Exploring the Application, Safety, and Challenges of Free Versus Immobilized Antimicrobial Nanomaterials

  • Chapter
  • First Online:
Applications of Nanotechnology in Microbiology

Abstract

Antimicrobial nanomaterials have received a lot of interest in recent years due to their potential to fight against microbial illnesses and make the world a safer place. This discussion will focus on free and immobilized antimicrobial nanoparticles and will attempt to address concerns regarding their potential uses, risks, and challenges. In contrast to antimicrobial nanoparticles that are immobilized, or fixed to a substrate or surface, free antimicrobial nanomaterials are those that are suspended in a medium. This chapter will explore the various applications of free and immobilized antimicrobial nanoparticles, including medicine, water purification, food packaging, and consumer goods. The antibacterial effectiveness, durability, and user-friendliness of each form will be compared and reviewed. Concerns about the toxicity of such nanomaterials and other potential negative effects on the environment will also be addressed for practical applications. In addition, this study will reveal the challenges linked to the actual use of free and immobilized antimicrobial nanoparticles. Scalability, efficiency, cost, and compliance with rules and regulations, as well as sustainability, will also be investigated. The key to optimizing the use of antimicrobial nanoparticles and removing limitations to their wider adoption is a thorough understanding of these issues. In summary, this discussion will focus on the differences between free and immobilized antimicrobial nanoparticles, as well as their potential uses, risks, and obstacles. The results will aid scientists, lawmakers, and businesses in making informed choices regarding the application of antimicrobial nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abazari, M., Badeleh, S. M., Khaleghi, F., Saeedi, M., & Haghi, F. (2023). Fabrication of silver nanoparticles-deposited fabrics as a potential candidate for the development of reusable facemasks and evaluation of their performance. Scientific Reports, 13, 1–16.

    Article  Google Scholar 

  2. Gudkov, S. V., Burmistrov, D. E., Serov, D. A., Rebezov, M. B., Semenova, A. A., & Lisitsyn, A. B. (2021). A mini review of antibacterial properties of ZnO nanoparticles. Frontiers of Physics, 9, 1–12.

    Google Scholar 

  3. Valodkar, M., Modi, S., Pal, A., & Thakore, S. (2011). Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: A green approach. Materials Research Bulletin, 46, 384–389.

    Article  CAS  Google Scholar 

  4. Singhal, S. K., Lal, M., Kabi, S. R., & Mathur, R. B. (2012). Synthesis of Cu/CNTs nanocomposites for antimicrobial activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3, 045011.

    CAS  Google Scholar 

  5. Li, C., Wang, X., Chen, F., Zhang, C., Zhi, X., Wang, K., & Cui, D. (2013). The antifungal activity of graphene oxide-silver nanocomposites. Biomaterials, 34, 3882–3890.

    Article  CAS  PubMed  Google Scholar 

  6. Baptista, P. V., McCusker, M. P., Carvalho, A., Ferreira, D. A., Mohan, N. M., Martins, M., & Fernandes, A. R. (2018). Nano-strategies to fight multidrug resistant bacteria-“A battle of the titans”. Frontiers in Microbiology, 9, 1–26.

    Article  Google Scholar 

  7. Firouzjaei, M. D., Shamsabadi, A. A., Sharifian, G. M., Rahimpour, A., & Soroush, M. (2018). A novel nanocomposite with superior antibacterial activity: A silver-based metal organic framework embellished with graphene oxide. Advanced Materials Interfaces, 5, 1701365.

    Article  Google Scholar 

  8. Padmanaban, V. C., Giri Nandagopal, M. S., Madhangi Priyadharshini, G., Maheswari, N., Janani Sree, G., & Selvaraju, N. (2016). Advanced approach for degradation of recalcitrant by nanophotocatalysis using nanocomposites and their future perspectives. International journal of Environmental Science and Technology, 13, 1591–1606.

    Article  CAS  Google Scholar 

  9. Shalaby, T., Mahmoud, O., & Al-Oufy, A. (2016). Antibacterial silver embedded nanofibers for water disinfection. International Journal of Materials Science and Applications, 4, 293.

    Article  Google Scholar 

  10. Al-Sherbini, A. S. A., Ghannam, H. E. A., El-Ghanam, G. M. A., El-Ella, A. A., & Youssef, A. M. (2019). Utilization of chitosan/ag bionanocomposites as eco-friendly photocatalytic reactor for bactericidal effect and heavy metals removal. Heliyon, 5, e01980.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Grass, G., Rensing, C., & Solioz, M. (2011). Metallic copper as an antimicrobial surface. Applied and Environmental Microbiology, 77, 1541–1547.

    Article  CAS  PubMed  Google Scholar 

  12. Agnihotri, S., Mukherji, S., & Mukherji, S. (2013). Immobilized silver nanoparticles enhance contact killing and show highest efficacy: Elucidation of the mechanism of bactericidal action of silver. Nanoscale, 5, 7328.

    Article  CAS  PubMed  Google Scholar 

  13. Ramyadevi, J., Jeyasubramanian, K., Marikani, A., Rajakumar, G., & Rahuman, A. A. (2012). Synthesis and antimicrobial activity of copper nanoparticles. Materials Letters, 71, 114–116.

