Poly-implantation and Embryonic Death

  • Chapter
  • First Online:
Plains Vizcachas

Abstract

Embryo implantation in the vizcacha begins at 18 days post-coitum (dpc). It occurs in the caudocranial direction, that is, from the caudal to the cranial uterine segments. For each uterine horn, between 5 and 6 implantation sites (IS) are found. In each IS, an interstitial and antimesometrial implantation is observed, with an elongated blastocyst due to the growth of the visceral endoderm. Between 26 and 70 dpc, the death and resorption of the embryos begins in the cranial and middle IS; on the other hand, the caudal IS keep their growth and development rate, giving rise to two precocial pups after 5 months of gestation. Former studies concluded that death was not due to infectious agents, superfetation, or macro and microscopic variations in the uterine horns. However, later studies revealed that the uterine horns are heterogeneous in their anatomy and physiology along their craniocaudal extension. It is proposed that the uterine glands and blood vessels would have a differential role between the IS that are resorbed and those that will survive. It was observed that embryonic death in this species follows a morphological pattern like that registered in murine rats and mice, considered classic physiological and experimental models. That pattern is characterized by the presence of hemorrhage, neutrophilic infiltration, necrosis, and fibrosis. Morphological and physiological similarities observed between related and phylogenetically distant species allow us to propose the vizcacha as an unconventional model for studying spontaneous embryonic death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 176.79
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acuña F, Barbeito CG, Portiansky EL, Ranea G, Nishida F, Miglino M, Flamini MA (2020) Early and natural embryonic death in Lagostomus maximus: association with the uterine glands, vasculature, and musculature. J Morphol 281(7):710–724

    Article  PubMed  Google Scholar 

  • Acuña F, Barbeito CG, Portiansky EL, Miglino MA, Flamini MA (2021) Prenatal development in Lagostomus maximus (Rodentia, Chinchillidae): a unique case among eutherian mammals of physiological embryonic death. J Morphol 282(5):720–732

    Article  PubMed  Google Scholar 

  • Acuña F, Barbeito CG, Portiansky EL, Ranea G, Miglino MA, Flamini MA (2022) Spontaneous embryonic death in plains viscacha (Lagostomus maximus – Rodentia), a species with unique reproductive characteristics. Theriogenology 185:88–96

    Article  PubMed  Google Scholar 

  • Acuña F, Portiansky EL, Miglino MA, Flamini MA, Barbeito CG (2023) Embryonic-placental relationship in Lagostomus maximus as compared to other hystricognath rodents and eutherian mammals. Zoology 158:126082

    Article  PubMed  Google Scholar 

  • Alberto MLV, Meirelles FV, Perecin F, Ambrósio CE, Favaron PO, Franciolli ALR, Mess AM, Dos Santos JM, Rici REG, Bertolini M, Miglino MA (2013) Development of bovine embryos derived from reproductive techniques. Reprod Fertil Dev 25:907–917

    Article  CAS  PubMed  Google Scholar 

  • Barbeito CG, Acuña F, Miglino MA, Portiansky EL, Flamini MA (2021) Placentation and embryo death in the plains viscacha (Lagostomus maximus). Placenta 108:97–102

    Article  PubMed  Google Scholar 

  • Blandau RJ (1949) Embryo-endometrial interrelationship in the rat and guinea pig. Anat Rec 104(3):331–359

    Article  CAS  PubMed  Google Scholar 

  • Bouchard S, Zigouris J, Fenton MB (2001) Automn mating and likely resorption of an embryo by a Hoary Bat, Lasiurus cinereus (Chiroptera: Vespertilionidae). Am Midl Nat 145:210–212

    Article  Google Scholar 

  • Brien M-E, Baker B, Duval C, Gaudreault V, Jones RL, Girard S (2019) Alarmins at the maternal-fetal interface: involvement of inflammation in placental dysfunction and pregnancy complications 1. Can J Physiol Pharmacol 97(3):206–212

    Article  CAS  PubMed  Google Scholar 

  • Burton GJ, Cindrova-Davies T, Yung HW, Jauniaux E (2021) Hypoxia and reproductive health: oxygen and development of the human placenta. Reproduction 161(1):F53–F65

