SiO2-Based Nanomaterials as Antibacterial and Antiviral Agents: Potential Applications

  • Chapter
  • First Online:
Nanoparticles in Modern Antimicrobial and Antiviral Applications

Abstract

SiO2 nanoparticles have emerged as a potential solution for combating bacterial and viral infections due to their unique physicochemical properties. These nanoparticles possess a high surface area-to-volume ratio, allowing them to adsorb onto the surface of bacterial and viral cells and disrupt their membrane integrity. Additionally, SiO2 nanoparticles can generate reactive oxygen species (ROS) upon exposure to light or heat, which can induce oxidative stress and damage to bacterial and viral cells. However, the use of SiO2 nanoparticles as antimicrobial agents also presents certain challenges and risks, such as their potential toxicity to human cells and the environment. In this chapter, we review the latest research work, highlighting the advantages and disadvantages of SiO2 nanoparticles and their potential applications for COVID-19 prevention, detection, and treatment. We also examine the toxicity concerns associated with SiO2 nanoparticles and the need for further research to ensure their safe use. Overall, this chapter aims to provide a comprehensive overview of the current state-of-the-art in SiO2 nanoparticle research for antimicrobial applications, with a focus on COVID-19 prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou Hammad, A. B., Al-esnawy, A. A., Mansour, A. M., & El Nahrawy, A. M. (2023). Synthesis and characterization of chitosan-corn starch-SiO2/silver eco-nanocomposites: Exploring optoelectronic and antibacterial potential. International Journal of Biological Macromolecules, 249, 126077. https://doi.org/10.1016/j.ijbiomac.2023.126077

    Article  CAS  PubMed  Google Scholar 

  • Agnihothram, S. S., Vermudez, S. A., Mullis, L., Townsend, T. A., Manjanatha, M. G., & Azevedo, M. P. (2016). Silicon dioxide impedes antiviral response and causes genotoxic insult during calicivirus replication. Journal of Nanoscience and Nanotechnology, 16(7), 7720–7730. https://doi.org/10.1166/jnn.2016.12828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alimunnisa, J., Ravichandran, K., & Meena, K. S. (2017). Synthesis and characterization of Ag@SiO2 core-shell nanoparticles for antibacterial and environmental applications. Journal of Molecular Liquids, 231, 281–287. https://doi.org/10.1016/j.molliq.2017.01.103

    Article  CAS  Google Scholar 

  • Angelova, T., Rangelova, N., Georgieva, N., Nemska, V., Stoyanova, T., Uzunova, V., Aleksandrov, L., & Tzoneva, R. (2019). Study of potential biomedical application of sol-gel derived Zn-doped SiO2-hydroxypropyl cellulose nanohybrids. Materials Science and Engineering: C, 100, 608–615. https://doi.org/10.1016/j.msec.2019.03.018

  • Assis, M., Simoes, L. G. P., Tremiliosi, G. C., Coelho, D., Minozzi, D. T., Santos, R. I., Vilela, D. C. B., Santos, J. R. D., Ribeiro, L. K., Rosa, I. L. V., Mascaro, L. H., Andrés, J., & Longo, E. (2021a). Sio2-ag composite as a highly virucidal material: A roadmap that rapidly eliminates sars-cov-2. Nanomaterials, 11(3), 1–19. https://doi.org/10.3390/nano11030638

    Article  CAS  Google Scholar 

  • Assis, M., Simoes, L. G. P., Tremiliosi, G. C., Ribeiro, L. K., Coelho, D., Minozzi, D. T., Santos, R. I., Vilela, D. C. B., Mascaro, L. H., Andrés, J., & Longo, E. (2021b). PVC-SiO2-Ag composite as a powerful biocide and anti-SARS-CoV-2 material. Journal of Polymer Research, 28(9), 361. https://doi.org/10.1007/s10965-021-02729-1

  • Bae, J.-H., Cha, J.-M., & Ryu, B.-K. (2019). Production of Cu@SiO2 core–shell nanoparticles with antibacterial properties. Journal of Nanoscience and Nanotechnology, 19(3), 1690–1694. https://doi.org/10.1166/jnn.2019.16152