    Article  CAS  Google Scholar 

  14. Li, X., Robinson, S. M., Gupta, A., Saha, K., Jiang, Z., Moyano, D. F., Sahar, A., Riley, M. A., & Rotello, V. M. (2014). Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano, 8, 10682–10686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vazquez-Munoz, R., Arellano-Jimenez, M. J., & Lopez-Ribot, J. L. (2020). Bismuth nanoparticles obtained by a facile synthesis method exhibit antimicrobial activity against Staphylococcus aureus and Candida albicans. BMC Biomedical Engineering, 2, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Prabhu, S., & Poulose, E. K. (2012). Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters, 2, 32.

    Article  Google Scholar 

  17. Pelgrift, R. Y., & Friedman, A. J. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews, 65, 1803–1815.

    Article  CAS  PubMed  Google Scholar 

  18. Jung, W. K., Koo, H. C., Kim, K. W., Shin, S., Kim, S. H., & Park, Y. H. (2008). Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology, 74, 2171–2178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mukherji, S., Bharti, S., Shukla, G., & Mukherji, S. (2019). Synthesis and characterization of size- and shape-controlled silver nanoparticles. Physical Sciences Reviews, 4, 20170082.

    Article  Google Scholar 

  20. Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium escherichia coli. Applied and Environmental Microbiology, 73, 1712–1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hong, X., Wen, J., **ong, X., & Hu, Y. (2016). Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environmental Science and Pollution Research, 23, 4489–4497.

    Article  CAS  PubMed  Google Scholar 

  22. Shaheen, T. I., & Fouda, A. (2018). Green approach for one-pot synthesis of silver nanorod using cellulose nanocrystal and their cytotoxicity and antibacterial assessment. International Journal of Biological Macromolecules, 106, 784–792.

    Article  CAS  PubMed  Google Scholar 

  23. Bharti, S., Mukherji, S., & Mukherji, S. (2021). Enhanced antibacterial activity of decahedral silver nanoparticles. Journal of Nanoparticle Research, 23, 36.

    Article  CAS  Google Scholar 

  24. Dakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 7, 1–17.

    Article  Google Scholar 

  25. Huang, Y. W., Wu, C. H., & Aronstam, R. S. (2010). Toxicity of transition metal oxide nanoparticles: Recent insights from in vitro studies. Materials (Basel), 3, 4842–4859.

    Article  CAS  PubMed  Google Scholar 

  26. Liga, M. V., Bryant, E. L., Colvin, V. L., & Li, Q. (2011). Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Research, 45, 535–544.

    Article  CAS  PubMed  Google Scholar 

  27. Hasan, A., Morshed, M., Memic, A., Hassan, S., Webster, T. J., & Marei, H. E. S. (2018). Nanoparticles in tissue engineering: Applications, challenges and prospects. International Journal of Nanomedicine, 13, 5637–5655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mba, I. E., & Nweze, E. I. (2021). Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: Research progress, challenges, and prospects. World Journal of Microbiology and Biotechnology, 37, 1–30.

    Article  Google Scholar 

  29. Rubilar, O., Rai, M., Tortella, G., Diez, M. C., Seabra, A. B., & Durán, N. (2013). Biogenic nanoparticles: Copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnology Letters, 35, 1365–1375.

    Article  CAS  PubMed  Google Scholar 

  30. Younas, H., Qazi, I. A., Hashmi, I., Awan, M. A., Mahmood, A., & Qayyum, H. A. (2014). Visible light photocatalytic water disinfection and its kinetics using Ag-doped titania nanoparticles. Environmental Science and Pollution Research International, 21, 740–752.

    Article  CAS  PubMed  Google Scholar 

  31. Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A. L., Galindo, R., Cano, A., Espina, M., Ettcheto, M., Camins, A., et al. (2020). Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials, 10, 1–39.

    Article  Google Scholar 

  32. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., & Mohamad, D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7, 219–242.

    Article  CAS  PubMed  Google Scholar 

  33. Moschini, E., Colombo, G., Chirico, G., Capitani, G., Dalle-Donne, I., & Mantecca, P. (2023). Biological mechanism of cell oxidative stress and death during short-term exposure to nano cuo. Scientific Reports, 13, 1–18.

    Article  Google Scholar 

  34. Nguyen, K. V. T., Ameer, F. S., Anker, J. N., Brumaghim, J. L., & Minh, H. C. (2017). Reactive oxygen species generation by copper(ii) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Nanotoxicology, 11, 278–288.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Siddiqi, K. S., & ur Rahman A, Tajuddin, Husen A. (2018). Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Research Letters, 13, 141.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang, L., Qi, H., Yan, Z., Gu, Y., Sun, W., & Zewde, A. A. (2017). Sonophotocatalytic inactivation of e. coli using ZnO nanofluids and its mechanism. Ultrasonics Sonochemistry, 34, 232–238.

    Article  CAS  PubMed  Google Scholar 

  37. Mendes, C. R., Dilarri, G., Forsan, C. F., Sapata, V. D. M. R., Lopes, P. R. M., de Moraes, P. B., Montagnolli, R. N., Ferreira, H., & Bidoia, E. D. (2022). Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Scientific Reports, 12, 1–10.

    Article  Google Scholar 

  38. Irshad, M. A., Nawaz, R., ur Rehman, M. Z., Adrees, M., Rizwan, M., Ali, S., Ahmad, S., & Tasleem, S. (2021). Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review. Ecotoxicology and Environmental Safety, 212, 111978.

    Article  CAS  PubMed  Google Scholar 

  39. Kearns, H., Goodacre, R., Jamieson, L. E., Graham, D., & Faulds, K. (2017). SERS detection of multiple antimicrobial-resistant pathogens using nanosensors. Analytical Chemistry, 89, 12666–12673.