    Article  CAS  PubMed  Google Scholar 

  • Chen GY, Nuñez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10(12):826–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira GB, de Araújo Júnior HN, da Silva Costa H, Silva AR, de Moura CEB, de Oliveira RHA, Miglino MA, de Oliveira MF (2017) Post-implantation development of red-rumped agouti (Dasyprocta leporina Linnaeus, 1758). Anim Reprod Sci 182:35–47

    Article  PubMed  Google Scholar 

  • Drews B, Ringleb J, Waurich R, Hildebrandt TB, Schröder K, Roellig K (2013) Free blastocyst and implantation stages in the European brown hare: correlation between ultrasound and histological data. Reprod Fertil Dev 25(6):866–878

    Article  CAS  PubMed  Google Scholar 

  • Drews B, Landaverde LF, Kühl A, Drews U (2020) Spontaneous embryo resorption in the mouse is triggered by embryonic apoptosis followed by rapid removal via maternal sterile purulent inflammation. BMC Dev Biol 20(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Bizri HR, Barros Monteiro FO, Andrade RDS, Valsecchi J, de Araújo Guimaraes DA, Mayor P (2017) Corrigendum to ‘Embryonic and fetal morphology in the lowland paca (Cuniculus paca): a precocial hystricomorph rodent’. Theriogenology 128:225

    Article  Google Scholar 

  • Fenelon JC, Renfree MB (2018) The history of the discovery of embryonic diapause in mammals. Biol Reprod 99(1):242–251

    Article  PubMed  Google Scholar 

  • Flamini MA, Portiansky EL, Favaron PO, Martins DS, Ambrósio CE, Mess AM, Miglino MA, Barbeito CG (2011) Chorioallantoic and yolk sac placentation in the plains viscacha (Lagostomus maximus) – a caviomorph rodent with natural polyovulation. Placenta 32(12):963–968

    Article  CAS  PubMed  Google Scholar 

  • Flamini MA, Barbeito CG, Portiansky EL (2019) Morphological characteristics of the uterus and uterine cervix of the plains viscacha (Lagostomus maximus). Acta Zool 101(4):353–365

    Article  Google Scholar 

  • Flamini MA, Barreto RSN, Matias GSS, Birbrair A, Harumi de Castro Sasahara T, Barbeito CG, Miglino MA (2020) Key characteristics of the ovary and uterus for reproduction with particular reference to poly ovulation in the plains viscacha (Lagostomus maximus, Chinchillidae). Theriogenology 142:184–195

    Google Scholar 

  • Flores LE, Hildebrandt TB, Kühl AA, Drews B (2014) Early detection and staging of spontaneous embryo resorption by ultrasound biomicroscopy in murine pregnancy. Reprod Biol Endocrinol 12(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonseca BM, Almada M, Costa MA, Teixeira NA, Correia-da-Silva G (2014) Rat spontaneous foetal resorption: altered α2-macroglobulin levels and uNK cell number. Histochem Cell Biol 142(6):693–701

    Article  CAS  PubMed  Google Scholar 

  • Fortes EA, Ferraz MS, Bezerra DO, Júnior AMC, Cabral RM, Sousa F, Almeida HM, Pessoa GT, Menezes DJ, Guerra SP, Sampaio IB, Assis Neto AC, Carvalho MA (2013) Prenatal development of the agouti (Dasyprocta prymnolopha Wagler, 1831): external features and growth curves. Anim Reprod Sci 140(3–4):195–205

    Article  PubMed  Google Scholar 

  • Franciolli AL, Cordeiro BM, da Fonseca ET, Rodrigues MN, Sarmento CA, Ambrosio CE, de Carvalho AF, Miglino MA, Silva LA (2011) Characteristics of the equine embryo and fetus from days 15 to 107 of pregnancy. Theriogenology 76(5):819–832

    Article  PubMed  Google Scholar 

  • Giacchino M, Claver JA, Inserra PI, Lange FD, Gariboldi MC, Ferraris SR, Vitullo AD (2020) Nutritional deficiency and placenta calcification underlie constitutive, selective embryo loss in pregnant South American plains viscacha, Lagostomus maximus (Rodentia, Caviomorpha). Theriogenology 155:77–87

    Article  CAS  PubMed  Google Scholar 

  • Gong T, Liu L, Jiang W, Zhou R (2020) DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 20(2):95–112

    Article  CAS  PubMed  Google Scholar 

  • Kaulenas A, Parkington HC, Coleman HA (1991) Response of the rat myometrium to phenylephrine in early pregnancy and the effects of 6-hydroxydopamine. Br J Pharmacol 103(2):1429–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leopardo NP, Vitullo AD (2017) Early embryonic development and spatiotemporal localization of mammalian primordial germ cell-associated proteins in the basal rodent Lagostomus maximus. Sci Rep 7(1):594

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcela SG, Cristina RMM, Angel PGM, Manuel AM, Sofía DC, Patricia DLRS, Bladimir RR, Concepción SG (2012) Chronological and morphological study of heart development in the rat. Anat Rec 295:1267–1290

    Article  Google Scholar 

  • Nadeau-Vallée M, Obari D, Palacios J, Brien MÈ, Duval C, Chemtob S, Girard S (2016) Sterile inflammation and pregnancy complications: a review. Reproduction 152(6):R277–R292

    Article  PubMed  Google Scholar 

  • Nakashima A, Shima T, Tsuda S, Aoki A, Kawaguchi M, Yoneda S, Yamaki-Ushijima A, Cheng SB, Sharma S, Saito S (2020) Disruption of placental homeostasis leads to preeclampsia. Int J Mol Sci 21(9):3298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newson RM (1966) Reproduction in the Ferral coypu (Myocastor coypu). Symp Zool Soc Lond 15:323–334

    Google Scholar 

  • Ortega-Pacheco A, Segura-Correa JC, Jimenez-Coello M, Linde Forsberg C (2007) Reproductive patterns and reproductive pathologies of stray bitches in the tropics. Theriogenology 67(2):382–390

    Article  CAS  PubMed  Google Scholar 

  • Pieri NCG, Souza AF, Casals JB, Roballo KCS, Ambrósio CE, Martins DS (2015) Comparative development of embryonic age by organogenesis in domestic dogs and cats. Reprod Domest Anim 50:625–631

    Article  PubMed  Google Scholar 

  • Roberts CM (1973) The embryology of certain hystricomorph rodents. Ph.D. Thesis, University of London

    Google Scholar 

  • Roberts CM, Perry JS (1974) Hystricomorph embryology. In: Rowlands IW, Weir BJ (eds) The biology of hystricomorph rodents. Academic Press, New York, pp 333–360

    Google Scholar 

  • Roberts CM, Weir BJ (1973) Implantation in the plains viscacha, Lagostomus maximus. J Reprod Fertil 33(2):299–307

    Article  CAS  PubMed  Google Scholar 

  • Rojas MA, Montenegro MA, Morales B (1982) Embryonic development of the degu, Octodon degus. J Reprod Fertil 66(1):31–38

    Article  CAS  PubMed  Google Scholar 

  • Schroeder K, Drews B, Roellig K, Goeritz F, Hildebrandt TB (2013) Embryonic resorption in context to intragestational corpus luteum regression: a longitudinal ultrasonographic study in the European brown hare (Lepus europaeus PALLAS, 1778). Theriogenology 80(5):479–486

    Article  CAS  PubMed  Google Scholar 

  • Weir BJ (1967) The care and management of laboratory hystricomorph rodents. Lab Anim 1(2):95–104

    Article  Google Scholar 

  • Weir BJ (1971a) The reproductive physiology of the plains viscacha, Lagostomus maximus. J Reprod Fertil 25(3):355–363

    Article  CAS  PubMed  Google Scholar 

  • Weir BJ (1971b) The reproductive organs of the female plains viscacha, Lagostomus maximus. J Reprod Fertil 25(3):365–373

    Article  CAS  PubMed  Google Scholar 

  • Wooding P, Burton G (2008) Comparative Placentation: Structures, Functions and Evolution. 8th ed. Springer, Germany.

    Google Scholar 

Download references

Acknowledgments

We would like to thank ECAS (Estación de Cría de Animales Silvestres) from the Ministry of Agroindustry of the Province of Buenos Aires, (Argentina) for capturing the animals, and the Universidad Nacional de La Plata and CONICET for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francisco Acuña or Claudio Gustavo Barbeito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acuña, F., Portiansky, E.L., Miglino, M.A., Flamini, M.A., Barbeito, C.G. (2024). Poly-implantation and Embryonic Death. In: Rasia, L.L., Barbeito, C.G., Acuña, F. (eds) Plains Vizcachas. Springer, Cham. https://doi.org/10.1007/978-3-031-49487-1_12

Download citation

Publish with us

Policies and ethics

Navigation