Impacts of Mining and Quarrying Activities in the Himalayas: An Overview

  • Chapter
  • First Online:
The Himalayas in the Anthropocene

Abstract

The hills of Himalayan region are rich in flora and fauna diversity. The recent developmental activities (specifically industries and tourism) are adversely impacting the biodiversity of fragile ecosystem of Himalaya. Small scale mines of limestone’s are prominent in the hills of Himachal Pradesh and Uttarakhand. The mines of phosphorite, soapstone and magnesite are also active in these hills. The blasting, drilling and excavation of steep slopes of hills for mines is triggering the landslides and earthquakes. The application of bioengineering techniques or introduction of exotic species for the stabilization of steep slopes hinder the growth of native plants leading to change in the floral diversity. The north-eastern Himalayan states such as Meghalaya and Nagaland are enriched in coal reserves and extensive mining is being carried out at small and large scale. The conflict on the rights of coal reserves in the Meghalaya and Nagaland are highly reported and sometimes it also results in violence and loss of human life. The recent studies show the loss of forest cover, degradation in quality of soil and water in the mining landscape. The pollution level of cleaner air of the north-eastern Himalayan is continuously increasing. It is also observed that the coal mines of Meghalaya are generating acid mine drainage and are potential source of metal contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya, B. K., Chettri, B., & Vijayan, L. (2011). Distribution pattern of trees along an elevation gradient of Eastern Himalaya, India. Acta Oecologica, 37, 329–336.

    Article  Google Scholar 

  • Arifeen, H. M., Chowdhury, M., Zhang, H., Suepa, T., Amin, N., Techato, K., & Jutidamrongphan, W. (2021). Role of a Mine in Changing Its Surroundings—Land Use and Land Cover and Impact on the Natural Environment in Barapukuria. Bangladesh. Sustainability, 13(24), 13602.

    Article  Google Scholar 

  • Bali, B. S., Wani, A. A., Bhat, G. R., & Mir, S. A. (2021). GPR investigation of mining induced subsidence and its effects on surface structures: A case study of srinagar city, J&K, India, NW himalayas. Journal of the Geological Society of India, 97, 751–759.

    Article  Google Scholar 

  • Bandyopadhyay, J., & Shiva, V. (1984). Planning for Underdevelopment: the case of Doon Valley. Economic and Political Weekly, 167–173.

    Google Scholar 

  • Bandyopadhyay, J., & Shiva, V. (1985). The conflict over limestone quarrying in Doon Valley, Dehradun, India. Environmental Conservation, 12(2), 131–139.

    Article  Google Scholar 

  • Banerjee, S., Niyogi, R., Sarkar, M. S., & John, R. (2022). Assessing the vulnerability of protected areas in the eastern Himalayas based on their biological, anthropogenic, and environmental aspects. Trees, Forests and People, 8, 100228.

    Article  Google Scholar 

  • Banshtu, R. S., Versain, L. D., & Pandey, D. D. (2020). Risk assessment using quantitative approach: Central Himalaya, Kullu, Himachal Pradesh, India. Arabian Journal of Geosciences, 13, 1–11.

    Article  Google Scholar 

  • Bisht, A., & Gerber, J. F. (2017). Ecological distribution conflicts (EDCs) over mineral extraction in India: An overview. The Extractive Industries and Society, 4(3), 548–563.

    Article  Google Scholar 

  • Bowes, M. J., Read, D. S., Joshi, H., Sinha, R., Ansari, A., Hazra, M., Simon, M., Vishwakarma, R., Armstrong, L. K., Nicholls, D. J. E., Wickham, H. D., Ward, J., Carvalho, L. R., & Rees, H. G. (2020). Nutrient and microbial water quality of the upper Ganga River, India: Identification of pollution sources. Environmental Monitoring and Assessment, 192, 533. https://doi.org/10.1007/s10661-020-08456-2

    Article  CAS  Google Scholar 

  • Chakravarty, T., & Gupta, S. (2023). Assessment of water quality and insect dynamics of a small tropical river, North East India. Sustainable Water Resources Management, 9(4), 110.

    Article  Google Scholar 

  • Chamling, M., & Bera, B. (2020). Spatio-temporal patterns of land use/land cover change in the Bhutan-Bengal foothill region between 1987 and 2019: Study towards geospatial applications and policy making. Earth Systems and Environment, 4, 117–130.

