Long-Short Term Memory (LSTM) Based Architecture for Forecasting Tourist Arrivals

  • Chapter
  • First Online:
AI in Business: Opportunities and Limitations

Abstract

Indonesia is a country that has beautiful destinations. Indonesia’s natural beauty can increase the arrival of foreign tourists if appropriately managed. The arrival of foreign tourists will be able to improve the economy of the community around the destination. But in reality foreign tourist arrivals sometimes go up and sometimes down. This can be seen in the data obtained from the Indonesian Central Bureau of Statistics (BPS) for 2006–2021.The purpose of this study is to forecast tourist arrivals to Indonesia using the Long Short Term Memory (LSTM) method because the method is capable of handling sequential data such as tourist arrival data. This study also compares the 2006–2009 dataset divided by 0 and without 0, and the 2021 dataset with 0 and without 0. To get the best results, these results are evaluated using the Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE). The test results obtained for 2006–2019 data with 0 have the best value on MAPE which is 6.51. While the results of the RMSE test with the best value are found in the 2006–2021 data without 0, namely 101618.80 and for testing using MAE the best value is found in the 2006–2021 data, namely with a value of 91922.33. Based on these results, it can be concluded that the more data the more accurate it is if the data is clean or does not have a value of 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mariyono, J.: Determinants of demand for foreign tourism in Indonesia. J. Ekon. Pembang. 18(1), 82 (2017). https://doi.org/10.23917/jep.v18i1.2042

    Article  Google Scholar 

  2. Yang, Y., Wong, K.K.F.: A spatial econometric approach to model spillover effects in tourism flows. J. Travel Res. 51(6), 768–778 (2012). https://doi.org/10.1177/0047287512437855

    Article  Google Scholar 

  3. Fattah, J., Ezzine, L., Aman, Z., El Moussami, H., Lachhab, A.: Forecasting of demand using ARIMA model. Int. J. Eng. Bus. Manag. 10, 1–9 (2018). https://doi.org/10.1177/1847979018808673

    Article  Google Scholar 

  4. Hsieh, S.-C.: Tourism demand forecasting based on an LSTM network and its variants. Algorithms 14(8), 243 (2021). https://doi.org/10.3390/a14080243

    Article  Google Scholar 

  5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9 (1997). https://doi.org/10.17582/journal.pjz/2018.50.6.2199.2207

  6. Haviluddin, Jawahir, A.: Comparing of ARIMA and RBFNN for short-term forecasting. Int. J. Adv. Intell. Inform. 1(1), 15–22 (2015). https://doi.org/10.26555/ijain.v1i1.10

  7. Peng, L., Wang, L., Ai, X.Y., Zeng, Y.R.: Forecasting tourist arrivals via random forest and long short-term memory. Cognit. Comput. 13(1), 125–138 (2021). https://doi.org/10.1007/s12559-020-09747-z

    Article  Google Scholar 

  8. Huang, Y., Xu, C., Ji, M., **ang, W., He, D.: Medical service demand forecasting using a hybrid model based on ARIMA and self-adaptive filtering method. BMC Med. Inform. Decis. Mak. 20(1), 1–14 (2020). https://doi.org/10.1186/s12911-020-01256-1

    Article  Google Scholar 

  9. Rice, W.L., Park, S.Y., Pan, B., Newman, P.: Forecasting campground demand in US national parks. Ann. Tour. Res. 75(March), 424–438 (2019). https://doi.org/10.1016/j.annals.2019.01.013

    Article  Google Scholar 

  10. Mukhtar, H., Taufiq, R.M., Herwinanda, I., Winarso, D., Hayami, R.: Forecasting Covid-19 time series data using the long short-term memory (LSTM ). Int. J. Adv. Comput. Sci. Appl. 13(10), 211–217 (2022)

    Google Scholar 

  11. Santoso, A., Pranata, R., Wibowo, A., Al-Farabi, M.J., Huang, I., Antariksa, B.: Cardiac injury is associated with mortality and critically ill pneumonia in COVID-19: a meta-analysis. Am. J. Emerg. Med. 44(xxxx), 352–357 (2021). https://doi.org/10.1016/j.ajem.2020.04.052

  12. Bouktif, S., Fiaz, A., Ouni, A., Serhani, M.A.: Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: comparison with machine learning approaches. Energies 11(7) (2018). https://doi.org/10.3390/en11071636

  13. Mazlan, A.U., et al.: A review on recent progress in machine learning and deep learning methods for cancer classification on gene expression data. Processes 9(8), 1466 (2021). https://doi.org/10.3390/pr9081466

    Article  Google Scholar 

  14. Weytjens, H., Lohmann, E., Kleinsteuber, M.: Cash flow prediction: MLP and LSTM compared to ARIMA and Prophet. Electron. Commer. Res. (0123456789) (2019). https://doi.org/10.1007/s10660-019-09362-7

  15. Abidin, N.H.Z., et al.: Improving intelligent personality prediction using Myers-briggs type indicator and random forest classifier. Int. J. Adv. Comput. Sci. Appl. 11(11), 192–199 (2020). https://doi.org/10.14569/IJACSA.2020.0111125

    Article  Google Scholar 

  16. Bulchand-Gidumal, J.: Impact of artificial intelligence in travel, tourism, and hospitality. Handb. e-Tourism (August) (2020). https://doi.org/10.1007/978-3-030-05324-6

  17. Kang, T., Lim, D.Y., Tayara, H., Chong, K.T.: Forecasting of power demands using deep learning. Appl. Sci. 10(20), 1–11 (2020). https://doi.org/10.3390/app10207241

    Article  Google Scholar 

  18. Ren, X., Li, Y., Zhao, J.J., Qiang, Y.: Tourism growth prediction based on deep learning approach. Complexity 2021 (2021). https://doi.org/10.1155/2021/5531754

  19. Ouhame, S., Hadi, Y.: Multivariate workload prediction using vector autoregressive and stacked LSTM models. ACM Int. Conf. Proc. Ser. (2019). https://doi.org/10.1145/3314074.3314084

    Article  Google Scholar 

  20. K.S., V.M., Goyal, A., Kumar, R., Kulkarni, S.: A solution to forecast demand using long short-term memory recurrent neural networks for time series forecasting. In: Midwest Decision …, p. 18 (2016). https://mwdsi2018.exordo.com/files/papers/70/final_draft/LSTM_Final_Paper_MWDSI.pdf

  21. Masri, F., Saepudin, D., Adytia, D.: Forecasting of sea level time series using deep learning RNN, LSTM, and BiLSTM, case study in Jakarta Bay, Indonesia. e-Proc. Eng. 7(2), 8544–8551 (2020)

    Google Scholar 

  22. Kilimci, Z.H., et al.: An improved demand forecasting model using deep learning approach and proposed decision integration strategy for supply chain. Complexity 2019 (2019). https://doi.org/10.1155/2019/9067367

  23. Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H., Tran, Q., Seaman, B.: Sales demand forecast in E-commerce using a long short-term memory neural network methodology. In: Lecture Notes in Computer Science (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.), vol. 11955, pp. 462–474. LNCS (2019). https://doi.org/10.1007/978-3-030-36718-3_39

  24. Quy, T.L., Nejdl, W., Spiliopoulou, M., Ntoutsi, E.: A neighborhood-augmented LSTM model for taxi-passenger demand. Semantic1, 100–116 (2020). https://doi.org/10.1007/978-3-030-38081-6

  25. Román-Portabales, A., López-Nores, M., Pazos-Arias, J.J.: Systematic review of electricity demand forecast using ann-based machine learning algorithms. Sensors 21(13), 1–23 (2021). https://doi.org/10.3390/s21134544

    Article  Google Scholar 

  26. Sehovac, L., Nesen, C., Grolinger, K.: Forecasting building energy consumption with deep learning: a sequence to sequence approach. In: Proceedings of the 2019 IEEE International Congress Internet Things, ICIOT 2019—Part 2019 IEEE World Congress Services, pp. 108–116 (2019). https://doi.org/10.1109/ICIOT.2019.00029

  27. Kim, M.H., Kim, J.H., Lee, K., Gim, G.Y.: The prediction of COVID-19 using LSTM algorithms. Int. J. Netw. Distrib. Comput. 9(1), 59–74 (2021). https://doi.org/10.2991/IJNDC.K.201218.003

    Article  Google Scholar 

  28. Kock, F., Nørfelt, A., Josiassen, A., Assaf, A.G., Tsionas, M.G.: Understanding the COVID-19 tourist psyche: the evolutionary tourism paradigm. Ann. Tour. Res. 85(September) (2020). https://doi.org/10.1016/j.annals.2020.103053

  29. Sinsomboonthong, S.: Performance comparison of new adjusted min-max with decimal scaling and statistical column normalization methods for artificial neural network classification. Int. J. Math. Math. Sci. 2022 (2022). https://doi.org/10.1155/2022/3584406

  30. Aksu, G., Güzeller, C.O., Eser, M.T.: The effect of the normalization method used in different sample sizes on the success of artificial neural network model. Int. J. Assess. Tools Educ. 6(2), 170–192 (2019). https://doi.org/10.21449/ijate.479404

    Article  Google Scholar 

  31. Rajeswari, D., Thangavel, K.: The performance of data normalization techniques on heart disease datasets. Int. J. Adv. Res. Eng. Technol. 11(12), 2350–2357 (2020). https://doi.org/10.34218/IJARET.11.12.2020.222

    Article  Google Scholar 

  32. El Bahi, Y.F., Ezzine, L., El Moussami, Aman, Z.: Modeling and forecasting of fuel selling price using time series approach: case study. In: 2018 5th International Conference on Control, Decision and Information Technologies CoDIT 2018, pp. 283–288 (2018). https://doi.org/10.1109/CoDIT.2018.8394835

  33. Lee, K., Kang, D.Y., Choi, H.R., Park, B.K., Cho, M.J., Kim, D.: Intermittent demand forecasting with a recurrent neural network model using IoT data. Int. J. Control Autom. 11(3), 153–168 (2018). https://doi.org/10.14257/ijca.2018.11.3.14

    Article  Google Scholar 

  34. Hodson, T.O.: Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geosci. Model Dev. 15(14), 5481–5487 (2022). https://doi.org/10.5194/gmd-15-5481-2022

    Article  Google Scholar 

  35. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(3), 1247–1250 (2014). https://doi.org/10.5194/gmd-7-1247-2014

    Article  Google Scholar 

  36. Hirashima, A., Jones, J., Bonham, C.S., Fuleky, P.: Forecasting in a mixed up world: nowcasting Hawaii tourism. Ann. Tour. Res. 63, 191–202 (2017). https://doi.org/10.1016/j.annals.2017.01.007

    Article  Google Scholar 

  37. Song, H., Witt, S.F., Jensen, T.C.: Tourism forecasting: accuracy of alternative econometric models. Int. J. Forecast. 19(1), 123–141 (2003). https://doi.org/10.1016/S0169-2070(01)00134-0

    Article  Google Scholar 

  38. Kulshrestha, A., Krishnaswamy, V., Sharma, M.: Bayesian BILSTM approach for tourism demand forecasting. Ann. Tour. Res. 83(April), 102925 (2020). https://doi.org/10.1016/j.annals.2020.102925

  39. Mukhtar, H., Remli, M.A., Wong, K.N.S.W.S., Fuad, E., Siregar, J., Rizki, Y.: Forecasting tourist arrivals with partial time series data using long-short term memory. Eng. Technol. Q. Rev. 6(1), 56–64 (2023). https://doi.org/10.5281/zenodo.7970542

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harun Mukhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukhtar, H., Remli, M.A., Wong, K.N.S.W.S., Rizki, Y. (2024). Long-Short Term Memory (LSTM) Based Architecture for Forecasting Tourist Arrivals. In: Khamis, R., Buallay, A. (eds) AI in Business: Opportunities and Limitations. Studies in Systems, Decision and Control, vol 516. Springer, Cham. https://doi.org/10.1007/978-3-031-49544-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49544-1_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49543-4

  • Online ISBN: 978-3-031-49544-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation