Investigations on Creep Behavior of Extruded Mg–Ca–Al Alloys

  • Conference paper
  • First Online:
Magnesium Technology 2024 (TMS 2024)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 564 Accesses

Abstract

In modern vehicle concepts, lightweight materials that can withstand elevated temperatures are of great importance, e.g., for battery trays and motor housings. Despite their low density, high specific strength, and good thermal conductivity, magnesium alloys are of limited use because they often exhibit unsatisfactory creep behavior at temperatures above 100 °C. Wrought products are particularly affected, as they exhibit pronounced recrystallisation and grain growth in such environments. To mitigate this behavior, Ca can be used to improve the creep resistance of Mg–Al alloys. Here we have used short-term creep experiments to evaluate the performance of multiple extruded Mg–Ca–Al alloys at 150 °C. Our mechanical investigations and microstructural analysis show that the Ca-containing alloys have superior properties at elevated temperatures compared to AZ31.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rothe R, Hameyer K. Life expectancy calculation for electric vehicle traction motors regarding dynamic temperature and driving cycles. 2011 IEEE Int. Electr. Mach. Drives Conf. IEMDC, 2011, p. 1306–9. https://doi.org/10.1109/IEMDC.2011.5994793.

    Article  Google Scholar 

  2. Pekguleryuz MO, Baril E. Creep Resistant Magnesium Diecasting Alloys Based on Alkaline Earth Elements. Mater Trans 2001;42:1258–67. https://doi.org/10.2320/matertrans.42.1258.

    Article  CAS  Google Scholar 

  3. Powell BR, Rezhets V, Balogh MP, Waldo RA. Microstructure and creep behavior in AE42 magnesium die-casting alloy. JOM 2002;54:34–8. https://doi.org/10.1007/BF02711864.

    Article  CAS  Google Scholar 

  4. Nami B, Shabestari SG, Razavi H, Mirdamadi Sh, Miresmaeili SM. Effect of Ca, RE elements and semi-solid processing on the microstructure and creep properties of AZ91 alloy. Mater Sci Eng A 2011;528:1261–7. https://doi.org/10.1016/j.msea.2010.10.004.

  5. Zhu SM, Gibson MA, Easton MA, Nie JF. The relationship between microstructure and creep resistance in die-cast magnesium–rare earth alloys. Scr Mater 2010;63:698–703. https://doi.org/10.1016/j.scriptamat.2010.02.005.

    Article  CAS  Google Scholar 

  6. **g B, Yangshan S, Shan X, Feng X, Tianbai Z. Microstructure and tensile creep behavior of Mg–4Al based magnesium alloys with alkaline-earth elements Sr and Ca additions. Mater Sci Eng A 2006;419:181–8. https://doi.org/10.1016/j.msea.2005.12.017.

    Article  CAS  Google Scholar 

  7. Dargusch MS, Dunlop GL, Bowles AL, Pettersen K, Bakke P. The effect of silicon content on the microstructure and creep behavior in die-cast magnesium AS alloys. Metall Mater Trans A 2004;35:1905–9. https://doi.org/10.1007/s11661-004-0099-3.

    Article  Google Scholar 

  8. Mohammadi Mazraeshahi E, Nami B, Miresmaeili SM, Tabatabaei SM. Effect of Si on the creep properties of AZ61 cast magnesium alloy. Mater Des 2015;76:64–70. https://doi.org/10.1016/j.matdes.2015.03.021.

    Article  CAS  Google Scholar 

  9. Blum W, Zhang P, Watzinger B, Grossmann B v, Haldenwanger HG. Comparative study of creep of the die-cast Mg-alloys AZ91, AS21, AS41, AM60 and AE42. Mater Sci Eng A 2001;319–321:735–40. https://doi.org/10.1016/S0921-5093(00)02016-5.

  10. Gneiger S, Papenberg NP, Arnoldt AR, Schlögl CM, Fehlbier M. Investigations of High-Strength Mg–Al–Ca–Mn Alloys with a Broad Range of Ca+Al Contents. Materials 2021;14:5439. https://doi.org/10.3390/ma14185439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu SW, Oh-ishi K, Kamado S, Uchida F, Homma T, Hono K. High-strength extruded Mg–Al–Ca–Mn alloy. Scr Mater 2011;65:269–72. https://doi.org/10.1016/j.scriptamat.2011.04.026.

    Article  CAS  Google Scholar 

  12. DIN EN ISO 204:2019–04, Metallische Werkstoffe_- Einachsiger Zeitstandversuch unter Zugbeanspruchung_- Prüfverfahren (ISO_204:2018); Deutsche Fassung EN_ISO_204:2018. Beuth Verlag GmbH; n.d. https://doi.org/10.31030/2853768.

  13. Nietsch JA, Papenberg NP, Cerny A, Ott AC, Grabner F, Gneiger S. Applicability of a deformation dilatometer for short time creep experiments of magnesium alloys. Mater Test 2023;65:652–61. https://doi.org/10.1515/mt-2022-0339.

    Article  CAS  Google Scholar 

  14. Raynor GV. The physical metallurgy of magnesium and its alloys. New York: Pergamon Press; 1959.

    Google Scholar 

  15. Suzuki A, Saddock ND, TerBush JR, Powell BR, Jones JW, Pollock TM. Precipitation Strengthening of a Mg-Al-Ca–Based AXJ530 Die-cast Alloy. Metall Mater Trans A 2008;39:696–702. https://doi.org/10.1007/s11661-007-9455-4.

    Article  CAS  Google Scholar 

  16. Homma T, Nakawaki S, Oh-ishi K, Hono K, Kamado S. Unexpected influence of Mn addition on the creep properties of a cast Mg–2Al–2Ca (mass%) alloy. Acta Mater 2011;59:7662–72. https://doi.org/10.1016/j.actamat.2011.08.049.

    Article  CAS  Google Scholar 

  17. Zhu SM, Abbott TB, Gibson MA, Nie JF, Easton MA. The influence of minor Mn additions on creep resistance of die-cast Mg–Al–RE alloys. Mater Sci Eng A 2017;682:535–41. https://doi.org/10.1016/j.msea.2016.11.075.

    Article  CAS  Google Scholar 

  18. Chu A, Zhao Y, Ud-Din R, Hu H, Zhi Q, Wang Z. Microstructure and Properties of Mg–Al–Ca–Mn Alloy with High Ca/Al Ratio Fabricated by Hot Extrusion. Materials 2021;14:5230. https://doi.org/10.3390/ma14185230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu S, Easton MA, Abbott TB, Nie J-F, Dargusch MS, Hort N, et al. Evaluation of Magnesium Die-Casting Alloys for Elevated Temperature Applications: Microstructure, Tensile Properties, and Creep Resistance. Metall Mater Trans A 2015;46:3543–54. https://doi.org/10.1007/s11661-015-2946-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the work done by the technical staff at the LKR Ranshofen and Aurel Arnoldt for his assistance in making the SEM images.

Funding

This research was performed within the project “Data-T-Rex” (Wi-2021-305676/13-Au), co-financed by research subsidies granted by the government of Upper Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gneiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gneiger, S., Nietsch, J.A., Papenberg, N. (2024). Investigations on Creep Behavior of Extruded Mg–Ca–Al Alloys. In: Leonard, A., Barela, S., Neelameggham, N.R., Miller, V.M., Tolnai, D. (eds) Magnesium Technology 2024. TMS 2024. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50240-8_18

Download citation

Publish with us

Policies and ethics

Navigation