    Article  Google Scholar 

  • Chao, Z., Shang, Z., Fei, C., Zhuang, Z., & Zhou, M. (2023). Spatiotemporal analysis of Urban expansion in the mountainous Hindu Kush Himalayas Region. Land, 12(3), 576.

    Article  Google Scholar 

  • Chauhan, P., Singh, N., Chauniyal, D. D., Ahluwalia, R. S., & Singhal, M. (2017). Differential behaviour of a Lesser Himalayan watershed in extreme rainfall regimes. Journal of Earth System Science, 126, 22. https://doi.org/10.1007/s12040-017-0796-0

    Article  Google Scholar 

  • Choudhury, B. U., Fiyaz, A. R., Mohapatra, K. P., & Ngachan, S. (2016). Impact of land uses, agrophysical variables and altitudinal gradient on soil organic carbon concentration of North-Eastern Himalayan Region of India. Land Degradation & Development, 27(4), 1163–1174.

    Article  Google Scholar 

  • Choudhury, B. U., Nengzouzam, G., & Islam, A. (2022a). Runoff and soil erosion in the integrated farming systems based on micro-watersheds under projected climate change scenarios and adaptation strategies in the eastern Himalayan mountain ecosystem (India). Journal of Environmental Management, 309, 114667.

    Article  Google Scholar 

  • Choudhury, B. U., Nengzouzam, G., Ansari, M. A., & Islam, A. (2022b). Causes and consequences of soil erosion in Northeastern Himalaya India. Current Science, 122(7), 772–789.

    Article  Google Scholar 

  • Choudhury, B. U., Divyanth, L. G., & Chakraborty, S. (2023). Land use/land cover classification using hyperspectral soil reflectance features in the Eastern Himalayas. India. Catena, 229, 107200.

    Article  Google Scholar 

  • Dar, S. A., Ganie, D. H., Teeli, J. I., & Bhat, S. U. (2023). A policy approach for sustainable governance of sand mining activities in NW Kashmir Himalayas. The Extractive Industries and Society, 13, 101204.

    Article  Google Scholar 

  • Das, M., & Semy, K. (2023). Monitoring the dynamics of acid mine drainage affected stream surface water hydrochemistry at Jaintia Hills, Meghalaya, India. Environmental Science Pollution and Research. https://doi.org/10.1007/s11356-023-27606-w

  • Das, L., & Meher, J. K. (2019). Drivers of climate over the Western Himalayan region of India: A review. Earth-Science Reviews, 198, 102935.

    Article  Google Scholar 

  • Dash, P., & Punia, M. (2019). Governance and disaster: Analysis of land use policy with reference to Uttarakhand flood 2013, India. International Journal of Disaster Risk Reduction, 36, 101090.

    Article  Google Scholar 

  • Deb, M., Tiwari, G., & Lahiri-Dutt, K. (2008). Artisanal and small scale mining in India: Selected studies and an overview of the issues. International Journal of Mining, Reclamation and Environment, 22(3), 194–209. https://doi.org/10.1080/17480930701679574

    Article  Google Scholar 

  • Deb, S., Debnath, M. K., Chakraborty, S., Weindorf, D. C., Kumar, D., Deb, D., & Choudhury, A. (2018). Anthropogenic impacts on forest land use and land cover change: Modelling future possibilities in the Himalayan Terai. Anthropocene, 21, 32–41.

    Article  Google Scholar 

  • Deka, B. J. (2021). Hydro-politics between India and China: The ‘Brahma-Hypothesis’ and securing the Brahmaputra. Asian Affairs, 52(2), 327–343.

    Article  Google Scholar 

  • Faridullah, F., Umar, M., Alam, A., Sabir, M. A., & Khan, D. (2017). Assessment of heavy metals concentration in phosphate rock deposits, Hazara basin, Lesser Himalaya Pakistan. Geosciences Journal, 21, 743–752.

    Article  CAS  Google Scholar 

  • Ghose, M. K. (2003). Indian small-scale mining with special emphasis on environmental management. Journal of Cleaner Production, 11(2), 159–165.

    Article  Google Scholar 

  • Giri, S., Singh, A. K., & Mahato, M. K. (2017). Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India. Journal of Earth System Science, 126(4), 49.

    Article  Google Scholar 

  • Gupta, R. K. (1978). Impact of human influences on the vegetation of the Western Himalaya. Vegetatio, 37, 111–118. https://doi.org/10.1007/BF00126834

    Article  Google Scholar 

  • Gupta, A. P., Lakra, H. S., & Gupta, S. (2023). Identifying the cause and impact of slum encroachment along the Asan River. Dehradun. Science Talks, 7, 100243.

