Brain Multiparametric Responses to Hyperbaric Hyperoxia

  • Chapter
  • First Online:
Hyperbaric Oxygenation
  • 46 Accesses

Abstract

To elucidate the mechanism of brain toxicity developed under hyperbaric oxygenation (HBO), a multiparameter monitoring approach was adopted. ln the awake brain exposed to hyperbaric conditions, we were able to measure the following parameters continuously and simultaneously: (1) Tissue O2 partial pressure (pO2), cerebral blood flow, hemoglobin oxygenation (HbO2), and mitochondrial NADH redox state. (2) Extracellular K+ activity for the evaluation of the functional state of cellular membranes. (3) Electrocorticography (ECoG) and DC steady potential as electrical signals.

The typical results obtained under hyperbaric oxygenation presented in this chapter were analyzed and divided into three periods, i.e., pre-convulsive, convulsive, and post-convulsive.

The hypothesis was that HBO may lead to maximal level in microcirculatory HbO2 due to the amount of the dissolved O2 to provide the O2 consumed by the brain, and therefore no O2 will be dissociated from the HbO2. One conclusion was that in the normoxic brain, the level of microcirculatory HbO2 is about 50% as compared to the maximal level recorded at 2.5 ATA and the minimal level measured during anoxia. This study enables, for the first time, to evaluate the oxygenation level of hemoglobin in the microcirculation. Furthermore, our study showed that additional oxygen pressure (above 2.5 ATA) caused brain oxygen toxicity within a short variable period of time after the pressure elevation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araki, R., I. Nashimoto, and T. Takano. 1988. The effect of hyperbaric oxygen on cerebral hemoglobin oxygenation and dissociation rate of carboxyhemoglobin in anesthetized rats: Spectroscopic approach. Advances in Experimental Medicine and Biology 222: 375–381.

    Article  CAS  PubMed  Google Scholar 

  • Bean, J.W. 1945. Effects of oxygen at increased pressure. Physiological Reviews 25: 1–147.

    Article  CAS  Google Scholar 

  • Bean, J.W., and N.E. Leatherman. 1969. Cerebral blood flow during convulsions: Alterations induced in animals by high pressure oxygen. Archives of Neurology 20 (4): 396–405.

    Article  CAS  PubMed  Google Scholar 

  • Bean, J.W., J. Lignell, and J. Coulson. 1971. Regional cerebral blood flow, O2, and EEG in exposures to O2 at high pressure. Journal of Applied Physiology 31 (2): 235–242.

    Article  CAS  PubMed  Google Scholar 

  • Bean, J.W., J. Lignell, and D.W. Burgess. 1972. Cerebral O2, CO2, regional cerebral vascular control, and hyperbaric oxygenation. Journal of Applied Physiology 32 (5): 650–657.

    Article  CAS  PubMed  Google Scholar 

  • Bergo, G.W., and I. Tyssebotn. 1992. Cerebral blood flow distribution during exposure to 5 bar oxygen in awake rats. Undersea Biomedical Research 19 (5): 339–354.

    CAS  PubMed  Google Scholar 

  • Bradley, R.S., and M.S. Thorniley. 2005. A review of attenuation correction techniques for tissue fluorescence. Journal of the Royal Society Interface 3: 1–13.

    Article  PubMed Central  Google Scholar 

  • Chance, B., and V. Legallias. 1963. A spectrofluorometer for recording of intracellular oxidation- reduction states. IEEE Transactions on Biomedical Engineering BME-10: 40–47.

    Google Scholar 

  • Chance, B., and G.R. Williams. 1955a. Respiratory enzymes in oxidative phosphorylation (I- Kinetics of oxygen utilization). The Journal of Biological Chemistry 217: 383–393.

    Article  CAS  PubMed  Google Scholar 

  • ———. 1955b. Respiratory enzymes in oxidative phosphorylation (III- The steady state). The Journal of Biological Chemistry 217: 409–427.