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan, M. A. R., Wang, L., Shanks, R. A., Ara, Z. A., & Saha, T. (2020). Electrospun polyacrylonitrile–silica aerogel coating on viscose nonwoven fabric for versatile protection and thermal comfort. Cellulose, 27(17), 10501–10517. https://doi.org/10.1007/s10570-020-03489-9

    Article  CAS  Google Scholar 

  • Borm, P. J. A., Fowler, P., & Kirkland, D. (2018). An updated review of the genotoxicity of respirable crystalline silica. Particle and Fibre Toxicology, 15(1), 23. https://doi.org/10.1186/s12989-018-0259-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang, Y.-D., Lian, H.-Y., Leo, S.-Y., Wang, S.-G., Yamauchi, Y., & Wu, K. C.-W. (2011). Controlling particle size and structural properties of mesoporous silica nanoparticles using the Taguchi method. The Journal of Physical Chemistry C, 115(27), 13158–13165. https://doi.org/10.1021/jp201017e

    Article  CAS  Google Scholar 

  • de Oliveira, M. C., Assis, M., Simões, L. G. P., Minozzi, D. T., Ribeiro, R. A. P., Andrés, J., & Longo, E. (2023). Unraveling the intrinsic biocidal activity of the SiO2 –Ag composite against SARS-CoV-2: A joint experimental and theoretical study. ACS Applied Materials & Interfaces, 15(5), 6548–6560. https://doi.org/10.1021/acsami.2c21011

    Article  CAS  Google Scholar 

  • Duan, J., Liang, S., Feng, L., Yu, Y., & Sun, Z. (2018). Silica nanoparticles trigger hepatic lipid-metabolism disorder in vivo and in vitro. International Journal of Nanomedicine, 13, 7303–7318. https://doi.org/10.2147/IJN.S185348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Nahrawy, A. M., Hemdan, B. A., Mansour, A. M., Elzwawy, A., & Abou Hammad, A. B. (2021). Integrated use of nickel cobalt aluminoferrite/Ni2+ nano-crystallites supported with SiO2 for optomagnetic and biomedical applications. Materials Science and Engineering: B, 274, 115491. https://doi.org/10.1016/j.mseb.2021.115491

  • Fonseca, S., Cayer, M.-P., Ahmmed, K. M. T., Khadem-Mohtaram, N., Charette, S. J., & Brouard, D. (2022). Characterization of the antibacterial activity of an SiO2 nanoparticular coating to prevent bacterial contamination in blood products. Antibiotics, 11(1), 107. https://doi.org/10.3390/antibiotics11010107

  • Fu, Q., Liu, Q., Li, L., Li, X., Gu, H., Sheng, B., & Yang, B. (2020). Study on microstructure, microhardness, bioactivity, and biocompatibility of La2 O3 -containing bioceramic coating do** SiO2 fabricated by laser cladding. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108(5), 2099–2107. https://doi.org/10.1002/jbm.b.34548

    Article  CAS  PubMed  Google Scholar 

  • Geyao, L., Yang, D., Wanglin, C., & Chengyong, W. (2020). Development and application of physical vapor deposited coatings for medical devices: A review. Procedia CIRP, 89, 250–262. https://doi.org/10.1016/J.PROCIR.2020.05.149

    Article  Google Scholar 

  • Hassan, S. S., Hubeatir, K. A., & Al-Haddad, R. M. S. (2023). Characterization and antibacterial activity of silica-coated bismuth (Bi@SiO2) nanoparticles synthesized by pulsed laser ablation in liquid. Optik, 273, 170453. https://doi.org/10.1016/j.ijleo.2022.170453

  • Heldt, C. L., Zahid, A., Vijayaragavan, K. S., & Mi, X. (2017). Experimental and computational surface hydrophobicity analysis of a non-enveloped virus and proteins. Colloids and Surfaces B: Biointerfaces, 153, 77–84. https://doi.org/10.1016/J.COLSURFB.2017.02.011