    Article  Google Scholar 

  • Hatlebakk, M. (2023). River sand mining as a livelihood activity: The case of Nepal. The Extractive Industries and Society, 14, 101266.

    Article  Google Scholar 

  • Hussain, A., Sarangi, G. K., Pandit, A., Ishaq, S., Mamnun, N., Ahmad, B., & Jamil, M. K. (2019). Hydropower development in the Hindu Kush Himalayan region: Issues, policies and opportunities. Renewable and Sustainable Energy Reviews, 107, 446–461.

    Article  Google Scholar 

  • Irengbam, M., Dobriyal, P., Hussain, S. A., & Badola, R. (2017). Balancing conservation and development in Nandhaur Wildlife Sanctuary, Uttarakhand, India. Current Science, 1187–1196.

    Google Scholar 

  • Kahlon, S., Chandel, V. B. S., & Brar, K. K. (2014). Landslides in himalayan mountains: A study of Himachal Pradesh, India. International Journal of IT, Engineering and Applied Sciences Research, 3, 28–34.

    Google Scholar 

  • Kala, C. P. (2014). Deluge, disaster and development in Uttarakhand Himalayan region of India: Challenges and lessons for disaster management. International Journal of Disaster Risk Reduction, 8, 143–152.

    Article  Google Scholar 

  • Kamboj, V., & Kamboj, N. (2020). Spatial and temporal variation of zooplankton assemblage in the mining-impacted stretch of Ganga River, Uttarakhand, India. Environmental Science and Pollution Research, 27, 27135–27146. https://doi.org/10.1007/s11356-020-09089-1

    Article  CAS  Google Scholar 

  • Kamboj, V., Kamboj, N., Sharma, A. K., & Bisht, A. (2022). Phytoplankton communities as bio-indicators of water quality in a mining-affected area of the river Ganga, Haridwar, India. Energy Ecology and Environment, 7, 425–438. https://doi.org/10.1007/s40974-022-00238-5

    Article  CAS  Google Scholar 

  • Ka-ot, A. L., Banerjee, S., Haldar, G., & Joshi, S. R. (2018). Acid and heavy metal tolerant Bacillus sp. from rat-hole coal mines of Meghalaya, India. Proceedings of the National Academy of Sciences, India Section b: Biological Sciences, 88, 1187–1198.

    Article  CAS  Google Scholar 

  • Kaur, M., Kumar, A., Mehra, R., & Mishra, R. (2018). Human health risk assessment from exposure of heavy metals in soil samples of Jammu district of Jammu and Kashmir. India. Arabian Journal of Geoscience, 11, 411. https://doi.org/10.1007/s12517-018-3746-5

    Article  CAS  Google Scholar 

  • Kumar, A., Bisht, B. S., Joshi, V. D., Singh, A. K., & Talwar, A. (2010). Physical, chemical and bacteriological study of water from rivers of Uttarakhand. Journal of Human Ecology, 32(3), 169–173.

    Article  Google Scholar 

  • Kushwaha, P., Chauhan, A. S., & Swami, B. L. (2022). Utilization of waste materials from marble processing industry for sustainable pavement design. Materials Today: Proceedings, 63, 547–552.

    Google Scholar 

  • Lehmkuhl, F., & Stauch, G. (2023). Anthropogenic influence of open pit mining on river floods, an example of the Blessem flood 2021. Geomorphology, 421, 108522.

    Article  Google Scholar 

  • Mahapatra, S. K., Reddy, G. O., Nagdev, R., Yadav, R. P., Singh, S. K., & Sharda, V. N. (2018). Assessment of soil erosion in the fragile Himalayan ecosystem of Uttarakhand, India using USLE and GIS for sustainable productivity. Current Science, 115(1), 108–121.

    Article  Google Scholar 

  • Mandal, D., & Sharda, V. N. (2013). Appraisal of soil erosion risk in the Eastern Himalayan region of India for soil conservation planning. Land Degradation & Development, 24(5), 430–437.

    Article  Google Scholar 

  • McDuie-Ra, D., & Kikon, D. (2016). Tribal communities and coal in Northeast India: The politics of imposing and resisting mining bans. Energy Policy, 99, 261–269.