    Article  CAS  PubMed  Google Scholar 

  40. Gamage McEvoy, J., & Zhang, Z. (2014). Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 19, 62–75.

    Article  CAS  Google Scholar 

  41. Bharti, S., Mukherji, S., & Mukherji, S. (2018). Photocatalytic action of silver-titanium dioxide nanocomposite against pathogenic bacteria. Journal of the Indian Chemical Society, 95, 1–8.

    Google Scholar 

  42. Skwarczynski, M., Bashiri, S., Yuan, Y., Ziora, Z. M., Nabil, O., Masuda, K., Khongkow, M., Rimsueb, N., Cabral, H., Ruktanonchai, U., et al. (2022). Antimicrobial activity enhancers: Towards smart delivery of antimicrobial agents. Antibiotics, 11, 1–28.

    Article  Google Scholar 

  43. Trevors, J. T. (1987). Silver resistance and accumulation in bacteria. Enzyme and Microbial Technology, 9, 331–333.

    Article  CAS  Google Scholar 

  44. Cooksey, D. A. (1993). Copper uptake and resistance in bacteria. Molecular Microbiology, 7, 1–5.

    Article  CAS  PubMed  Google Scholar 

  45. Bondarczuk, K., & Piotrowska-Seget, Z. (2013). Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biology and Toxicology, 29, 397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Niño-Martínez, N., Salas Orozco, M. F., Martínez-Castañón, G.-A., Torres Méndez, F., & Ruiz, F. (2019). Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles. International Journal of Molecular Sciences, 20, 2808.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hemmatian, T., Lee, H., & Kim, J. (2021). Bacteria adhesion of textiles influenced by wettability and pore characteristics of fibrous substrates. Polymers (Basel), 13, 1–14.

    Article  Google Scholar 

  48. Leishangthem, D., Yumkhaibam, M. A. K., Henam, P. S., & Nagarajan, S. (2018). An insight into the effect of composition for enhance catalytic performance of biogenic Au/Ag bimetallic nanoparticles. Journal of Physical Organic Chemistry, 31, e3815.

    Article  Google Scholar 

  49. Sharaf, E. M., Hassan, A., FA, A. L.-S., Albalwe, F. M., Albalawi, H. M. R., Darwish, D. B., & Fayad, E. (2022). Synergistic antibacterial activity of compact silver/magnetite core-shell nanoparticles core shell against Gram-negative foodborne pathogens. Frontiers in Microbiology, 13, 1–12.

    Article  Google Scholar 

  50. Álvarez-Paino, M., Muñoz-Bonilla, A., & Fernández-García, M. (2017). Antimicrobial polymers in the nano-world. Nanomaterials, 7, 48.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Spirescu, V. A., Chircov, C., Grumezescu, A. M., & Andronescu, E. (2021). Polymeric nanoparticles for antimicrobial therapies: An up-to-date overview. Polymers (Basel), 13, 724.

    Article  CAS  PubMed  Google Scholar 

  52. Wang, Y., & Sun, H. (2021). Polymeric nanomaterials for efficient delivery of antimicrobial agents. Pharmaceutics, 13, 2108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maliszewska, I., & Czapka, T. (2022). Electrospun polymer nanofibers with antimicrobial activity. Polymers (Basel), 14, 1–32.

    Article  Google Scholar 

  54. Yang, J., Wang, K., Yu, D. G., Yang, Y., Bligh, S. W. A., & Williams, G. R. (2020). Electrospun janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Materials Science and Engineering: C, 111, 110805.

    Article  CAS  PubMed  Google Scholar 

  55. Duan, X., Chen, H., & Guo, C. (2022). Polymeric nanofibers for drug delivery applications: A recent review. Journal of Materials Science. Materials in Medicine, 33, 78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ferreira, M., Ogren, M., Dias, J. N. R., Silva, M., Gil, S., Tavares, L., Aires-da-Silva, F., Gaspar, M. M., & Aguiar, S. I. (2021). Liposomes as antibiotic delivery systems: A promising nanotechnological strategy against antimicrobial resistance. Molecules, 26, 2047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mubeen, B., Ansar, A. N., Rasool, R., Ullah, I., Imam, S. S., Alshehri, S., Ghoneim, M. M., Alzarea, S. I., Nadeem, M. S., & Kazmi, I. (2021). Nanotechnology as a novel approach in combating microbes providing an alternative to antibiotics. Antibiotics, 10, 1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bharti, S., Anant, P. S., & Kumar, A. (2023). Nanotechnology in stem cell research and therapy. Journal of Nanoparticle Research, 25, 6.

    Article  CAS  Google Scholar 

  59. Pham, S. H., Choi, Y., & Choi, J. (2020). Stimuli-responsive nanomaterials for application in antitumor therapy and drug delivery. Pharmaceutics, 12, 1–19.

    Article  Google Scholar 

  60. Werengowska-Ciećwierz, K., Wiśniewski, M., Terzyk, A. P., & Furmaniak, S. (2015). The chemistry of bioconjugation in nanoparticles-based drug delivery system. Advances in Condensed Matter Physics, 2015, 1–27.

    Article  Google Scholar 

  61. Pandey, S., Shaikh, F., Gupta, A., Tripathi, P., & Yadav, J. S. (2022). A recent update: Solid lipid nanoparticles for effective drug delivery. Advanced Pharmaceutical Bulletin, 12, 17–33.