    Article  CAS  PubMed  Google Scholar 

  • Hetrick, E. M., Shin, J. H., Paul, H. S., & Schoenfisch, M. H. (2009). Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials, 30(14), 2782–2789. https://doi.org/10.1016/J.BIOMATERIALS.2009.01.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirao, R., Shigetoh, K., Inagaki, S., & Ishida, N. (2023). Virus inactivation based on optimal surfactant reservoir of mesoporous silica. ACS Applied Bio Materials, 6(3), 1032–1040. https://doi.org/10.1021/acsabm.2c00901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, D., Jo, E.-J., Jung, C., & Kim, M.-G. (2022). Absorption-modulated SiO2 @Au core–satellite nanoparticles for highly sensitive detection of SARS-CoV-2 nucleocapsid protein in lateral flow immunosensors. ACS Applied Materials & Interfaces, 14(40), 45189–45200. https://doi.org/10.1021/acsami.2c13303

    Article  CAS  Google Scholar 

  • Hou, Y.-X., Abdullah, H., Kuo, D.-H., Leu, S.-J., Gultom, N. S., & Su, C.-H. (2018). A comparison study of SiO2/nano metal oxide composite sphere for antibacterial application. Composites Part B: Engineering, 133, 166–176. https://doi.org/10.1016/j.compositesb.2017.09.021

    Article  CAS  Google Scholar 

  • Huang, Y., Li, P., Zhao, R., Zhao, L., Liu, J., Peng, S., Fu, X., Wang, X., Luo, R., Wang, R., & Zhang, Z. (2022). Silica nanoparticles: Biomedical applications and toxicity. Biomedicine & Pharmacotherapy, 151, 113053. https://doi.org/10.1016/J.BIOPHA.2022.113053

    Article  CAS  Google Scholar 

  • Iravani, S. (2022). Silica-based nanosystems against antibiotic-resistant bacteria and pathogenic viruses. Critical Reviews in Microbiology, 1–13. https://doi.org/10.1080/1040841X.2022.2108309

  • Jabbar, T. A., & Ammar, S. H. (2019). Core/shell phosphomolybdic acid-supported magnetic silica nanocomposite (Ni@SiO2-PMo): Synthesis, characterization and its application as a recyclable antibacterial agent. Colloid and Interface Science Communications, 33, 100214. https://doi.org/10.1016/j.colcom.2019.100214

  • Jaganathan, H., & Godin, B. (2012). Biocompatibility assessment of Si-based nano- and micro-particles. Advanced Drug Delivery Reviews, 64(15), 1800–1819. https://doi.org/10.1016/j.addr.2012.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong, S. B., Lee, D. U., Lee, B. J., Heo, K. J., Kim, D. W., Hwang, G. B., MacRobert, A. J., Shin, J. H., Ko, H. S., Park, S. K., Oh, Y. S., Kim, S. J., Lee, D. Y., Lee, S.-B., Park, I., Kim, S. B., Han, B., Jung, J. H., & Choi, D. Y. (2022). Photobiocidal-triboelectric nanolayer coating of photosensitizer/silica-alumina for reusable and visible-light-driven antibacterial/antiviral air filters. Chemical Engineering Journal, 440, 135830. https://doi.org/10.1016/j.cej.2022.135830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, H., Hou, W., Wei, L., Xu, B., & Liu, X. (2008). The structures and antibacterial properties of nano-SiO2 supported silver/zinc–silver materials. Dental Materials, 24(2), 244–249. https://doi.org/10.1016/J.DENTAL.2007.04.015

  • Jia, H., Zhang, X., Zeng, X., Cai, R., Wang, Z., Yuan, Y., & Yue, T. (2021). Construction of silver nanoparticles anchored flower-like magnetic Fe3O4@SiO2@MnO2 hybrids with antibacterial and wound healing activity. Applied Surface Science, 567, 150797. https://doi.org/10.1016/j.apsusc.2021.150797

  • Joe, Y. H., Woo, K., & Hwang, J. (2014). Fabrication of an anti-viral air filter with SiO2–Ag nanoparticles and performance evaluation in a continuous airflow condition. Journal of Hazardous Materials, 280, 356–363. https://doi.org/10.1016/J.JHAZMAT.2014.08.013

  • Jurkić, L. M., Cepanec, I., Pavelić, S. K., & Pavelić, K. (2013). Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy. Nutrition and Metabolism, 10(1). https://doi.org/10.1186/1743-7075-10-2