    Article  CAS  PubMed  Google Scholar 

  • Chance, B., D. Jamieson, and H. Coles. 1965. Energy-linked pyridine nucleotide reduction: Inhibitory effects of hyperbaric oxygen in vitro and in vivo. Nature 4981: 257–263.

    Article  Google Scholar 

  • Chance, B., D. Jamieson, and J.R. Williamson. 1966. Control of the oxidation-reduction state of reduced pyridine nucleotides in vivo and in vitro by hyperbaric oxygen. In Third international conference on hyperbaric medicine, 15–41. Washington, DC: National Academy of Sciences.

    Google Scholar 

  • Chance, B., N. Oshino, T. Sugano, and A. Mayevsky. 1973. Basic principles of tissue oxygen determination from mitochondrial signals. Oxygen Transport to Tissue, Advances in Experimental Medicine and Biology 37A: 277–292.

    Article  CAS  Google Scholar 

  • Chance, B., A. Mayevsky, C. Goodwin, and L. Mela. 1974. Factors in oxygen delivery to tissue. Microvascular Research 8: 276–282.

    Article  CAS  PubMed  Google Scholar 

  • Chavko, M., J.C. Braisted, N.J. Outsa, and A.L. Harabin. 1998. Role of cerebral blood flow in seizures from hyperbaric oxygen exposure. Brain Research 791 (1–2): 75–82.

    Article  CAS  PubMed  Google Scholar 

  • Coremans, J.M.C.C., C. Ince, H.A. Bruining, and G.J. Puppels. 1997. (Semi-)Quantitive analysis of reduced nicotinamide adenine dinucleotide fluorescence images of blood-perfused rat heart. Biophysical Journal 72: 1849–1860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demchenko, I.T., A.E. Boso, T.J. O’Neill, P.B. Bennett, and C.A. Piantadosi. 2000. Nitric oxide and cerebral blood flow responses to hyperbaric oxygen. Journal of Applied Physiology 88 (4): 1381–1389.

    Article  CAS  PubMed  Google Scholar 

  • Demchenko, I.T., A.E. Boso, A.R. Whorton, and C.A. Piantadosi. 2001. Nitric oxide production is enhanced in rat brain before oxygen-induced convulsions. Brain Research 917 (2): 253–261.

    Article  CAS  PubMed  Google Scholar 

  • Demchenko, I.T., Y.I. Luchakov, A.N. Moskvin, D.R. Gutsaeva, B.W. Allen, E.D. Thalmann, and C.A. Piantadosi. 2005. Cerebral blood flow and brain oxygenation in rats breathing oxygen under pressure. Journal of Cerebral Blood Flow and Metabolism 25 (10): 1288–1300.

    Article  PubMed  Google Scholar 

  • Deutsch, A., E. Pevzner, A. Jaronkin, and A. Mayevsky. 2004. Real time evaluation of tissue vitality by monitoring of microcircultory blood flow, HbO2 and mitochondrial NADH redox state. SPIE Proceedings 5317: 116–127.

    Article  CAS  Google Scholar 

  • Dirnagl, U., B. Kaplan, M. Jacewicz, and W. Pulsinelli. 1989. Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model. Journal of Cerebral Blood Flow and Metabolism 9: 589–596.

    Article  CAS  PubMed  Google Scholar 

  • Dora, E. 1983. Glycolysis and epilepsy-induced changes in cerebrocortical NAD/NADH redox state. Journal of Neurochemistry 41: 1774–1777.

    Article  CAS  PubMed  Google Scholar 

  • Dora, E., L. Gyulai, and A.G.B. Kovach. 1984. Determinants of brain activation-induced cortical NAD/NADH responses in vivo. Brain Research 299: 61–72.

    Article  CAS  PubMed  Google Scholar 

  • Feldmeier, J.J. 2003. Hyperbaric oxygen: Indications and results. In The hyperbaric oxygen therapy committee report. Undersea and hyperbaric medical society. North Carolina: Undersea and Hyperbaric Medical Society.

    Google Scholar 

  • Fertziger, A.P., and J.B. Ranck Jr. 1970. Potassium accumulation in interstitial space during epileptiform seizures. Experimental Neurology 26 (3): 571–585.