    Article  Google Scholar 

  • Mehta, P., Bisht, K., Sekar, K. C., & Tewari, A. (2023). Map** biodiversity conservation priorities for threatened plants of Indian Himalayan Region. Biodiversity and Conservation, 1–37.

    Google Scholar 

  • Meinan, Z., Qingbiao, G., Ruonan, Z., Lei, W., & Yafang, H. (2023). Surface subsidence disasters over Xuzhou city, China 2014–2018 revealed by InSAR and Peck model. Environmental Earth Sciences, 82(11), 1–17.

    Article  Google Scholar 

  • Mitra, S., Roy, A. K., & Tamang, L. (2020). Assessing the status of changing channel regimes of Balason and Mahananda River in the Sub-Himalayan West Bengal. India. Earth Systems and Environment, 4(2), 409–425.

    Article  Google Scholar 

  • Nath, S., & Singh, R. (2020). A study of the practices and processes and benefit sharing of limestone mining in the Banour-Shiva Mining Region in Himachal Pradesh. India. Environmental & Socio-Economic Studies, 8(1), 36–47.

    Article  Google Scholar 

  • Naz, A., Chowdhury, A., Mishra, B. K., & Karthikeyan, K. (2018). Distribution of heavy metals and associated human health risk in mine, agricultural and roadside soils at the largest chromite mine of India. Environmental Geochemistry and Health, 40, 2155–2175. https://doi.org/10.1007/s10653-018-0090-3

    Article  CAS  Google Scholar 

  • Palazzi, E., Hardenberg, J. V., & Provenzale, A. (2013). Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. Journal of Geophysical Research: Atmosphere, 118, 85–100.

    Article  Google Scholar 

  • Pandey, M., Mishra, A., Swamy, S. L., Thakur, T. K., & Pandey, V. C. (2022). Impact of coal mining on land use dynamics and soil quality: Assessment of land degradation vulnerability through conjunctive use of analytical hierarchy process and geospatial techniques. Land Degradation & Development, 33(16), 3310–3324.

    Article  Google Scholar 

  • Parkash, S. (2023). Lessons Learned from Landslides of Socio-economic and Environmental Significance in India. In et al. Progress in Landslide Research and Technology, vol. 1, no. 2, 2022. Progress in Landslide Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-18471-0_23

  • Patel, R.M., Ashishkumar, & Kaneria, M.J. (2020). Floristic Diversity, Distribution and Conservation Status in the Vicinity of Coal Mines of Kachchh District in Gujarat, India. In: Shukla, V., Kumar, N. (eds.) Environmental Concerns and Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6358-0_7

  • Pattnaik, B. K., & Equeenuddin, S. M. (2016). Potentially toxic metal contamination and enzyme activities in soil around chromite mines at Sukinda Ultramafic Complex, India. Journal of Geochemical Exploration, 168, 127–136.

    Article  CAS  Google Scholar 

  • Prakash, A., Kumar, A., & Singh, K. B. (2015). Pot-Hole Subsidence Potentiality in Nongtrai Limestone Mine of Lafarge Umium Mining Private Limited, Shillong. Meghalaya. International Journal of Mining Science (IJMS), 1(1), 10–16.

    Google Scholar 

  • Punia, A., Siddaiah, N. S., & Singh, S. K. (2017). Source and assessment of metal pollution at Khetri copper mine tailings and neighboring soils, Rajasthan, India. Bulletin of Environmental Contamination and Toxicology, 99, 633–641.

    Article  CAS  Google Scholar 

  • Raizada, A., & Juyal, G.P. (2012). Tree species diversity, species regeneration and biological productivity of seeded Acacia catechu Willd. In rehabilitated limestone mines in the North West Indian Himalayas. Land Degradation & Development, 23(2), 167–174.

    Google Scholar 

  • Rasool, R., Fayaz, A., & ul Shafiq, M., Singh, H., & Ahmed, P. (2021). Land use land cover change in Kashmir Himalaya: Linking remote sensing with an indicator based DPSIR approach. Ecological Indicators, 125, 107447.

    Article  Google Scholar 

  • Rebello, S., Anoopkumar, A. N., Aneesh, E. M., Sindhu, R., Binod, P., Kim, S. H., & Pandey, A. (2021). Hazardous minerals mining: Challenges and solutions. Journal of Hazardous Materials, 402, 123474.