  • Karthikeyan, C., Varaprasad, K., Venugopal, S. K., Shakila, S., Venkatraman, B. R., & Sadiku, R. (2021). Biocidal (bacterial and cancer cells) activities of chitosan/CuO nanomaterial, synthesized via a green process. Carbohydrate Polymers, 259, 117762. https://doi.org/10.1016/J.CARBPOL.2021.117762

    Article  CAS  PubMed  Google Scholar 

  • Khannyra, S., Luna, M., Gil, M. L. A., Addou, M., & Mosquera, M. J. (2022). Self-cleaning durability assessment of TiO2/SiO2 photocatalysts coated concrete: Effect of indoor and outdoor conditions on the photocatalytic activity. Building and Environment, 211, 108743. https://doi.org/10.1016/J.BUILDENV.2021.108743

  • Kim, J., Lee, H., Lee, J.-Y., Park, K.-H., Kim, W., Lee, J. H., Kang, H.-J., Hong, S. W., Park, H.-J., Lee, S., Lee, J.-H., Park, H.-D., Kim, J. Y., Jeong, Y. W., & Lee, J. (2020). Photosensitized production of singlet oxygen via C60 fullerene covalently attached to functionalized silica-coated stainless-steel mesh: Remote bacterial and viral inactivation. Applied Catalysis B: Environmental, 270, 118862. https://doi.org/10.1016/j.apcatb.2020.118862

  • Klapiszewska, I., Parus, A., Ławniczak, Ł., Jesionowski, T., Klapiszewski, Ł., & Ślosarczyk, A. (2021). Production of antibacterial cement composites containing ZnO/lignin and ZnO–SiO2/lignin hybrid admixtures. Cement and Concrete Composites, 124, 104250. https://doi.org/10.1016/j.cemconcomp.2021.104250

  • Lee, G. H., Kim, Y. S., Kwon, E., Yun, J. W., & Kang, B. C. (2020). Toxicologic evaluation for amorphous silica nanoparticles: Genotoxic and non-genotoxic tumor-promoting potential. Pharmaceutics, 12(9), 1–17. https://doi.org/10.3390/pharmaceutics12090826

    Article  CAS  Google Scholar 

  • Li, L., Gu, Z., Gu, W., Liu, J., & Xu, Z. P. (2016). Efficient drug delivery using SiO2-layered double hydroxide nanocomposites. Journal of Colloid and Interface Science, 470, 47–55. https://doi.org/10.1016/J.JCIS.2016.02.042

    Article  CAS  PubMed  Google Scholar 

  • Liu, M., Shafiq, M., Sun, B., Wu, J., Wang, W., EL-Newehy, M., EL-Hamshary, H., Morsi, Y., Ali, O., Khan, A. U. R., & Mo, X. (2022). Composite superelastic aerogel scaffolds containing flexible SiO2 nanofibers promote bone regeneration. Advanced Healthcare Materials, 11(15). https://doi.org/10.1002/adhm.202200499

  • Lozins, R., Selga, T., & Ozoliņš, D. (2020). Microorganism adhesion using silicon dioxide: An experimental study. Heliyon, 6(4), e03678. https://doi.org/10.1016/J.HELIYON.2020.E03678

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahtabani, A., Rytöluoto, I., Anyszka, R., He, X., Saarimäki, E., Lahti, K., Paajanen, M., Dierkes, W., & Blume, A. (2020). On the silica surface modification and its effect on charge trap** and transport in PP-based dielectric nanocomposites. ACS Applied Polymer Materials, 2(8), 3148–3160. https://doi.org/10.1021/acsapm.0c00349

    Article  CAS  Google Scholar 

  • Mamaeva, V., Sahlgren, C., & Lindén, M. (2013). Mesoporous silica nanoparticles in medicine—Recent advances. Advanced Drug Delivery Reviews, 65(5), 689–702. https://doi.org/10.1016/J.ADDR.2012.07.018

    Article  CAS  PubMed  Google Scholar 

  • Munir, T., Mahmood, A., Peter, N., Rafaqat, N., Imran, M., & Ali, H. E. (2023). Structural, morphological and optical properties at various concentration of Ag doped SiO2-NPs via sol gel method for antibacterial and anticancer activities. Surfaces and Interfaces, 38, 102759. https://doi.org/10.1016/j.surfin.2023.102759

    Article  CAS  Google Scholar 

  • Nozari, B., Montazer, M., & Mahmoudi Rad, M. (2021). Stable ZnO/SiO2 nano coating on polyester for anti-bacterial, self-cleaning and flame retardant applications. Materials Chemistry and Physics, 267, 124674. https://doi.org/10.1016/j.matchemphys.2021.124674

  • Ogawa, T., Okumura, R., Nagano, K., Minemura, T., Izumi, M., Motooka, D., Nakamura, S., Iida, T., Maeda, Y., Kumanogoh, A., Tsutsumi, Y., & Takeda, K. (2021). Oral intake of silica nanoparticles exacerbates intestinal inflammation. Biochemical and Biophysical Research Communications, 534, 540–546. https://doi.org/10.1016/J.BBRC.2020.11.047

    Article  CAS  PubMed  Google Scholar 

  • Qiao, H., **ao, H., Huang, Y., Yuan, C., Zhang, X., Bu, X., Wang, Z., Han, S., Zhang, L., Su, Z., & Zhang, X. (2019). SiO2 loading into polydopamine-functionalized TiO2 nanotubes for biomedical applications. Surface and Coatings Technology, 364, 170–179. https://doi.org/10.1016/j.surfcoat.2019.02.089

    Article  CAS  Google Scholar 

  • Ribas, R. M., de Campos, P. A., de Brito, C. S., & Gontijo-Filho, P. P. (2020). Coronavirus Disease 2019 (COVID-19) and healthcare-associated infections: Emerging and future challenges for public health in Brazil. Travel Medicine and Infectious Disease, 37, 101675. https://doi.org/10.1016/J.TMAID.2020.101675

    Article  PubMed  PubMed Central  Google Scholar 

  • Ringdalen, E., & Tangstad, M. (2016). Softening and melting of SiO2, an important parameter for reactions with quartz in Si production. In Advances in molten slags, fluxes, and salts: Proceedings of the 10th international conference on Molten Slags, Fluxes and Salts 2016 (pp. 43–51). Springer International Publishing. https://doi.org/10.1007/978-3-319-48769-4_4

    Chapter  Google Scholar 

  • Rizk, M., Sultan, M. A., Tawfik, B. M., & El-Eryan, R. T. (2022). Highly sensitive and selective sensing probe for determination of anti-Covid-19 Remdesvir: Application to pharmaceutical dosage form and biological fluids. Journal of the Electrochemical Society, 169(2), 026522. https://doi.org/10.1149/1945-7111/ac53ca

    Article  CAS  Google Scholar 

  • Romdoni, Y., Kadja, G. T. M., Kitamoto, Y., & Khalil, M. (2023). Synthesis of multifunctional Fe3O4@SiO2-Ag nanocomposite for antibacterial and anticancer drug delivery. Applied Surface Science, 610, 155610. https://doi.org/10.1016/j.apsusc.2022.155610

  • Salimi, E., & Nigje, A. K. (2022). Investigating the antibacterial activity of carboxymethyl cellulose films treated with novel Ag@GO decorated SiO2 nanohybrids. Carbohydrate Polymers, 298, 120077. https://doi.org/10.1016/j.carbpol.2022.120077

    Article  CAS  PubMed  Google Scholar 

  • Seré, S., De Roo, B., Vervaele, M., Van Gool, S., Jacobs, S., Seo, J. W., & Locquet, J. P. (2018). Altering the biodegradation of mesoporous silica nanoparticles by means of experimental parameters and surface functionalization. Journal of Nanomaterials, 2018. https://doi.org/10.1155/2018/7390618

  • Shen, Q., Yang, H., Li, Y., Li, S., Chen, K., Wang, H., & Ma, J. (2022). Rapid determination of antiviral drugs in yellow catfish (Pelteobagrus fulvidraco) using graphene/silica nanospheres (G/KCC-1) based pipette tip solid-phase extraction with ultra-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography B, 1189, 123097. https://doi.org/10.1016/j.jchromb.2022.123097

    Article  CAS  Google Scholar 

  • Sheykholeslami, S. O. R., Khalil-Allafi, J., Etminanfar, M., Khalili, V., & Parsa, A. B. (2023). Synthesis and development of novel spherical mesoporous SiO2/HA particles and incorporating them in electrodeposited hydroxyapatite coatings for biomedical applications. Surface and Coatings Technology, 459, 129410. https://doi.org/10.1016/j.surfcoat.2023.129410

  • Sun, B., Feng, Y., Mo, X., Zheng, P., Wang, Q., Li, P., Peng, P., Liu, X., Chen, Z., Huang, H., Zhang, F., Luo, W., Niu, X., Hu, P., Wang, L., Peng, H., Huang, Z., Feng, L., Li, F., et al. (2020). Kinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patients. Emerging Microbes & Infections, 9(1), 940–948. https://doi.org/10.1080/22221751.2020.1762515

    Article  CAS  Google Scholar 

  • Tian, B., & Liu, Y. (2021). Antibacterial applications and safety issues of silica-based materials: A review. International Journal of Applied Ceramic Technology, 18(2), 289–301. https://doi.org/10.1111/ijac.13641

    Article  CAS  Google Scholar 

  • Tng, D. J. H., & Low, J. G. H. (2023). Current status of silica-based nanoparticles as therapeutics and its potential as therapies against viruses. Antiviral Research, 210, 105488. https://doi.org/10.1016/J.ANTIVIRAL.2022.105488

    Article  CAS  PubMed  Google Scholar 

  • Tran, N. T., Ha, D., Pham, L. H., Vo, T. V., Nguyen, N. N., Tran, C. K., Nguyen, D. M., Nguyen, T. T. T., Van Tran, T. T., Nguyen, P. L. M., & Hoang, D. (2023). Ag/SiO2 nanoparticles stabilization with lignin derived from rice husk for antifungal and antibacterial activities. International Journal of Biological Macromolecules, 230, 123124. https://doi.org/10.1016/j.ijbiomac.2022.123124

    Article  CAS  PubMed  Google Scholar 

  • Tsugita, M., Morimoto, N., & Nakayama, M. (2017). SiO2 and TiO2 nanoparticles synergistically trigger macrophage inflammatory responses. Particle and Fibre Toxicology, 14(1), 11. https://doi.org/10.1186/s12989-017-0192-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsumi-Arai, C., Iwamiya, Y., Hoshino, R., Terada-Ito, C., Sejima, S., Akutsu-Suyama, K., Shibayama, M., Hiroi, Z., Tokuyama-Toda, R., Iwamiya, R., Ijichi, K., Chiba, T., & Satomura, K. (2022). Surface functionalization of non-woven fabrics using a novel silica-resin coating technology: Antiviral treatment of non-woven fabric filters in surgical masks. International Journal of Environmental Research and Public Health, 19(6), 3639. https://doi.org/10.3390/ijerph19063639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan, W., Feng, Y., Yang, J., Xu, S., & Qiu, T. (2015). Preparation of mesoporous silica ceramics with relatively high strength from industrial wastes by low-toxic aqueous gel-casting. Journal of the European Ceramic Society, 35(7), 2163–2170. https://doi.org/10.1016/J.JEURCERAMSOC.2015.01.011

    Article  CAS  Google Scholar 

  • Wang, J., Han, S., Ke, D., & Wang, R. (2012). Semiconductor quantum dots surface modification for potential cancer diagnostic and therapeutic applications. Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/129041

  • Wang, C., Yang, X., Gu, B., Liu, H., Zhou, Z., Shi, L., Cheng, X., & Wang, S. (2020). Sensitive and simultaneous detection of SARS-CoV-2-specific IgM/IgG using lateral flow immunoassay based on dual-mode quantum dot nanobeads. Analytical Chemistry, 92(23), 15542–15549. https://doi.org/10.1021/acs.analchem.0c03484

    Article  CAS  PubMed  Google Scholar 

  • Wang, C., Shi, D., Wan, N., Yang, X., Liu, H., Gao, H., Zhang, M., Bai, Z., Li, D., Dai, E., Rong, Z., & Wang, S. (2021). Development of spike protein-based fluorescence lateral flow assay for the simultaneous detection of SARS-CoV-2 specific IgM and IgG. The Analyst, 146(12), 3908–3917. https://doi.org/10.1039/D1AN00304F

