Multiscale Material Modelling for Evaluating Mechanical and Electrical Characteristics of Graphene/Glass Fibre Epoxy Hybrid Composites

  • Conference paper
  • First Online:
2nd International Conference on Smart Sustainable Materials and Technologies (ICSSMT 2023) (ICSSMT 2023)

Abstract

Investigating the impact of graphene incorporation in epoxy–glass fibre hybrid composites on mechanical and electrical properties through Multiscale Material Modelling (MMM). In this paper, it is examined how the inclusion of graphene in epoxy and glass fibre hybrid composites affected their mechanical and electrical characteristics. This analysis is carried out by employing a MMM and Finite Element Modelling (FEM) to evaluate elastic constants, Poisson’s ratio, and electrical properties. The representative volume elements were employed to model the graphene and glass fibre phases. By employing the Mori–Tanaka and Fei Deng models, multiscale analysis was conducted to predict the elastic constants and electrical conductivity of the hybrid composites. The outcomes revealed that the addition of 5 wt% graphene enhanced the longitudinal and transverse Young’s modulus, in-plane and out-plane Poisson ratio, and in-plane and out-plane shear modulus of glass fibre hybrid composites by 0.95%, 7.12%, 6.44%, 2.66%, 2.47%, and 3.65% respectively. Furthermore, the electrical conductivity of these composites increased by 0.69% with the addition of 5 wt% graphene, compared to 1 wt% addition of graphene, and the orientation does not significantly affect the overall electrical conductivity because of the establishment of conductive pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 320.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar, J. O., Bautista-Quijano, J. R., & Avilés, F. (2010). Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. Express Polymer Letters, 4(5), 292–299.

    Article  CAS  Google Scholar 

  • Ansari, R., & Hassanzadeh-Aghdam, M. K. (2016). Micromechanical investigation of creep recovery behavior of carbon nanotubereinforced polymer nanocomposites. International Journal of Mechanical Sciences, 115, 45–55.

    Article  Google Scholar 

  • Chatzigeorgiou, G., Seidel, G. D., & Lagoudas, D. C. (2012). Effective mechanical properties of “fuzzy fibre” composites. Composites Part b: Engineering, 43(6), 2577–2593.

    Article  CAS  Google Scholar 

  • Chwał, M., Kędziora, P., Barski, M. (2013). Carbon nanotube/polymer nanocomposites: A brief modeling overview. Key Engineering Materials, 542, 29–42. Trans Tech Publications.

    Google Scholar 

  • Deng, F., & Zheng, Q. S. (2008). An analytical model of effective electrical conductivity of carbon nanotube composites. Applied Physics Letters, 92, 071902.

    Article  Google Scholar 

  • Feli, S., Karami, L., & Jafari, S. S. (2017). Analytical modeling of low velocity impact on carbon nanotube-reinforced composite (CNTRC) plates. Mechanics of advanced materials and structures, 1–13.

    Google Scholar 

  • Feng, C., & Jiang, L. (2013). Micromechanics modelling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites. Composites Part a: Applied Science and Manufacturing, 47, 143–149.

    Article  CAS  Google Scholar 

  • Haider, M. F., Haider, M. M., & Yasmeen, F. (2016). Micromechanics model for predicting anisotropic electrical conductivity of carbon fiber composite materials. In AIP Conference Proceedings (vol. 1754, no. 1, p. 030011). AIP Publishing.

    Google Scholar 

  • Hassanzadeh-Aghdam, M. K., Ansari, R., & Darvizeh, A. (2018). Multi-stage micromechanical modeling of effective elastic properties of carbon fibre/carbon nanotube-reinforced polymer hybrid composites. Mechanics of Advanced Materials and Structures, 1–15.

    Google Scholar 

  • Li, X., Rong, J. P., & Wei, B. Q. (2010). Electrochemical behaviour of single-walled carbon nanotube supercapacitors under compressive stress. ACS Nano, 4(10), 6039–6049.

    Article  CAS  Google Scholar 

  • Martone, A., Faiella, G., Antonucci, V., Giordano, M., & Zarrelli, M. (2011). The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix. Composites Science and Technology, 71(8), 1117–2112.

    Article  CAS  Google Scholar 

  • Pal, G., & Kumar, S. (2016). Multiscale modelling of effective electrical conductivity of short carbon fibre-carbon nanotube-polymer matrix hybrid composites. Materials & Design, 89, 129–136.

    Article  CAS  Google Scholar 

  • Pan, J., Bian, L., Zhao, H., & Zhao, Y. (2016). A new micromechanics model and effective elastic modulus of nanotube reinforced composites. Computational Materials Science, 113, 21–26.

    Article  CAS  Google Scholar 

  • Seidel, G. D., & Lagoudas, D. C. (2009). A micromechanics model for the electrical conductivity of nanotube–polymer nanocomposites. Journal of Composite Materials, 43(9), 917–941.

    Article  CAS  Google Scholar 

  • Sharma, K., & Shukla, M. (2014). Three-phase carbon fibre amine functionalized carbon nanotubes epoxy composite: processing, characterisation, and multiscale modelling. Journal of Nanomaterials, 2.

    Google Scholar 

  • Subramanian, V., Zhu, H., & Wei, B. (2006). Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. ElectrochemCommun, 8(5), 827–832.

    CAS  Google Scholar 

  • Takeda, T., Shindo, Y., Kuronuma, Y., & Narita, F. (2011). Modelling and characterization of the electrical conductivity of carbon nanotube-based polymer composites. Polymer, 52(17), 3852–3856.

    Article  CAS  Google Scholar 

  • Tsai, J. L., Tzeng, S. H., & Chiu, Y. T. (2010). Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multiscale simulation. Composites Part b, Engineering, 41(1), 106–115.

    Article  Google Scholar 

  • **a, Z., Zhang, Y., & Ellyin, F. (2003). A unified periodical boundary conditions for representative volume elements of composites and applications. International Journal of Solids and Structures, 40(8), 1907–1921.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mahesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahesh Kumar, M., Paul Vizhian, S., Krishna, M. (2024). Multiscale Material Modelling for Evaluating Mechanical and Electrical Characteristics of Graphene/Glass Fibre Epoxy Hybrid Composites. In: Sumesh, M., R. S. Tavares, J.M., Vettivel, S.C., Oliveira, M.O. (eds) 2nd International Conference on Smart Sustainable Materials and Technologies (ICSSMT 2023). ICSSMT 2023. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-031-49826-8_4

Download citation

Publish with us

Policies and ethics

Navigation