    CAS  PubMed  Google Scholar 

  62. Mohanta, Y. K., Chakrabartty, I., Mishra, A. K., Chopra, H., Mahanta, S., Avula, S. K., Patowary, K., Ahmed, R., Mishra, B., Mohanta, T. K., et al. (2023). Nanotechnology in combating biofilm: A smart and promising therapeutic strategy. Frontiers in Microbiology, 13, 1–30.

    Article  Google Scholar 

  63. Ganie, A. S., Bano, S., Khan, N., Sultana, S., Rehman, Z., Rahman, M. M., Sabir, S., Coulon, F., & Khan, M. Z. (2021). Nanoremediation technologies for sustainable remediation of contaminated environments: Recent advances and challenges. Chemosphere, 275, 130065.

    Article  CAS  PubMed  Google Scholar 

  64. Zare, H., Ahmadi, S., Ghasemi, A., Ghanbari, M., Rabiee, N., Bagherzadeh, M., Karimi, M., Webster, T. J., Hamblin, M. R., & Mostafavi, E. (2021). Carbon nanotubes: Smart drug/gene delivery carriers. International Journal of Nanomedicine, 16, 1681–1706.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ma, J., **ong, Z., David Waite, T., Ng, W. J., & Zhao, X. S. (2011). Enhanced inactivation of bacteria with silver-modified mesoporous TiO2 under weak ultraviolet irradiation. Microporous and Mesoporous Materials, 144, 97–104.

    Article  CAS  Google Scholar 

  66. Bharti, S., Mukherji, S., & Mukherji, S. (2021). Antiviral application of colloidal and immobilized silver nanoparticles. Nanotechnology, 32, 205102.

    Article  CAS  PubMed  Google Scholar 

  67. Agnihotri, S., Mukherji, S., & Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 4, 3974–3983.

    Article  CAS  Google Scholar 

  68. Kan, C. X., Zhu, J. J., & Zhu, X. G. (2008). Silver nanostructures with well-controlled shapes: Synthesis, characterization and growth mechanisms. Journal of Physics D: Applied Physics, 41, 155304.

    Article  Google Scholar 

  69. Vassallo, A., Silletti, M. F., Faraone, I., & Milella, L. (2020). Nanoparticulate antibiotic systems as antibacterial agents and antibiotic delivery platforms to fight infections. Journal of Nanomaterials, 2020, 1–31.

    Article  Google Scholar 

  70. Bharti, S., Mukherji, S., & Mukherji, S. (2020). Extracellular synthesis of silver nanoparticles by Thiosphaera pantotropha and evaluation of their antibacterial and cytotoxic effects. 3 Biotech, 10, 1–12.

    Article  Google Scholar 

  71. Giannousi, K., Lafazanis, K., Arvanitidis, J., Pantazaki, A., & Dendrinou-Samara, C. (2014). Hydrothermal synthesis of copper based nanoparticles: Antimicrobial screening and interaction with dna. Journal of Inorganic Biochemistry, 133, 24–32.

    Article  CAS  PubMed  Google Scholar 

  72. Zhu, Y. P., Wang, X. K., Guo, W. L., Wang, J. G., & Wang, C. (2010). Sonochemical synthesis of silver nanorods by reduction of sliver nitrate in aqueous solution. Ultrasonics Sonochemistry, 17, 675–679.

    Article  CAS  PubMed  Google Scholar 

  73. Anandan, S., Grieser, F., & Ashokkumar, M. (2008). Sonochemical synthesis of Au−Ag core−shell bimetallic nanoparticles. Journal of Physical Chemistry C, 112, 15102–15105.

    Article  CAS  Google Scholar 

  74. Wuppaladhodi, V., Yang, S., Pouri, H., & Zhang, J. (2023). Laser-assisted process for the deposition of nanostructured anti-microbial coatings on hydrogels. Optics and Laser Technology, 164, 109485.

    Article  CAS  Google Scholar 

  75. Agostino, A. D., Taglietti, A., Desando, R., Bini, M., Patrini, M., Dacarro, G., Cucca, L., Pallavicini, P., & Grisoli, P. (2017). Bulk surfaces coated with triangular silver nanoplates: Antibacterial action based on silver release and photo-thermal effect. Nanomaterials, 7, 1–10.

    Google Scholar 

  76. Park, M. H., Duan, X., Ofir, Y., Creran, B., Patra, D., Ling, X. Y., Huskens, J., & Rotello, V. M. (2010). Chemically directed immobilization of nanoparticles onto gold substrates for orthogonal assembly using dithiocarbamate bond formation. ACS Applied Materials & Interfaces, 2, 795–799.

    Article  CAS  Google Scholar 

  77. Khayati, G. R., & Janghorban, K. (2012). The nanostructure evolution of Ag powder synthesized by high energy ball milling. Advanced Powder Technology, 23, 393–397.

    Article  CAS  Google Scholar 

  78. Esfandyari-Manesh, M., Ghaedi, Z., Asemi, M., Khanavi, M., Manayi, A., Jamalifar, H., Atyabi, F., & Dinarvand, R. (2013). Study of antimicrobial activity of anethole and carvone loaded plga nanoparticles. Journal of Pharmacy Research, 7, 290–295.

    Article  CAS  Google Scholar 

  79. Wei, C., Fan, C., **e, D., Zhou, S., Zhang, H., Du, Q., & **, P. (2023). Fabrication of cinnamaldehyde-entrapped ethosome nanoparticles as antimicrobial agent. LWT, 181, 114760.