    Article  CAS  PubMed  Google Scholar 

  • Friedli, C.M., D.S. Sclarsky, and A. Mayevsky. 1982. Multiprobe monitoring of ionic, metabolic, and electrical activities in the awake brain. The American Journal of Physiology 243 (3): R462–R469.

    CAS  PubMed  Google Scholar 

  • Gill, A.L., and C.N. Bell. 2004. Hyperbaric oxygen: Its uses, mechanisms of action and outcomes. QJM 97 (7): 385–395.

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb, S.F., P.L. Schmit, J.R. Stewart, and G. Bendixen. 1979. The in vivo effect of oxygen on Na-K-ATPase: The beginning of a new cellular theory of oxygen toxicity. In Proceedings of the sixth international congress on hyperbaric medicine, ed. G. Smith, 8–12.45. Aberdeen: Aberdeen University Press.

    Google Scholar 

  • Haberl, R.L., M.L. Heizer, A. Marmarou, and E.F. Ellis. 1989. Laser-Doppler assessment of brain microcirculation: Effect of systemic alterations. American Journal of Physiology. Heart and Circulatory Physiology 256: H1247–H1254.

    Article  CAS  Google Scholar 

  • Harbig, K., B. Chance, A.G.B. Kovach, and M. Reivich. 1976. In vivo measurement of pyridine nucleotide fluorescence from cat brain cortex. Journal of Applied Physiology 41 (4): 480–488.

    Article  CAS  PubMed  Google Scholar 

  • Heinemann, U., and H.D. Lux. 1975. Undershoots following stimulus-induced rises of extracellular potassium concentration in cerebral cortex of cat. Brain Research 93 (1): 63–76.

    Article  CAS  PubMed  Google Scholar 

  • Hempel, F.G., F.F. Jobsis, J.L. LaManna, M.R. Rosenthal, and H.A. Saltzman. 1977. Oxidation of cerebral cytochrome aa3 by oxygen plus carbon dioxide at hyperbaric pressures. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 43 (5): 873–879.

    Article  CAS  PubMed  Google Scholar 

  • Ince, C., J.M.C.C. Coremans, and H.A. Bruining. 1992. In In vivo NADH fluorescence, ed. W. Erdmann and D.F. Bruley, 277–296. New York: Plenum Press.

    Google Scholar 

  • Jobsis, F.F., and W.N. Stainsby. 1968. Oxidation of NADH during contractions of circulated mammalian skeletal muscle. Respiration Physiology 4: 292–300.

    Article  CAS  PubMed  Google Scholar 

  • Jobsis, F.F., M. O’Connor, A. Vitale, and H. Vreman. 1971. Intracellular redox changes in functioning cerebral cortex. I. Metabolic effects of epileptiform activity. Journal of Neurophysiology 3465: 735–749.

    Article  Google Scholar 

  • Kaplan, S.A., and S.N. Stein. 1957. Effects of oxygen at high pressure on the transport of potassium, sodium and glutamate in Guinea pig brain cortex. The American Journal of Physiology 190 (1): 157–162.

    Article  CAS  PubMed  Google Scholar 

  • Kirkeby, O.J., I.R. Rise, L. Nordsletten, S. Skjeldal, C. Hall, and C. Risoe. 1995. Cerebral blood flow measured with intracerebral laser-Dopplerflow probes and radioactive microspheres. Journal of Applied Physiology 79 (5): 1479–1486.

    Article  CAS  PubMed  Google Scholar 

  • Kovachich, G.B., and O.P. Mishra. 1981. Partial inactivation of Na,K-ATPase in cortical brain slices incubated in normal Krebs-Ringer phosphate medium at 1 and at 10 atm oxygen pressures. Journal of Neurochemistry 36 (1): 333–335.

    Article  CAS  PubMed  Google Scholar 

  • Kramer, R.S., and R.D. Pearlstein. 1979. Cerebral cortical microfluorometry at isosbestic wavelengths for correction of vascular artifact. Science 205: 693–696.