    Article  CAS  PubMed  Google Scholar 

  • Ways, T. M. M., Ng, K. W., Lau, W. M., & Khutoryanskiy, V. V. (2020). Silica nanoparticles in transmucosal drug delivery. Pharmaceutics, 12(8), 751. https://doi.org/10.3390/pharmaceutics12080751

    Article  CAS  Google Scholar 

  • Wu, Y., Li, X., Zhong, Q., Wang, F., & Yang, B. (2023). Preparation and filtration performance of antibacterial PVDF/SiO2/Ag composite nanofiber membrane. Journal of Building Engineering, 74, 106864. https://doi.org/10.1016/j.jobe.2023.106864

  • Yadav, M., Dhanda, M., Arora, R., Ahlawat, S., Singh, G., Nehra, K., & Lata, S. (2023). Dual applicability of ceria and silica nanospheres (CeO2@SiO2 NSs) assembled with pencil graphite electrode to sense ascorbic acid, extended with their antibacterial property. Materials Science and Engineering: B, 297, 116719. https://doi.org/10.1016/j.mseb.2023.116719

  • Yang, Y., Zhang, M., Song, H., & Yu, C. (2020). Silica-based nanoparticles for biomedical applications: From nanocarriers to biomodulators. Accounts of Chemical Research, 53(8), 1545–1556. https://doi.org/10.1021/acs.accounts.0c00280

  • Yang, Y., Ding, X., Li, J., Peng, X., Ge, H., Wu, Q., & Wang, X. (2023). Highly stable core-shell structured SiO2@C-Ag composites for organic contaminants degradation and antibacterial application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 665, 131263. https://doi.org/10.1016/j.colsurfa.2023.131263

  • Yu, D., Liu, L., Ding, B., Yu, J., & Si, Y. (2023). Spider-web-inspired SiO2/Ag nanofibrous aerogels with superelastic and conductive networks for electroporation water disinfection. Chemical Engineering Journal, 461, 141908. https://doi.org/10.1016/j.cej.2023.141908

  • Zare, M., Ghomi, E. R., Venkatraman, P. D., & Ramakrishna, S. (2021). Silicone-based biomaterials for biomedical applications: Antimicrobial strategies and 3D printing technologies. Journal of Applied Polymer Science, 138(38). Wiley. https://doi.org/10.1002/app.50969

  • Zhang, S., Chu, Z., Yin, C., Zhang, C., Lin, G., & Li, Q. (2013). Controllable drug release and simultaneously carrier decomposition of SiO2-drug composite nanoparticles. Journal of the American Chemical Society, 135(15), 5709–5716. https://doi.org/10.1021/ja3123015

  • Zhang, Z., Zhao, L., Ma, Y., Liu, J., Huang, Y., Fu, X., Peng, S., Wang, X., Yang, Y., Zhang, X., Ding, W., Yu, J., Zhu, Y., Yan, H., & Yang, S. (2022). Mechanistic study of silica nanoparticles on the size-dependent retinal toxicity in vitro and in vivo. Journal of Nanobiotechnology, 20(1), 146. https://doi.org/10.1186/s12951-022-01326-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, M., Hua, D., Pan, H., Wang, F., Manshian, B., Soenen, S. J., **ong, R., & Huang, C. (2018). Green electrospun and crosslinked poly(vinyl alcohol)/poly(acrylic acid) composite membranes for antibacterial effective air filtration. Journal of Colloid and Interface Science, 511, 411–423. https://doi.org/10.1016/j.jcis.2017.09.101

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

KVP acknowledges Fondecyt Regular Project No. 1211118, ANID, and FIT, USS, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varaprasad Kokkarachedu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kokkarachedu, V., Chandrasekaran, K., Sisubalan, N., Jayaramudu, T., Vijayan, A., Sadiku, R. (2024). SiO2-Based Nanomaterials as Antibacterial and Antiviral Agents: Potential Applications. In: Kokkarachedu, V., Sadiku, R. (eds) Nanoparticles in Modern Antimicrobial and Antiviral Applications. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-50093-0_4

Download citation

Publish with us

Policies and ethics

Navigation