    Article  CAS  Google Scholar 

  80. Imam, H. T., Marr, P. C., & Marr, A. C. (2021). Enzyme entrapment, biocatalyst immobilization without covalent attachment. Green Chemistry, 23, 4980–5005.

    Article  CAS  Google Scholar 

  81. Li, W., Li, Y., Sun, P., Zhang, N., Zhao, Y., Qin, S., & Zhao, Y. (2020). Antimicrobial peptide-modified silver nanoparticles for enhancing the antibacterial efficacy. RSC Advances, 10, 38746–38754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Smoukov, S. K., Bishop, K. J. M., Kowalczyk, B., Kalsin, A. M., & Grzybowski, B. A. (2007). Electrostatically “patchy” coatings via cooperative adsorption of charged nanoparticles. Journal of the American Chemical Society, 129, 15623–15630.

    Article  CAS  PubMed  Google Scholar 

  83. Qi, X., Poernomo, G., Wang, K., Chen, Y., Chan-Park, M. B., Xu, R., & Chang, M. W. (2011). Covalent immobilization of nisin on multi-walled carbon nanotubes: Superior antimicrobial and anti-biofilm properties. Nanoscale, 3, 1874.

    Article  CAS  PubMed  Google Scholar 

  84. Stillger, L., & Müller, D. (2022). Peptide-coating combating antimicrobial contaminations: A review of covalent immobilization strategies for industrial applications. Journal of Materials Science, 57, 10863–10885.

    Article  CAS  Google Scholar 

  85. Park, S. Y., Chung, J. W., Priestley, R. D., & Kwak, S.-Y. (2012). Covalent assembly of metal nanoparticles on cellulose fabric and its antimicrobial activity. Cellulose, 19, 2141–2151.

    Article  CAS  Google Scholar 

  86. Sathyanarayanan, M. B., Balachandranath, R., Genji Srinivasulu, Y., Kannaiyan, S. K., & Subbiahdoss, G. (2013). The effect of gold and iron-oxide nanoparticles on biofilm-forming pathogens. ISRN Microbiology, 2013, 1–5.

    Article  Google Scholar 

  87. Agnihotri, S., & Dhiman, N. K. (2017). Development of nano-antimicrobial biomaterials for biomedical applications. In A. Tripathi & J. S. Melo (Eds.), Advances in biomaterials for biomedical applications (Advanced structured materials) (Vol. 66, pp. 479–545). Springer Singapore. ISBN 978-981-10-3327-8.

    Chapter  Google Scholar 

  88. Greenhalgh, R., Dempsey-Hibbert, N. C., & Whitehead, K. A. (2019). Antimicrobial strategies to reduce polymer biomaterial infections and their economic implications and considerations. International Biodeterioration & Biodegradation, 136, 1–14.

    Article  CAS  Google Scholar 

  89. Sahoo, J., Sarkhel, S., Mukherjee, N., & Jaiswal, A. (2022). Nanomaterial-based antimicrobial coating for biomedical implants: New age solution for biofilm-associated infections. ACS Omega, 7, 45962–45980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, L., Yin, W., Shen, S., Feng, Y., Xu, W., Sun, Y., & Yang, Z. (2022). ZnO nanoparticles interfere with top-down effect of the protozoan paramecium on removing microcystis. Environmental Pollution, 310, 119900.

    Article  CAS  PubMed  Google Scholar 

  91. Alhazmi, N. M. (2022). Fungicidal activity of silver and silica nanoparticles against Aspergillus sydowii isolated from the soil in western Saudi Arabia. Microorganisms, 11, 86.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bharti, S., Mukherji, S., & Mukherji, S. (2019). Water disinfection using fixed bed reactors packed with silver nanoparticle immobilized glass capillary tubes. Science of The Total Environment, 689, 991–1000.

    Article  CAS  PubMed  Google Scholar 

  93. Sawant, S. N., Selvaraj, V., Prabhawathi, V., & Doble, M. (2013). Antibiofilm properties of silver and gold incorporated PU, PCLM, PC and PMMA nanocomposites under two shear conditions. PLoS One, 8, 1–9.

    Article  Google Scholar 

  94. Hulme, J. (2022). Application of nanomaterials in the prevention, detection, and treatment of methicillin-resistant Staphylococcus aureus (MRSA). Pharmaceutics, 14, 805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Leong, S., Razmjou, A., Wang, K., Hapgood, K., Zhang, X., & Wang, H. (2014). TiO2 based photocatalytic membranes: A review. Journal of Membrane Science, 472, 167–184.

    Article  CAS  Google Scholar 

  96. Dash, K. K., Deka, P., Bangar, S. P., Chaudhary, V., Trif, M., & Rusu, A. (2022). Applications of inorganic nanoparticles in food packaging: A comprehensive review. Polymers (Basel), 14, 521.

    Article  CAS  PubMed  Google Scholar 

  97. Biswas, R., Alam, M., Sarkar, A., Haque, M. I., Hasan, M. M., & Hoque, M. (2022). Application of nanotechnology in food: Processing, preservation, packaging and safety assessment. Heliyon, 8, e11795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kaur, J., Sood, K., Bhardwaj, N., Arya, S. K., & Khatri, M. (2020). Nanomaterial loaded chitosan nanocomposite films for antimicrobial food packaging. Materials Today Proceedings, 28, 1904–1909.

    Article  CAS  Google Scholar 

  99. Nile, S. H., Baskar, V., Selvaraj, D., Nile, A., **ao, J., & Kai, G. (2020). Nanotechnologies in food science: Applications, recent trends, and future perspectives. Nano-Micro Letters, 12, 45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hardy, A., Benford, D., Halldorsson, T., Jeger, M. J., Knutsen, H. K., More, S., Naegeli, H., Noteborn, H., Ockleford, C., Ricci, A., et al. (2018). Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA Journal, 16, 5327.