    Article  CAS  PubMed  Google Scholar 

  • Lehmenkuhler, A., D. Bingmann, H. Lange-Asschenfeldt, and D. Berges. 1978. Oxygen pressure and ictal activity in the cerebral cortex of artificially ventilated rats during exposure to oxygen high pressure. In Oxygen transport to tissue III, ed. I.A. Silver, M. Erecinska, and H.I. Bicher, 679–685. New York: Plenum.

    Chapter  Google Scholar 

  • Lewis, D.V., and W.H. Schuette. 1975. NADH fluorescence and [K+]o changes during hippocampal electrical stimulation. Journal of Neurophysiology 38 (2): 405–417.

    Article  CAS  PubMed  Google Scholar 

  • Mathews, C.K., K.E. Van Holde, and E.G. Ahern. 1999. Protein function and evolution. In Biochemistry, ed. C.K. Mathews, K.E. Van Holde, and E.G. Ahern, 212–256. San Francisco: Wesley Longman.

    Google Scholar 

  • Mayevsky, A. 1975. The effect of trimethadione on brain energy metabolism and EEG activity of the conscious rat exposed to HPO. Journal of Neuroscience Research 1: 131–142.

    Article  CAS  PubMed  Google Scholar 

  • ———. 1976. Brain energy metabolism of the conscious rat exposed to various physiological and pathological situations. Brain Research 113: 327–338.

    Article  CAS  PubMed  Google Scholar 

  • ———. 1978a. Ischemia in the brain: The effects of carotid artery ligation and decapitation on the energy state of the awake and anesthetized rat. Brain Research 140: 217–230.

    Article  CAS  PubMed  Google Scholar 

  • ———. 1978b. The responses of an awake brain to HPO under increased CO2 concentration. Advances in Experimental Medicine and Biology 92: 735–740.

    Article  Google Scholar 

  • ———. 1978c. Shedding light on the awake brain. In Frontiers in bioenergetics: From electrons to tissues, ed. P.L. Dutton, J. Leigh, and A. Scarpa, vol. II, 1467–1476. New York: Academic Press.

    Google Scholar 

  • ———. 1983. Multiparameter monitoring of the awake brain under hyperbaric oxygenation. Journal of Applied Physiology 54 (3): 740–748.

    Article  CAS  PubMed  Google Scholar 

  • ———. 1984. Brain NADH redox state monitored in vivo by fiber optic surface fluorometry. Brain Research Reviews 7: 49–68.

    Article  CAS  Google Scholar 

  • Mayevsky, A., and B. Chance. 1975. Metabolic responses of the awake cerebral cortex to anoxia hypoxia spreading depression and epileptiform activity. Brain Research 98: 149–165.

    Article  CAS  PubMed  Google Scholar 

  • ———. 1982. Intracellular oxidation-reduction state measured in situ by a multicannel fiber-optic surface fluorometer. Science 217: 537–540.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2007. Oxidation-reduction states of NADH in vivo: From animals to clinical use. Mitochondrion 7: 330–339.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., and G. Rogatsky. 2007. Mitochondrial function in vivo evaluated by NADH fluorescence: From animal models to human studies. American Journal of Physiology. Cell Physiology 292: C615–C640.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., and D.S. Sclarsky. 1983. Correlation of brain NADH redox state, K+, PO2 and electrical activity during hypoxia, ischemia and spreading depression. Advances in Experimental Medicine and Biology 159: 129–141.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., and B. Shaya. 1980. Factors affecting the development of hyperbaric oxygen toxicity in the awake rat brain. Journal of Applied Physiology 49: 700–707.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., D. Jamieson, and B. Chance. 1974. Oxygen poisoning in the unanesthetized brain: Correlation of the oxidation-reduction state of pyridine nucleotide with electrical activity. Brain Research 76: 481–491.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., K. Worbel-Kuhl, and L. Mela. 1980. High presure oxygenation in unanesthetized brain: Mitochondrial activity, pyridine nucleotide redox state, and electrical activity. Neurological Research 1 (4): 305–311.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., V. Ventura, and N. Zarchin. 1989. Metabolic responses to hyperbaric oxygenation in the normoxic and ischemic brain. Cerebral ischemia and cerebral resuscitation. Proc. EUBS Meeting, Eilat, Israel, Israel Navy.