    Article  CAS  Google Scholar 

  • Ritse, V., Basumatary, H., Kulnu, A. S., Dutta, G., Phukan, M. M., & Hazarika, N. (2020). Monitoring land use land cover changes in the Eastern Himalayan landscape of Nagaland, Northeast India. Environmental Monitoring and Assessment, 192, 1–17.

    Article  Google Scholar 

  • Roca-Perez, L., Boluda, R., Rodríguez-Martín, J.A., Ramos-Miras J., Tume P., Roca N.& Bech J. (2023) Potentially Harmful Elements Pollute Soil and Vegetation Around the Atrevida mine (Tarragona, NE Spain). Environ Geochem Health. https://doi.org/10.1007/s10653-023-01591-y

  • Ruhela, M., Sharma, K., Bhutiani, R. C., & SK, Kumar V, Tyagi K, Ahamad F, Tyagi I. (2022). GIS-based impact assessment and spatial distribution of air and water pollutants in mining area. Environmental Science and Pollution Research, 29, 31486–31500. https://doi.org/10.1007/s11356-021-18009-w

    Article  CAS  Google Scholar 

  • Sabin, T.P., Krishnan R., Vellore R., Priya P., Borgaonkar H. P., Singh B B. & Sagar A (2020). Climate Change Over the Himalayas. In: Krishnan, R., Sanjay, J., Gnanaseelan, C., Mujumdar, M., Kulkarni, A., Chakraborty, S. (eds.) Assessment of Climate Change over the Indian Region. Springer, Singapore. https://doi.org/10.1007/978-981-15-4327-2_11

  • Saikia, P., Deka, J., Bharali, S., Kumar, A., Tripathi, O. P., Singha, L. B., Dayanandan, S., & Khan, M. L. (2017). Plant diversity patterns and conservation status of eastern Himalayan forests in Arunachal Pradesh, Northeast India. Forest Ecosystems, 4, 1–12. https://doi.org/10.1186/s40663-017-0117-8

    Article  Google Scholar 

  • Sangeeta & Singh, S.K. (2023). Influence of anthropogenic activities on landslide susceptibility: A case study in Solan district, Himachal Pradesh, India. Journal of Mountain Science, 20(2). https://doi.org/10.1007/s11629-022-7593-1

  • Sarma, K., & Kushwaha, S. P. S. (2005). Coal mining impact on land use/land cover in jaintia hills district of Meghalaya, India using remote sensing and GIS technique. In Conference Proceeding of National Conference on Geospatial Technologies, Geomatrix (Vol. 9, No. 2005, pp. 28–43).

    Google Scholar 

  • Semy, K., & Singh, M. R. (2023). Changes in plant diversity and community attributes of coal mine affected forest in relation to a community reserve forest of Nagaland, Northeast India. Tropical Ecology, 1-10. https://doi.org/10.1007/s42965-023-00310-z

  • Semy, K., & Singh, M. R. (2021). Quality assessment of Tsurang River water affected by coal mining along the Tsurangkong Range, Nagaland, India. Applied Water Science, 11, 1–11. https://doi.org/10.1007/s13201-021-01444-y

    Article  CAS  Google Scholar 

  • Seth, R., Mohan, M., Singh, P., Singh, R., Dobhal, R., Singh, K. P., & Gupta, S. (2016). Water quality evaluation of Himalayan rivers of Kumaun region, Uttarakhand, India. Applied Water Science, 6, 137–147. https://doi.org/10.1007/s13201-014-0213-7

    Article  CAS  Google Scholar 

  • Sharma, E., Molden, D., Rahman, A., Khatiwada, Y. R., Zhang, L., Singh, S. P., Yao T & Wester, P. (2019). Introduction to the hindu kush himalaya assessment. The Hindu Kush Himalaya Assessment: mountains, climate change, sustainability and people, 1–16.

    Google Scholar 

  • Sharma, R., & Kumar, A. (2023). Analysis of seasonal and spatial distribution of particulate matters and gaseous pollutants around an open cast coal mining area of Odisha. India. Environmental Science and Pollution Research, 30(14), 39842–39856. https://doi.org/10.1007/s11356-022-25034-w

    Article  CAS  Google Scholar 

  • Shiva, V., & Bandyopadhyay, J. (1985). People’s environmental action for Doon Valley. India. Environmental Conservation, 12(3), 273–274.

    Article  Google Scholar 

  • Shukla, A., Gupta, N., & Gupta, A. (2020). Development of green concrete using waste marble dust. Materials Today: Proceedings, 26, 2590–2594.

    CAS  Google Scholar 

  • Shymbin, B. W., & Nongbri, G. (2022). Impact of sand mining on the physical health of the river and the livelihood of the people: A Case Study of Umtyngngar River, Meghalaya. In Anthropogeomorphology: A Geospatial Technology Based Approach, pp. 221–242. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-77572-8_11

  • Siddiqui, A. U., Jain, M. K., & Masto, R. E. (2020). Pollution evaluation, spatial distribution, and source apportionment of trace metals around coal mines soil: The case study of eastern India. Environmental Science and Pollution Research, 27, 10822–10834. https://doi.org/10.1007/s11356-019-06915-z

    Article  CAS  Google Scholar 

  • Singh, G., & Kamal, R. K. (2017). Heavy metal contamination and its indexing approach for groundwater of Goa mining region, India. Applied Water Science, 7, 1479–1485.

    Article  CAS  Google Scholar 

  • Singh, K., & Sharma, A. (2022). Road cut slope stability analysis at Kotropi landslide zone along NH-154 in Himachal Pradesh, India. Journal of the Geological Society of India, 98(3), 379–386. https://doi.org/10.1007/s12594-022-1989-y

    Article  Google Scholar 

  • Singh, R., & Sidhu, M. S. (2016). An overview of environmental impacts of riverbed mining in Himalayan terrain of Himachal Pradesh. Journal of Applied Geochemistry, 18(4), 473–479.

    CAS  Google Scholar 

  • Soja, R., & Starkel, L. (2007). Extreme rainfalls in Eastern Himalaya and southern slope of Meghalaya Plateau and their geomorphologic impacts. Geomorphology, 84(3–4), 170–180.

    Article  Google Scholar 

  • Sweta, K., Goswami, A., Peethambaran, B., Bahuguna, I. M., & Rajawat, A. S. (2022). Landslide susceptibility zonation around Dharamshala, Himachal Pradesh, India: An artificial intelligence model–based assessment. Bulletin of Engineering Geology and the Environment, 81(8), 310. https://doi.org/10.1007/s10064-022-02806-9

    Article  Google Scholar 

  • Talukdar, B., Kalita, H. K., Baishya, R. A., Basumatary, S., & Sarma, D. (2016). Evaluation of genetic toxicity caused by acid mine drainage of coal mines on fish fauna of Simsang River, Garohills, Meghalaya, India. Ecotoxicology and Environmental Safety, 131, 65–71.

    Article  CAS  Google Scholar 

  • Tiwari, A. K., Singh, P. K., & Mahato, M. K. (2017). Assessment of metal contamination in the mine water of the West Bokaro Coalfield. India. Mine Water and the Environment, 36(4), 532–541.

    Article  CAS  Google Scholar 

  • Vercruysse, K., & Grabowski, R. C. (2021). Human impact on river planform within the context of multi-timescale river channel dynamics in a Himalayan river system. Geomorphology, 381, 107659.

    Article  Google Scholar 

  • Wiejaczka, Ł, Tamang, L., Piróg, D., & Prokop, P. (2018). Socioenvironmental issues of river bed material extraction in the Himalayan piedmont (India). Environmental Earth Sciences, 77, 1–9.

    Article  Google Scholar 

  • **a, S., Song, Z., Zhao, X., & Li, J. (2023). Review of the recent advances in the prevention, treatment, and resource recovery of acid mine wastewater discharged in coal mines. Journal of Water Process Engineering, 52, 103555.

    Article  Google Scholar 

  • Yan, X., Wang, J., Liu, X., Zhao, H., & Wu, Y. (2022). Mining the drivers of forest cover change in the upper Indus Valley, high Asia region from 1990 to 2020. Ecological Indicators, 144, 109566.

    Article  Google Scholar 

  • Yu, H., & Zahidi, I. (2023). Spatial and temporal variation of vegetation cover in the main mining area of Qibaoshan Town, China: Potential impacts from mining damage, solid waste discharge and land reclamation. Science of the Total Environment, 859, 160392.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Punia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Punia, A., Singh, S.K. (2024). Impacts of Mining and Quarrying Activities in the Himalayas: An Overview. In: Borthakur, A., Singh, P. (eds) The Himalayas in the Anthropocene. Springer, Cham. https://doi.org/10.1007/978-3-031-50101-2_9

Download citation

Publish with us

Policies and ethics

Navigation