    Google Scholar 

  101. More, S., Bampidis, V., Benford, D., Bragard, C., Halldorsson, T., Hernández-Jerez, A., Bennekou, S. H., Koutsoumanis, K., Lambré, C., Machera, K., et al. (2021). Guidance on technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles. EFSA Journal, 19, 6769.

    Google Scholar 

  102. Salleh, A., Naomi, R., Utami, N. D., Mohammad, A. W., Mahmoudi, E., Mustafa, N., & Fauzi, M. B. (2020). The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action. Nanomaterials, 10, 1566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Montes-Hernandez, G., Di Girolamo, M., Sarret, G., Bureau, S., Fernandez-Martinez, A., Lelong, C., & Eymard, V. E. (2021). In situ formation of silver nanoparticles (Ag-NPs) onto textile fibers. ACS Omega, 6, 1316–1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ribeiro, A. I., Shvalya, V., Cvelbar, U., Silva, R., Marques-Oliveira, R., Remião, F., Felgueiras, H. P., Padrão, J., & Zille, A. (2022). Stabilization of silver nanoparticles on polyester fabric using organo-matrices for controlled antimicrobial performance. Polymers (Basel), 14, 1138.

    Article  CAS  PubMed  Google Scholar 

  105. Abraham, J., Dowling, K., & Florentine, S. (2021). Can copper products and surfaces reduce the spread of infectious microorganisms and hospital-acquired infections? Materials (Basel), 14, 1–27.

    Article  Google Scholar 

  106. Imani, S. M., Ladouceur, L., Marshall, T., Maclachlan, R., Soleymani, L., & Didar, T. F. (2020). Antimicrobial nanomaterials and coatings: Current mechanisms and future perspectives to control the spread of viruses including sars-cov-2. ACS Nano, 14, 12341–12369.

    Article  CAS  PubMed  Google Scholar 

  107. Kaci, M., Belhaffef, A., Meziane, S., Dostert, G., Menu, P., Velot, D. S., & Arab-Tehrany, E. (2018). Nanoemulsions and topical creams for the safe and effective delivery of lipophilic antioxidant coenzyme Q10. Colloids Surfaces B Biointerfaces, 167, 165–175.

    Article  CAS  PubMed  Google Scholar 

  108. Gupta, V., Mohapatra, S., Mishra, H., Farooq, U., Kumar, K., & Iqbal, Z. (2022). Nanotechnology in cosmetics and cosmeceuticals — A review. Gels, 8, 1–31.

    Article  Google Scholar 

  109. Hosseini, M., Chin, A. W. H., Williams, M. D., Behzadinasab, S., Falkinham, J. O., Poon, L. L. M., & Ducker, W. A. (2022). Transparent anti-SARS-CoV-2 and antibacterial silver oxide coatings. ACS Applied Materials & Interfaces, 14, 8718–8727.

    Article  CAS  Google Scholar 

  110. Liu, M., Huang, L., Xu, X., Wei, X., Yang, X., Li, X., Wang, B., Xu, Y., Li, L., & Yang, Z. (2022). Copper doped carbon dots for addressing bacterial biofilm formation, wound infection, and tooth staining. ACS Nano, 16, 9479–9497.

    Article  CAS  PubMed  Google Scholar 

  111. Nguyen, T. M. T., Wang, P. W., Hsu, H. M., Cheng, F. Y., Bin, S. D., Wong, T. Y., & Chang, H. J. (2019). Dental cement’s biological and mechanical properties improved by ZnO nanospheres. Materials Science and Engineering: C, 97, 116–123.

    Article  CAS  PubMed  Google Scholar 

  112. Esteban Florez, F. L., Hiers, R. D., Larson, P., Johnson, M., O’Rear, E., Rondinone, A. J., & Khajotia, S. S. (2018). Antibacterial dental adhesive resins containing nitrogen-doped titanium dioxide nanoparticles. Materials Science and Engineering: C, 93, 931–943.

    Article  CAS  PubMed  Google Scholar 

  113. Deng, Y., Yang, L., Huang, X., Chen, J., Shi, X., Yang, W., Hong, M., Wang, Y., Dargusch, M. S., & Chen, Z. G. (2018). Dual Ag/ZnO-decorated micro−/nanoporous sulfonated polyetheretherketone with superior antibacterial capability and biocompatibility via layer-by-layer self-assembly strategy. Macromolecular Bioscience, 18, 1–12.

    Article  Google Scholar 

  114. Wang, S., Wu, J., Yang, H., Liu, X., Huang, Q., & Lu, Z. (2017). Antibacterial activity and mechanism of Ag/ZnO nanocomposite against anaerobic oral pathogen streptococcus mutans. Journal of Materials Science. Materials in Medicine, 28, 1–8.

    Article  Google Scholar 

  115. Li, X., Qi, M., Sun, X., Weir, M. D., Tay, F. R., Oates, T. W., Dong, B., Zhou, Y., Wang, L., & Xu, H. H. K. (2019). Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities. Acta Biomaterialia, 94, 627–643.

    Article  CAS  PubMed  Google Scholar 

  116. Liu, Z., Du, M., Liu, H., Zhang, K., Xu, X., Liu, K., Tu, J., & Liu, Q. (2021). Chitosan films incorporating litchi peel extract and titanium dioxide nanoparticles and their application as coatings on watercored apples. Progress in Organic Coatings, 151, 106103.