    Google Scholar 

  • Mayevsky, A., K. Frank, M. Muck, S. Nioka, M. Kessler, and B. Chance. 1992. Multiparametric evaluation of brain functions in the Mongolian gerbil in vivo. Journal of Basic and Clinical Physiology and Pharmacology 3: 323–342.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., S. Meilin, T. Manor, E. Ornstein, N. Zarchin, and J. Sonn. 1998. Multiparametric monitoring of brain oxygen balance under experimental and clinical conditions. Neurological Research 20: S76–S80.

    Article  PubMed  Google Scholar 

  • Mayevsky, A., T. Manor, E. Pevzner, A. Deutsch, R. Etziony, and N. Dekel. 2002. Real-time optical monitoring of tissue vitality in vivo. Proceeding of SPIE 4616: 30–39.

    Article  CAS  Google Scholar 

  • Mayevsky, A., T. Manor, E. Pevzner, A. Deutsch, R. Etziony, N. Dekel, and A. Jaronkin. 2004. Tissue spectroscope: A novel in vivo approach to real time monitoring of tissue vitality. Journal of Biomedical Optics 9 (5): 1028–1045.

    Article  CAS  PubMed  Google Scholar 

  • Meirovithz, E., J. Sonn, and A. Mayevsky. 2007. Effect of hyperbaric oxygenation on brain hemodynamics, hemoglobin oxygenation and mitochondrial NADH. Brain Research Reviews 54 (2): 294–304.

    Article  CAS  PubMed  Google Scholar 

  • Moskvin, A.N., S.Y. Zhilyaev, O.I. Sharapov, T.F. Platonova, D.R. Gutsaeva, V.B. Kostkin, and I.T. Demchenko. 2003. Brain blood flow modulates the neurotoxic action of hyperbaric oxygen via neuronal and endothelial nitric oxide. Neuroscience and Behavioral Physiology 33 (9): 883–888.

    Article  CAS  PubMed  Google Scholar 

  • Omae, T., S. Ibayashi, K. Kusuda, H. Nakamura, H. Yagi, and M. Fujishima. 1998. Effects of high atmospheric pressure and oxygen on middle cerebral blood flow velocity in humans measured by transcranial Doppler. Stroke 29 (1): 94–97.

    Article  CAS  PubMed  Google Scholar 

  • Ookawa, T., and J. Bures. 1975. Extracellular potassium shifts accompanying epileptic discharge induced in chicken hyperstriatum by systemic injection of Metrazol. Brain Research 97 (1): 171–176.

    Article  CAS  PubMed  Google Scholar 

  • Puglia, C.D., E.M. Glauser, and S.C. Glauser. 1974. Core temperature response of rats during exposure to oxygen at high pressure. Journal of Applied Physiology 36 (2): 149–153.

    Article  CAS  PubMed  Google Scholar 

  • Rampil, I.J., L. Litt, and A. Mayevsky. 1992. Correlated, simultaneous, multiple-wavelength optical monitoring in vivo of localized cerebrocortical NADH and brain microvessel hemoglobin oxygen saturation. Journal of Clinical Monitoring 8 (3): 216–225.

    Article  CAS  PubMed  Google Scholar 

  • Rogatsky, G.G., E.G. Shifrin, and A. Mayevsky. 1999. Physiologic and biochemical monitoring during hyperbaric oxygenation: A review. Undersea & Hyperbaric Medicine 26 (2): 111–122.

    CAS  Google Scholar 

  • Sato, T., Y. Takeda, S. Hagioka, S. Zhang, and M. Hirakawa. 2001. Changes in nitric oxide production and cerebral blood flow before development of hyperbaric oxygen-induced seizures in rats. Brain Research 918 (1–2): 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Scheufler, K.M., H.J. Rohrborn, and J. Zentner. 2002. Does tissue oxygen-tension reliably reflect cerebral oxygen delivery and consumption? Anesthesia and Analgesia 95 (4): 1042–1048, table of contents.

