30

    Google Scholar 

  13. Ifijen IH, Ikhuoria EU, Omorogbe SO, Aigbodion AI (2019). Ordered colloidal crystals fabrication and studies on the properties of poly (Styrene–Butyl Acrylate–Acrylic Acid) and polystyrene latexes. In Srivatsan T, Gupta M (Eds), Nanocomposites VI: Nanoscience and nanotechnology in advanced composites. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-35790-0_11

  14. Ifijen IH, Ikhuoria EU (2019) Generation of highly ordered 3D vivid monochromatic coloured photonic crystal films using evaporative induced technique. Tanzan J Sci 45(3):439–449

    Google Scholar 

  15. Ifijen IH, Maliki M, Ovonramwen OB, Aigbodion AI, Ikhuoria EU (2019) Brilliant coloured monochromatic photonic crystals films generation from Poly (Styrene-Butyl Acrylate-Acrylic Acid) Latex. J Appl Sci Environ Manage. 23(9):1661–1664. https://doi.org/10.4314/jasem.v23i9.9

    Article  Google Scholar 

  16. Ifijen HI, Ikhuoria EU, Omorogbe SO (2019) Correlative studies on the fabrication of poly(styrene-methyl-methacrylate-acrylic acid) colloidal crystal films. J Dispersion Sci Technol 40(7):1023–1030. https://doi.org/10.1080/01932691.2018.1494605

    Article  Google Scholar 

  17. Omorogbe SO, Ikhuoria EU, Ifijen HI, Simo A, Aigbodion A, Maaza M (2019). Fabrication of monodispersed Needle-Sized hollow core polystyrene microspheres. In: TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05861-6_14

  18. Darie-Niță RN, Râpă M, Frąckowiak S (2022) Special features of Polyester-Based materials for medical applications. Polymers (Basel) 14(5):951. https://doi.org/10.3390/polym14050951

    Article  PubMed  Google Scholar 

  19. Sharma P, Kumar P, Sharma R, Bhatt VD, Dhot PS (2019) Tissue engineering; current Status & Futuristic scope. J Med Life 12(3):225–229. https://doi.org/10.25122/jml-2019-0032

    Article  PubMed  PubMed Central  Google Scholar 

  20. Arif ZU, Khalid MY, Zolfagharian A, Bodaghi M (2022) 4D bioprinting of smart polymers for biomedical applications: recent progress, challenges, and future perspectives. React Funct Polym 179:105374. https://doi.org/10.1016/j.reactfunctpolym.2022.105374

    Article  Google Scholar 

  21. BaoLin G, Ma PX (2014) Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem 57(4):490–500. https://doi.org/10.1007/s11426-014-5086-y

    Article  PubMed  PubMed Central  Google Scholar 

  22. Modrák M, Trebuňová M, Balogová AF, Hudák R, Živčák J (2023) Biodegradable materials for tissue engineering: development, classification and current applications. J Funct Biomater 14:159. https://doi.org/10.3390/jfb14030159

    Article  PubMed  PubMed Central  Google Scholar 

  23. Echeverria Molina MI, Malollari KG, Komvopoulos K (2021) Design challenges in polymeric scaffolds for tissue engineering. Front Bioeng Biotechnol, 9, Article 617141. https://doi.org/10.3389/fbioe.2021.617141

  24. Feig VR, Tran H, Bao Z (2018) Biodegradable polymeric materials in degradable electronic devices. ACS Cent Sci 4(3):337–348. https://doi.org/10.1021/acscentsci.7b00595

    Article  PubMed  PubMed Central  Google Scholar 

  25. ran, D. T., Yadav, A. S., Nguyen, N. -K., Singha, P., Ooi, C. H., & Nguyen, N. -T. (2023) Biodegradable polymers for micro elastofluidics. Small. https://doi.org/10.1002/smll.202303435

    Article  Google Scholar 

  26. Xu R, Fang Y, Zhang Z, Cao Y, Yan Y, Gan L, Xu J, Zhou G (2023) Recent advances in biodegradable and biocompatible synthetic polymers used in skin wound healing. Materials 16:5459. https://doi.org/10.3390/ma16155459

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hayat U, Raza A, Bilal M, Iqbal HMN, Wang J-Y (2022) Biodegradable polymeric conduits: Platform materials for guided nerve regeneration and vascular tissue engineering. J Drug Deliv Sci Technol 67:103014. https://doi.org/10.1016/j.jddst.2021.103014

    Article  Google Scholar 

  28. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials (Basel) 2(2):307–344. https://doi.org/10.3390/ma2020307

    Article  Google Scholar 

  29. Dhandayuthapani B, Yoshida Y, Maekawa T, Sakthi Kumar D (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci, Article ID 290602, pages 19 https://doi.org/10.1155/2011/290602

  30. Suamte L, Tirkey A, Barman J, Babu PJ (2023) Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications. Smart Mater Manuf 1:100011. https://doi.org/10.1016/j.smmf.2022.100011

    Article  Google Scholar 

  31. Adel IM, ElMeligy MF, Elkasabgy NA (2022) Conventional and recent trends of scaffolds fabrication: a superior mode for tissue engineering. Pharm 14(2):306. https://doi.org/10.3390/pharmaceutics14020306

    Article  Google Scholar 

  32. Perez-Puyana V, Jiménez-Rosado M, Romero A, Guerrero A (2020) Polymer-Based scaffolds for Soft-Tissue engineering. Polymers (Basel) 12(7):1566. https://doi.org/10.3390/polym12071566

    Article  PubMed  Google Scholar 

  33. Jandyal A, Chaturvedi I, Wazir I, Raina APhD, Haq MI, Ul PhD (2022) 3D printing—A review of processes, materials and applications in industry 4.0. Sustain Oper Comput 3:33–42. https://doi.org/10.1016/j.susoc.2021.09.004

    Article  Google Scholar 

  34. Abdelaziz AG, Nageh H, Abdo SM, Abdalla MS, Amer AA, Abdal-hay A, Barhoum A (2023) A review of 3D polymeric scaffolds for bone tissue engineering: principles, fabrication techniques, immunomodulatory roles, and challenges. Bioeng 10:204. https://doi.org/10.3390/bioengineering10020204

    Article  Google Scholar 

  35. Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK (2021) 3D/4D printing of polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA). Polymers 13:3101. https://doi.org/10.3390/polym13183101

    Article  PubMed  PubMed Central  Google Scholar 

  36. Iftekar SF, Aabid A, Amir A, Baig M (2023) Advancements and limitations in 3D printing materials and technologies: a critical review. Polymers (Basel). 15(11):2519. https://doi.org/10.3390/polym15112519

    Article  PubMed  PubMed Central  Google Scholar 

  37. Saska S, Pilatti L, Blay A, Shibli JA (2021) Bioresorbable polymers: advanced materials and 4D printing for tissue engineering. Polymers (Basel). 13(4):563. https://doi.org/10.3390/polym13040563

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zaszczyńska A, Moczulska-Heljak M, Gradys A, Sajkiewicz P (2021) Advances in 3D printing for tissue engineering. Mater (Basel). 14(12):3149. https://doi.org/10.3390/ma14123149

    Article  Google Scholar 

  39. Persaud A, Maus A, Strait L, Zhu D (2022) 3D bioprinting with live cells. Eng Regen 3(3):292–309. https://doi.org/10.1016/j.engreg.2022.07.002

    Article  Google Scholar 

  40. Sun F, Sun X, Wang H, Li C, Zhao Y, Tian J, Lin Y (2022) Application of 3D-Printed, PLGA-Based scaffolds in bone tissue engineering. Int J Mol Sci 23(10):5831. https://doi.org/10.3390/ijms23105831

    Article  PubMed  PubMed Central  Google Scholar 

  41. Song X, Li X, Wang F, Wang L, Lv L, **e Q, Zhang X, Shao X (2022) Bioinspired Protein/Peptide loaded 3D printed PLGA scaffold promotes bone regeneration. Front Bioeng Biotechnol. 7(10):832727. https://doi.org/10.3389/fbioe.2022.832727

    Article  Google Scholar 

  42. Wang W, Zhang B, Li M, Li J, Zhang C, Han Y, Wang L, Wang K, Zhou C, Liu L, Fan Y, Zhang X (2021) 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Compos B Eng 224:109192. https://doi.org/10.1016/j.compositesb.2021.109192

    Article  Google Scholar 

  43. Afewerki S, Sheikhi A, Kannan S, Ahadian S, Khademhosseini A (2018) Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng & Transl Med 4(1):96–115. https://doi.org/10.1002/btm2.10124

    Article  Google Scholar 

  44. Tai Y, Banerjee A, Goodrich R, ** L, Nam J (2021) Development and utilization of multifunctional polymeric scaffolds for the regulation of physical cellular microenvironments. Polymers 13(22):3880. https://doi.org/10.3390/polym13223880

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ruiz-Cantu L, Gleadall A, Faris C, Segal J, Shakesheff K, Yang J (2020) Multi-material 3D bioprinting of porous constructs for cartilage regeneration. Mater Sci Eng, C 109:110578. https://doi.org/10.1016/j.msec.2019.110578

    Article  Google Scholar 

  46. Cao Y, Cheng P, Sang S, **ang C, An Y, Wei X, Yan Y, Li P (2021) 3D printed PCL/GelMA biphasic scaffold boosts cartilage regeneration using co-culture of mesenchymal stem cells and chondrocytes: In vivo study. Mater Des 210:110065. https://doi.org/10.1016/j.matdes.2021.110065

    Article  Google Scholar 

  47. Maihemuti A, Zhang H, Lin X, Wang Y, Xu Z, Zhang D, Jiang Q (2023) 3D-printed fish gelatin scaffolds for cartilage tissue engineering. Bioact Mater 26:77–87. https://doi.org/10.1016/j.bioactmat.2023.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kalyan BP, Kumar L (2022) 3D printing: applications in tissue engineering, medical devices, and drug delivery. AAPS Pharm Sci Tech 23:92. https://doi.org/10.1208/s12249-022-02242-8

    Article  Google Scholar 

  49. Sohn S, Buskirk MV, Buckenmeyer MJ, Londono R, Faulk D (2020) Whole organ engineering: approaches, challenges, and future directions. Appl Sci 10:4277. https://doi.org/10.3390/app10124277

    Article  Google Scholar 

  50. Bozkurt Y, Karayel E (2021) 3D printing technology; methods, biomedical applications, future opportunities and trends. J Market Res 14:1430–1450. https://doi.org/10.1016/j.jmrt.2021.07.050

    Article  Google Scholar 

  51. Chen EP, Toksoy Z, Davis BA, Geibel JP (2021). 3D bioprinting of vascularized tissues for in vitro and in vivo applications. Front Bioeng Biotechnol, 9, Article 664188. https://doi.org/10.3389/fbioe.2021.664188

  52. Antezana PE, Municoy S, Álvarez-Echazú MI, Santo-Orihuela PL, Catalano PN, Al-Tel TH, Kadumudi FB, Dolatshahi-Pirouz A, Orive G, Desimone MF (2022) The 3D bioprinted scaffolds for wound healing. Pharm 14(2):464. https://doi.org/10.3390/pharmaceutics14020464

    Article  Google Scholar 

  53. Glover K, Mathew E, Pitzanti G et al (2023) 3D bioprinted scaffolds for diabetic wound-healing applications. Drug Deliv Transl Res 13:2096–2109. https://doi.org/10.1007/s13346-022-01115-8

    Article  PubMed  Google Scholar 

  54. Karabay U, Husemoglu RB, Egrilmez MY, Havitcioglu H (2019) 3D Printed polylactic acid scaffold for dermal tissue engineering application: the fibroblast proliferation in vitro. J Med Investig Technol 1(2):51–56

    Google Scholar 

  55. Muzzio N, Moya S, Romero G (2021) Multifunctional scaffolds and synergistic strategies in tissue engineering and regenerative medicine. Pharm 13(6):792. https://doi.org/10.3390/pharmaceutics13060792

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikhazuagbe Hilary Ifijen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jonathan, E.M., Oghama, O.E., Ifijen, I.H., Onaiwu, G.E. (2024). Biodegradable Polymers for 3D Printing of Tissue Engineering Scaffolds: Challenges and Future Directions. In: TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2024. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50349-8_40

Download citation

Publish with us

Policies and ethics

Navigation