    Article  CAS  Google Scholar 

  117. Fadiji, T., Rashvand, M., Daramola, M. O., & Iwarere, S. A. (2023). A review on antimicrobial packaging for extending the shelf life of food. PRO, 11, 1–30.

    Google Scholar 

  118. Dong, X., Liang, X., Zhou, Y., Bao, K., Sameen, D. E., Ahmed, S., Dai, J., Qin, W., & Liu, Y. (2021). Preparation of polylactic acid/ TiO2/GO nano-fibrous films and their preservation effect on green peppers. International Journal of Biological Macromolecules, 177, 135–148.

    Article  CAS  PubMed  Google Scholar 

  119. Pirsa, S., & Shamusi, T. (2019). Intelligent and active packaging of chicken thigh meat by conducting nano structure cellulose-polypyrrole-zno film. Materials Science and Engineering: C, 102, 798–809.

    Article  CAS  PubMed  Google Scholar 

  120. Darwesh, O. M., Li, H., & Matter, I. A. (2023). Nano-bioremediation of textile industry wastewater using immobilized cuo-nps myco-synthesized by a novel cu-resistant Fusarium oxysporum osf18. Environmental Science and Pollution Research, 30, 16694–16706.

    Article  CAS  PubMed  Google Scholar 

  121. Alias, S. S., Harun, Z., Azhar, F. H., Ibrahim, S. A., & Johar, B. (2020). Comparison between commercial and synthesised nano flower-like rutile TiO2 immobilised on green super adsorbent towards dye wastewater treatment. Journal of Cleaner Production, 251, 119448.

    Article  CAS  Google Scholar 

  122. Sboui, M., Lachheb, H., Bouattour, S., Gruttadauria, M., La Parola, V., Liotta, L. F., & Boufi, S. (2021). TiO2/Ag2O immobilized on cellulose paper: A new floating system for enhanced photocatalytic and antibacterial activities. Environmental Research, 198, 111257.

    Article  CAS  PubMed  Google Scholar 

  123. Jabbar, Z. H., Okab, A. A., Graimed, B. H., Issa, M. A., & Ammar, S. H. (2023). Fabrication of Ag-C3N4 nanosheets immobilized Bi2S3/Ag2WO4 nanorods for photocatalytic disinfection of Staphylococcus aureus cells in wastewater: Dual s-scheme charge separation pathway. Journal of Photochemistry and Photobiology A: Chemistry, 438, 114556.

    Article  CAS  Google Scholar 

  124. Hidayat, D., Lestari, W. W., Dendy, D., Khoerunnisa, F., Handayani, M., Sanjaya, E. H., & Gunawan, T. (2023). Adsorption studies of anionic and cationic dyes on mil-100(cr) synthesized using facile and green mechanochemical method. Journal of Inorganic and Organometallic Polymers and Materials, 33, 1548–1561.

    Article  CAS  Google Scholar 

  125. Nafady, A., Albaqami, M. D., & Alotaibi, A. M. (2023). Recycled polypropylene waste as abundant source for antimicrobial, superhydrophobic and electroconductive nonwoven fabrics comprising polyaniline/silver nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 33, 1306–1316.

    Article  CAS  Google Scholar 

  126. Nguyen, N.-T., Vu, T.-H., Bui, V.-H., Phan, D.-N., Nguyen, T.-H., & Nguyen, T.-M.-L. (2023). Investigation of the antimicrobial and physico-mechanical properties of nature-friendly nanosilver-loaded pig lining leather prepared using exhaustion method. PRO, 1891, 11.

    Google Scholar 

  127. Masa, A., Jehsoh, N., Dueramae, S., & Hayeemasae, N. (2023). Boosting the antibacterial performance of natural rubber latex foam by introducing silver-doped zinc oxide. Polymers (Basel), 15, 1040.

    Article  CAS  PubMed  Google Scholar 

  128. Refaee, A. A., El-Naggar, M. E., Mostafa, T. B., Elshaarawy, R. F. M., & Nasr, A. M. (2022). Nano-bio finishing of cotton fabric with quaternized chitosan schiff base-TiO2-ZnO nanocomposites for antimicrobial and uv protection applications. European Polymer Journal, 166, 111040.

    Article  CAS  Google Scholar 

  129. Aravind, H. P., Jadhav, S. A., More, V. B., Sonawane, K. D., & Patil, P. S. (2019). Novel one step sonosynthesis and deposition technique to prepare silver nanoparticles coated cotton textile with antibacterial properties. Colloid Journal, 81, 720–727.

    Article  Google Scholar 

  130. Kuehr, S., Kosfeld, V., & Schlechtriem, C. (2021). Bioaccumulation assessment of nanomaterials using freshwater invertebrate species. Environmental Sciences Europe, 33, 9.

    Article  CAS  Google Scholar 

  131. Abbas, Q., Yousaf, B., Amina, A. M. U., Munir, M. A. M., El-Naggar, A., Rinklebe, J., & Naushad, M. (2020). Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review. Environment International, 138, 105646.

    Article  CAS  PubMed  Google Scholar 

  132. Devasena, T., Iffath, B., Renjith Kumar, R., Muninathan, N., Baskaran, K., Srinivasan, T., & John, S. T. (2022). Insights on the dynamics and toxicity of nanoparticles in environmental matrices. Bioinorganic Chemistry and Applications, 2022, 1–21.