    CAS  PubMed  Google Scholar 

  • Shilling, C.W., and B.H. Adams. 1933. A study of the convulsive seizures caused by breathing oxygen at high pressures. Naval Medical Bulletin 31: 112–121.

    Google Scholar 

  • Somjen, G.G., M. Rosenthal, G. Cordingley, J. LaManna, and E. Lothman. 1976. Potassium, neuroglia, and oxidative metabolism in central gray matter. Federation Proceedings 35: 1266–1271.

    CAS  PubMed  Google Scholar 

  • Sonn, J., E. Meirovithz, and A. Mayrvsky. 2008. Hyperbaric hyperoxia and the brain in vivo: The balance between therapy and toxicity. Journal of Innovative Optical Health Sciences 01: 185–193.

    Article  Google Scholar 

  • Stein, S.N., and R.R. Sonnenschein. 1950. Electrical activity and oxygen tension of brain during hyperoxie convulsions. The Journal of Aviation Medicine 21 (5): 401–405.

    CAS  PubMed  Google Scholar 

  • Thom, S.R., V. Bhopale, D. Fisher, Y. Manevich, P.L. Huang, and D.G. Buerk. 2002. Stimulation of nitric oxide synthase in cerebral cortex due to elevated partial pressures of oxygen: An oxidative stress response. Journal of Neurobiology 51 (2): 85–100.

    Article  CAS  PubMed  Google Scholar 

  • Torbati, D., D. Parolla, and S. Lavy. 1977. Changes in local brain tissue PO2 and electrocortical activity of unanesthetized rabbits under high oxygen pressure. Aviation, Space, and Environmental Medicine 48 (4): 247–250.

    CAS  PubMed  Google Scholar 

  • ———. 1978. Blood flow in rat brain during exposure to high oxygen pressure. Aviation, Space, and Environmental Medicine 49 (8): 963–967.

    CAS  PubMed  Google Scholar 

  • Tsai, A.G., P.C. Johnson, and M. Intaglietta. 2003. Oxygen gradients in the microcirculation. Physiological Reviews 83 (3): 933–963.

    Article  CAS  PubMed  Google Scholar 

  • Van Buren, J.M., M.D. Lewis, W.H. Schuette, W.C. Whitehouse, and C.A. Marsan. 1978. Fluorometric monitoring of NADH levels in cerebral cortex: Preliminary observations in human epilepsy. Neurosurgery 2 (2): 114–121.

    Article  PubMed  Google Scholar 

  • van Hulst, R.A., J.J. Haitsma, J. Klein, and B. Lachmann. 2003. Oxygen tension under hyperbaric conditions in healthy pig brain. Clinical Physiology and Functional Imaging 23 (3): 143–148.

    Article  PubMed  Google Scholar 

  • Yoles, E., Y. Zurovsky, N. Zarchin, and A. Mayevsky. 2000. The effect of hyperbaric hyperoxia on brain function in the newborn dog in vivo. Neurological Research 22 (4): 404–408.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., A.D. Sam, B. Klitzman, and C.A. Piantadosi. 1995. Inhibition of nitric oxide synthase on brain oxygenation in anesthetized rats exposed to hyperbaric oxygen. Undersea & Hyperbaric Medicine 22 (4): 377–382.

    CAS  Google Scholar 

  • Zhilyaev, S.Y., A.N. Moskvin, T.F. Platonova, D.R. Gutsaeva, I.V. Churilina, and I.T. Demchenko. 2003. Hyperoxic vasoconstriction in the brain is mediated by inactivation of nitric oxide by superoxide anions. Neuroscience and Behavioral Physiology 33 (8): 783–787.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mayevsky, A. (2023). Brain Multiparametric Responses to Hyperbaric Hyperoxia. In: Hyperbaric Oxygenation. Springer, Cham. https://doi.org/10.1007/978-3-031-49681-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49681-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49680-6

  • Online ISBN: 978-3-031-49681-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation