Scientific Workflows Management with Blockchain: A Survey

  • Chapter
  • First Online:
Blockchain and Smart-Contract Technologies for Innovative Applications

Abstract

In science, a key requirement for conducting a scientific experiment is that it must be reproducible, meaning that a different team should be able to carry out the same or similar experiment and obtain similar results. For this to be possible, it is important to maintain the traceability of the end-to-end workflow used to conduct the experiment. However, partners may be responsible for specific process segments in large projects involving multiple laboratories or collaborating partners. As a result, maintaining the provenance of results requires kee** track of datasets and computing tools at each step of the workflow in a cross-partner fashion. While centralized solutions exist for tracking scientific workflows, they can sometimes be met with distrust. Blockchain-based scientific workflow management can help overcome this issue by offering integrity, transparency, and accessibility. This chapter aims to provide a better understanding of blockchain uses for scientific workflow management. To do so, it examines the existing literature on the topic, discusses the associated opportunities and challenges, and highlights future research topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The Bloom filter is a probabilistic data structure that efficiently tests the membership of an element in a set, providing a compact representation with potential false positives but no false negatives [57].

References

  1. A. Barker, J.v. Hemert, Scientific workflow: a survey and research directions, in International Conference on Parallel Processing and Applied Mathematics (Springer, Berlin, 2007), pp. 746–753

    Google Scholar 

  2. E. Deelman, T. Peterka, I. Altintas, C.D. Carothers, K.K. van Dam, K. Moreland, M. Parashar, L. Ramakrishnan, M. Taufer, J. Vetter, The future of scientific workflows. Int. J. High Perform. Comput. Appl. 32(1), 159–175 (2018)

    Google Scholar 

  3. S.B. Davidson, J. Freire, Provenance and scientific workflows: challenges and opportunities, in Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (2008), pp. 1345–1350

    Google Scholar 

  4. O.I. Abiodun, M. Alawida, A.E. Omolara, A. Alabdulatif, Data provenance for cloud forensic investigations, security, challenges, solutions and future perspectives: a survey. J. King Saud Univ. Comput. Inform. Sci. 34(10), 10217–45 (2022)

    Google Scholar 

  5. W. Tang, C. Chenli, C. Ju, T. Jung, Trac2Chain: trackability and traceability of graph data in blockchain with linkage privacy, in Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing (2022), pp. 272–281

    Google Scholar 

  6. M. Giovanardi, T. Konstantinou, R. Pollo, T. Klein, Internet of things for building façade traceability: a theoretical framework to enable circular economy through life-cycle information flows. J. Cleaner Prod. 382, 135261 (2023)

    Google Scholar 

  7. A.S.E. Pradeep, T.W. Yiu, Y. Zou, R. Amor, Blockchain-aided information exchange records for design liability control and improved security. Autom. Constr. 126, 103667 (2021)

    Google Scholar 

  8. D. Fernando, S. Kulshrestha, J.D. Herath, N. Mahadik, Y. Ma, C. Bai, P. Yang, G. Yan, S. Lu, SciBlock: a blockchain-based tamper-proof non-repudiable storage for scientific workflow provenance, in 2019 IEEE 5th International Conference on Collaboration and Internet Computing (CIC) (IEEE, Piscataway, 2019), pp. 81–90

    Google Scholar 

  9. R. Coelho, R. Braga, J.M.N. David, M. Dantas, V. Ströele, F. Campos, Blockchain for reliability in collaborative scientific workflows on cloud platforms, in 2020 IEEE Symposium on Computers and Communications (ISCC) (IEEE, Piscataway, 2020), pp. 1–7

    Google Scholar 

  10. D. Karastoyanova, L. Stage, Towards collaborative and reproducible scientific experiments on blockchain, in International Conference on Advanced Information Systems Engineering (Springer, Berlin, 2018), pp. 144–149

    Google Scholar 

  11. W. Chen, X. Liang, J. Li, H. Qin, Y. Mu, J. Wang, Blockchain based provenance sharing of scientific workflows, in 2018 IEEE International Conference on Big Data (Big Data) (IEEE, Piscataway, 2018), pp. 3814–3820

    Google Scholar 

  12. H. Wang et al., Blockchain challenges and opportunities: a survey. Int. J. Web Grid Serv. 14(4), 352 (2018)

    Google Scholar 

  13. R. Hull, Blockchain: distributed event-based processing in a data-centric world, in Proceedings of the 11th ACM International Conference on Distributed and Event-Based Systems (2017), pp. 2–4

    Google Scholar 

  14. S. Leible, S. Schlager, M. Schubotz, B. Gipp, A review on blockchain technology and blockchain projects fostering open science, in Frontiers in Blockchain (2019), p. 16