    Google Scholar 

  133. Singh, K., Thakur, S. S., Ahmed, N., Alharby, H. F., Al-Ghamdi, A. J., Al-Solami, H. M., Bahattab, O., & Yadav, S. (2022). Ecotoxicity assessment for environmental risk and consideration for assessing the impact of silver nanoparticles on soil earthworms. Heliyon, 8, e11167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Pérez-de-Luque, A. (2017). Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Frontiers in Environmental Science, 5, 1–7.

    Article  Google Scholar 

  135. Gupta, R., & **e, H. (2018). Nanoparticles in daily life: Applications, toxicity and regulations. Journal of Environmental Pathology, Toxicology and Oncology, 37, 139–148.

    Article  Google Scholar 

  136. Wu, J., Bosker, T., Vijver, M. G., & Peijnenburg, W. J. G. M. (2021). Trophic transfer and toxicity of (mixtures of) ag and tio2 nanoparticles in the lettuce–terrestrial snail food chain. Environmental Science & Technology, 55, 16563–16572.

    Article  CAS  Google Scholar 

  137. Boros, B.-V., & Ostafe, V. (2020). Evaluation of ecotoxicology assessment methods of nanomaterials and their effects. Nanomaterials, 10, 610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Pareek, V., Gupta, R., & Panwar, J. (2018). Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? A review. Materials Science and Engineering: C, 90, 739–749.

    Article  CAS  PubMed  Google Scholar 

  139. Mishra, S., & Sundaram, B. (2023). Fate, transport, and toxicity of nanoparticles: An emerging pollutant on biotic factors. Process Safety and Environment Protection, 174, 595–607.

    Article  CAS  Google Scholar 

  140. Angel, B. M., Batley, G. E., Jarolimek, C. V., & Rogers, N. J. (2013). The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere, 93, 359–365.

    Article  CAS  PubMed  Google Scholar 

  141. Ferdous, Z., & Nemmar, A. (2020). Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. International Journal of Molecular Sciences, 21, 2375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shi, H., Magaye, R., Castranova, V., & Zhao, J. (2013). Titanium dioxide nanoparticles: A review of current toxicological data. Particle and Fibre Toxicology, 10, 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Henkler, F., Tralau, T., Tentschert, J., Kneuer, C., Haase, A., Platzek, T., Luch, A., & Götz, M. E. (2012). Risk assessment of nanomaterials in cosmetics: A european union perspective. Archives of Toxicology, 86, 1641–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. **e, S., Manuguri, S., Proietti, G., Romson, J., Fu, Y., Inge, A. K., Wu, B., Zhang, Y., Häll, D., Ramström, O., et al. (2017). Design and synthesis of theranostic antibiotic nanodrugs that display enhanced antibacterial activity and luminescence. Proceedings of the National Academy of Sciences of the United States of America, 114, 8464–8469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ye, X., Feng, T., Li, L., Wang, T., Li, P., & Huang, W. (2021). Theranostic platforms for specific discrimination and selective killing of bacteria. Acta Biomaterialia, 125, 29–40.

    Article  CAS  PubMed  Google Scholar 

  146. El-Zowalaty, M. E., Al-Ali, S. H. H., Husseiny, M. I., Geilich, B. M., Webster, T. J., & Hussein, M. Z. (2015). The ability of streptomycin-loaded chitosan-coated magnetic nanocomposites to possess antimicrobial and antituberculosis activities. International Journal of Nanomedicine, 10, 3269–3274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Song, J., Liu, H., Lei, M., Tan, H., Chen, Z., Antoshin, A., Payne, G. F., Qu, X., & Liu, C. (2020). Redox-channeling polydopamine-ferrocene (PDA-FC) coating to confer context-dependent and photothermal antimicrobial activities. ACS Applied Materials & Interfaces, 12, 8915–8928.

    Article  CAS  Google Scholar 

  148. Zohra, T., Numan, M., Ikram, A., Salman, M., Khan, T., Din, M., Salman, M., Farooq, A., Amir, A., & Ali, M. (2021). Cracking the challenge of antimicrobial drug resistance with crispr/cas9, nanotechnology and other strategies in eskape pathogens. Microorganisms, 9, 954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sadani, K., Muthuraj, L., Nag, P., Fernandes, M., Kondabagil, K., Mukhopadhyay, C., & Mukherji, S. (2020). A point of use sensor assay for detecting purely viral versus viral-bacterial samples. Sensors and Actuators B: Chemical, 322, 128562.

    Article  CAS  Google Scholar 

  150. Nag, P., Sadani, K., Mukherji, S., & Mukherji, S. (2020). Beta-lactam antibiotics induced bacteriolysis on LSPR sensors for assessment of antimicrobial resistance and quantification of antibiotics. Sensors and Actuators B: Chemical, 311, 127945.

    Article  CAS  Google Scholar 

  151. Sadani, K., Nag, P., Thian, X. Y., & Mukherji, S. (2022). Enzymatic optical biosensors for healthcare applications. Biosensors and Bioelectronics: X, 12, 100278.

    CAS  Google Scholar 

Web References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suparna Mukherji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bharti, S., Nag, P., Sadani, K., Mukherji, S., Mukherji, S. (2023). Exploring the Application, Safety, and Challenges of Free Versus Immobilized Antimicrobial Nanomaterials. In: Chaughule, R.S., Lokur, A.S. (eds) Applications of Nanotechnology in Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-031-49933-3_5

Download citation

Publish with us

Policies and ethics

Navigation