    Google Scholar 

  15. R. Di Cosmo, S. Zacchiroli, Software heritage: why and how to preserve software source code, in iPRES 2017-14th International Conference on Digital Preservation (2017), pp. 1–10

    Google Scholar 

  16. A. Erri Pradeep, T. Yiu, R. Amor, Leveraging blockchain technology in a BIM workflow: a literature review, in International Conference on Smart Infrastructure and Construction 2019 (ICSIC) Driving Data-Informed Decision-Making (ICE Publishing, London, 2019), pp. 371–380

    Google Scholar 

  17. Y. Qu, M.P. Uddin, C. Gan, Y. **ang, L. Gao, J. Yearwood, Blockchain-enabled federated learning: a survey. ACM Comput. Surv. 55(4), 1–35 (2022)

    Google Scholar 

  18. A. Singh et al., Blockchain smart contracts formalization: approaches and challenges to address vulnerabilities. Comput. Secur. 88, 101654 (2020)

    Google Scholar 

  19. E. Androulaki et al., Hyperledger fabric: a distributed operating system for permissioned blockchains, in Proceedings of the Thirteenth EuroSys Conference, EuroSys ’18, New York (2018)

    Google Scholar 

  20. G. Wood et al., Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Pap. 151(2014), 1–32 (2014)

    Google Scholar 

  21. N. Szabo, Formalizing and securing relationships on public networks. First Monday 2(9) (1997). https://doi.org/10.5210/fm.v2i9.548

  22. K. Christidis, M. Devetsikiotis, Blockchains and smart contracts for the internet of things. IEEE Access 4, 2292–2303 (2016)

    Google Scholar 

  23. J. Mendling et al., Blockchains for business process management – challenges and opportunities. ACM Trans. Manage. Inform. Syst. 9(1), 1–16 (2018)

    Google Scholar 

  24. K. Wüst, A. Gervais, Do you need a blockchain?, in 2018 Crypto Valley Conference on Blockchain Technology (CVCBT) (2018), pp. 45–54

    Google Scholar 

  25. M.J. Sembay, D.D.J. de Macedo, M.L. Dutra, A proposed approach for provenance data gathering. Mob. Netw. Appl. 26(1), 304–318 (2021)

    Google Scholar 

  26. R. Coelho, R. Braga, J.M.N. David, V. Stroele, F. Campos, M. Dantas, A blockchain-based architecture for trust in collaborative scientific experimentation. J. Grid Comput. 20(4), 1–31 (2022)

    Google Scholar 

  27. S. Suhail, R. Hussain, M. Abdellatif, S.R. Pandey, A. Khan, C.S. Hong, Provenance-enabled packet path tracing in the RPL-based internet of things. Comput. Netw. 173, 107189 (2020)

    Google Scholar 

  28. I. Altintas, Lifecycle of scientific workflows and their provenance: a usage perspective, in 2008 IEEE Congress on Services-Part I (IEEE, Piscataway, 2008), pp. 474–475

    Google Scholar 

  29. J. Webster, R. Watson, Analyzing the past to prepare for the future: writing a literature review. MIS Quart. 26, xiii–xxiii (2002)

    Google Scholar 

  30. H. Zhang et al., Identifying relevant studies in software engineering. Inform. Softw. Technol. 53(6), 625–637 (2011)

    Google Scholar 

  31. H.M. Kim, M. Laskowski, Toward an ontology-driven blockchain design for supply-chain provenance. Intell. Syst. Account. Finance Manage. 25(1), 18–27 (2018)

    Google Scholar 

  32. C. Martinez-Rendon, J. González-Compeán, D.D. Sánchez-Gallegos, J. Carretero, CD/CV: Blockchain-based schemes for continuous verifiability and traceability of IoT data for edge–fog–cloud. Inform. Proces. Manage. 60(1), 103155 (2023)

    Google Scholar 

  33. H. Honar Pajooh, M.A. Rashid, F. Alam, S. Demidenko, IoT big data provenance scheme using blockchain on Hadoop ecosystem. J. Big Data 8, 1–26 (2021)

    Google Scholar 

  34. C. Chenli, W. Tang, F. Gomulka, T. Jung, ProvNet: networked bi-directional blockchain for data sharing with verifiable provenance. J. Parallel Distrib. Comput. 166, 32–44 (2022)

    Google Scholar 

  35. A. Demichev, A. Kryukov, N. Prikhod’ko, Business process engineering for data storing and processing in a collaborative distributed environment based on provenance metadata, smart contracts and blockchain technology. J. Grid Comput. 19, 1–30 (2021)

    Google Scholar 

  36. J. Möller, S. Fröschle, A. Hahn, Permissioned blockchain for data provenance in scientific data management, in Innovation Through Information Systems: Volume III: A Collection of Latest Research on Management Issues (Springer, Berlin, 2021), pp. 22–38

    Google Scholar 

  37. S.K. Radha, I. Taylor, J. Nabrzyski, I. Barclay, Verifiable badging system for scientific data reproducibility. Blockchain Res. Appl. 2(2), 100015 (2021)

    Google Scholar 

  38. R.J.C. Bose, K.K. Phokela, V. Kaulgud, S. Podder, Blinker: a blockchain-enabled framework for software provenance, in 2019 26th Asia-Pacific Software Engineering Conference (APSEC) (IEEE, Piscataway, 2019), pp. 1–8

    Google Scholar 

  39. V. Nandigam, K. Lin, M. Shantharam, S. Sakai, S. Sivagnanam, Research workflows – towards reproducible science via detailed provenance tracking in open science chain, in PEARC ’20: Practice and Experience in Advanced Research Computing, Portland, July 27–31, 2020, ed. by G.A. Jacobs, C.A. Stewart (ACM, New York, 2020), pp. 484–486

    Google Scholar 

  40. S. Sivagnanam, V. Nandigam, K. Lin, Introducing the open science chain: protecting integrity and provenance of research data, in Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (Learning), PEARC 2019, Chicago, July 28–August 01, 2019, ed. by T.R. Furlani (ACM, New York, 2019), pp. 18:1–18:5

    Google Scholar 

  41. M.R. Hoffman, L.-D. Ibáñez, H. Fryer, E. Simperl, Smart papers: dynamic publications on the blockchain, in Proceedings of the Semantic Web: 15th International Conference, ESWC 2018, Heraklion, June 3–7, 2018 (Springer, Berlin, 2018), pp. 304–318

    Google Scholar 

  42. J. Bell, T.D. LaToza, F. Baldmitsi, A. Stavrou, Advancing open science with version control and blockchains, in 2017 IEEE/ACM 12th International Workshop on Software Engineering for Science (SE4Science) (IEEE, Piscataway, 2017), pp. 13–14

    Google Scholar 

  43. R. Coelho, R.M.M. Braga, J.M.N. David, M.A.R. Dantas, V. Ströele, F. Campos, Integrating blockchain for data sharing and collaboration support in scientific ecosystem platform, in 54th Hawaii International Conference on System Sciences, HICSS 2021, Kauai, January 5, 2021 (ScholarSpace, 2021), pp. 1–10. https://scholarspace.manoa.hawaii.edu/items/ca9cfa55-df1c-46b4-a883-9ce13f1919c3

  44. F. Costa, D. De Oliveira, M. Mattoso, Towards an adaptive and distributed architecture for managing workflow provenance data, in 2014 IEEE 10th International Conference on e-Science, vol. 2 (IEEE, Piscataway, 2014), pp. 79–82

    Google Scholar 

  45. F. Daidone, B. Carminati, E. Ferrari, A blockchain-based framework in support of privacy preferences enforcement for scientific workflows, in 2022 IEEE International Conference on Web Services (ICWS) (IEEE, Piscataway, 2022), pp. 428–437

    Google Scholar 

  46. B. Gipp, C. Breitinger, N. Meuschke, J. Beel, CryptSubmit: introducing securely timestamped manuscript submission and peer review feedback using the blockchain, in 2017 ACM/IEEE Joint Conference on Digital Libraries (JCDL) (IEEE, Piscataway, 2017), pp. 1–4

    Google Scholar 

  47. X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, L. Njilla, ProvChain: a blockchain-based data provenance architecture in cloud environment with enhanced privacy and availability, in 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID) (IEEE, Piscataway, 2017), pp. 468–477

    Google Scholar 

  48. R. Neisse, G. Steri, I. Nai-Fovino, A blockchain-based approach for data accountability and provenance tracking, in Proceedings of the 12th International Conference on Availability, Reliability and Security (2017), pp. 1–10

    Google Scholar 

  49. A. Ramachandran, M. Kantarcioglu, Smartprovenance: a distributed, blockchain based dataprovenance system, in Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy, CODASPY 2018, Tempe, March 19–21, 2018, ed. by Z. Zhao, G. Ahn, R. Krishnan, G. Ghinita (ACM, New York, 2018), pp. 35–42

    Google Scholar 

  50. P. Ruan, G. Chen, T.T.A. Dinh, Q. Lin, B.C. Ooi, M. Zhang, Fine-grained, secure and efficient data provenance on blockchain systems. Proc. VLDB Endow. 12(9), 975–988 (2019)

    Google Scholar 

  51. P. Wang, W. Cui, J. Li, A framework of data sharing system with decentralized network, in Big Scientific Data Management: First International Conference, BigSDM 2018, Bei**g, November 30–December 1, 2018, Revised Selected Papers 1 (Springer, Berlin, 2019), pp. 255–262

    Google Scholar 

  52. L. Wen, L. Zhang, J. Li, Application of blockchain technology in data management: advantages and solutions, in Big Scientific Data Management: First International Conference, BigSDM 2018, Bei**g, November 30–December 1, 2018, Revised Selected Papers 1 (Springer, Berlin, 2019), pp. 239–254

    Google Scholar 

  53. K. Wittek, N. Wittek, J. Lawton, I. Dohndorf, A. Weinert, A. Ionita, A blockchain-based approach to provenance and reproducibility in research workflows, in 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC) (IEEE, Piscataway, 2021), pp. 1–6

    Google Scholar 

  54. R.K. Raman, R. Vaculin, M. Hind, S.L. Remy, E.K. Pissadaki, N.K. Bore, R. Daneshvar, B. Srivastava, K.R. Varshney, A scalable blockchain approach for trusted computation and verifiable simulation in multi-party collaborations, in 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC) (IEEE, Piscataway, 2019), pp. 277–284

    Google Scholar 

  55. Y. Cao, C. Jones, V. Cuevas-Vicenttín, M.B. Jones, B. Ludäscher, T. McPhillips, P. Missier, C. Schwalm, P. Slaughter, D. Vieglais et al., ProvONE: extending PROV to support the dataONE scientific community, in PROV: Three Years Later (2016)

    Google Scholar 

  56. Y. Mendes, R. Braga, V. Ströele, D. de Oliveira, Polyflow: a SOA for analyzing workflow heterogeneous provenance data in distributed environments, in Proceedings of the XV Brazilian Symposium on Information Systems (2019), pp. 1–8

    Google Scholar 

  57. S. Tarkoma, C.E. Rothenberg, E. Lagerspetz, Theory and practice of bloom filters for distributed systems. IEEE Commun. Surv. Tutorials 14(1), 131–155 (2011)

    Google Scholar 

  58. L. Stage, D. Karastoyanova, Provenance holder: bringing provenance, reproducibility and trust to flexible scientific workflows and choreographies, in Business Process Management Workshops: BPM 2019 International Workshops, Vienna, September 1–6, 2019, Revised Selected Papers 17 (Springer, Berlin, 2019), pp. 664–675

    Google Scholar 

  59. D. Deutch, A. Frankenthal, A. Gilad, Y. Moskovitch, On optimizing the trade-off between privacy and utility in data provenance, in Proceedings of the 2021 International Conference on Management of Data (2021), pp. 379–391

    Google Scholar 

  60. T. Eifert, U. Schilling, H.-J. Bauer, F. Krämer, A. Lopez, Infrastructure for research data management as a cross-university project, in Human Interface and the Management of Information: Supporting Learning, Decision-Making and Collaboration: 19th International Conference, HCI International 2017, Vancouver, July 9–14, 2017, Proceedings, Part II 19 (Springer, Berlin, 2017), pp. 493–502

    Google Scholar 

  61. S. Abiteboul, M. Arenas, P. Barceló, M. Bienvenu, D. Calvanese, C. David, R. Hull, E. Hüllermeier, B. Kimelfeld, L. Libkin et al., Research directions for principles of data management (abridged). ACM SIGMOD Rec. 45(4), 5–17 (2017)

    Google Scholar 

  62. D.D. Sánchez-Gallegos, D. Di Luccio, S. Kosta, J. Gonzalez-Compean, R. Montella, An efficient pattern-based approach for workflow supporting large-scale science: the DagOnStar experience. Fut. Gen. Comput. Syst. 122, 187–203 (2021)

    Google Scholar 

  63. K. Devaki, L. Leena Jenifer, A study on challenges in data security during data transformation, in Computer Networks, Big Data and IoT: Proceedings of ICCBI 2021 (Springer, Berlin, 2022), pp. 49–66

    Google Scholar 

  64. A. Weiß, V. Andrikopoulos, M. Hahn, D. Karastoyanova, Model-as-you-go for choreographies: rewinding and repeating scientific choreographies. IEEE Trans. Serv. Comput. 13(5), 901–914 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiphaine Henry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Henry, T., Tucci-Piergiovanni, S. (2024). Scientific Workflows Management with Blockchain: A Survey. In: El Madhoun, N., Dionysiou, I., Bertin, E. (eds) Blockchain and Smart-Contract Technologies for Innovative Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-50028-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50028-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50027-5

  • Online ISBN: 978-3-031-50028-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation