Estimation of Cardiac Output in Insect Hearts Paced at Different Rates

  • Conference paper
  • First Online:
IX Latin American Congress on Biomedical Engineering and XXVIII Brazilian Congress on Biomedical Engineering (CLAIB 2022, CBEB 2022)

Abstract

Insects have been often used as experimental animal models because of their considerable genetic homology with humans, short lifespan and low-cost maintenance. This study aims to estimate hemodynamic parameters (both systolic and the cardiac output) in response to increase in heart rate in the perfused in situ cardiac tube of the mealworm beetle Tenebrio molitor using a software developed in our laboratory, in which the heart is modeled as a prolate spheroid. A negative relationship between rate and the systolic parameters (e.g., stroke volume and ejection fraction) was observed, but the cardiac output was not statistically affected by heart rate. Considering that the end-diastolic volume was not significantly changed by rate, the negative staircase cannot be attributed mostly to the heterometric (Frank-Starling) regulation of cardiac systolic force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stork, N.E.: How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63(1), 31–45 (2018). https://doi.org/10.1146/annurev-ento-020117-043348

    Article  Google Scholar 

  2. Wolf, M.J.: Modeling dilated cardiomyopathies in Drosophila. Trends Cardiovasc. Med. 22(3), 55–61 (2012). https://doi.org/10.1016/j.tcm.2012.06.012

    Article  Google Scholar 

  3. Johnson, E., Sherry, T., Ringo, J., Dowse, H.: Modulation of the cardiac pacemaker of Drosophila: cellular mechanisms. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 172(3), 227–236 (2002). https://doi.org/10.1007/s00360-001-0246-8

  4. Pauls, D., Blechschmidt, C., Frantzmann, F., el Jundi, B., Selcho, M.: A comprehensive anatomical map of the peripheral octopaminergic/tyraminergic system of Drosophila melanogaster. Sci. Rep. 8(1), 11–14 (2018). https://doi.org/10.1038/s41598-018-33686-3

    Article  Google Scholar 

  5. Ranson, D.C., Ayoub, S.S., Corcoran, O., Casalotti, S.O.: Pharmacological targeting of the GABAB receptor alters Drosophila’s behavioural responses to alcohol. Addict. Biol. 25(2), 1–9 (2019). https://doi.org/10.1111/adb.12725

    Article  Google Scholar 

  6. Bushnell, P.J., et al.: Genetic targets of acute toluene inhalation in Drosophila melanogaster. Toxicol. Sci. 156(1), 230–239 (2017). https://doi.org/10.1093/toxsci/kfw243

    Article  MathSciNet  Google Scholar 

  7. Mikulak, E., Gliniewicz, A., Przygodzka, M., Solecka, J.: Galleria mellonella L. as model organism used in biomedical and other studies. Przegl. Epidemiol. 72(1), 57–73 (2018)

    Google Scholar 

  8. Soumya, M., Reddy, H.A., Nageswari, G., Venkatappa, B.: Silkworm (Bombyx mori) and its constituents: a fascinating insect in science and research. J. Entomol. Zool. Stud. 5(5), 1701–1705 (2017)

    Google Scholar 

  9. Stankiewicz, M., Dąbrowski, M., Lima, M.E.: Nervous system of Periplaneta americana cockroach as a model in toxinological studies: a short historical and actual view. J. Toxicol. 2012, 1–11 (2012). https://doi.org/10.1155/2012/143740

    Article  Google Scholar 

  10. Chowanski, S., Rosinski, G.: Myotropic effects of cholinergic muscarinic agonists and antagonists in the beetle. Curr. Pharmac. Biotechnol. 18(3), 1088–1097 (2017). https://doi.org/10.2174/1389201019666180124233440

    Article  Google Scholar 

  11. Wang, X., et al.: The locust genome provides insight into swarm formation and long-distance flight. Nat. Commun. 5(1), 2957 (2014). https://doi.org/10.1038/ncomms3957

    Article  Google Scholar 

  12. Adamski, Z., et al.: Beetles as model organisms in physiological, biomedical and environmental studies: a review. Front. Physiol. 10, 319 (2019). https://doi.org/10.3389/fphys.2019.00319

    Article  Google Scholar 

  13. Viswanathan, M.C., Kaushik, G., Engler, A.J., Lehman, W., Cammarato, A.: A Drosophila melanogaster model of diastolic dysfunction and cardiomyopathy based on impaired troponin-T function. Circ. Res. 114(2), 6–17 (2014). https://doi.org/10.1161/CIRCRESAHA.114.302028

    Article  Google Scholar 

  14. Fim Neto, A., Bassani, R.A., Oliveira, P.X., Bassani, J.W.M.: Sources of Ca2+ for contraction of the heart tube of Tenebrio molitor (Coleoptera: Tenebrionidae). J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 188(6), 929–937 (2018). https://doi.org/10.1007/s00360-018-1183-0

  15. Feliciano, DF., Bassani, RA., Oliveira, PX., Bassani, JWM.: Pacemaker activity in the insect (T. molitor) heart: role of the sarcoplasmic reticulum. Am. J. Physiol.—Regul. Integr. Comp. Physiol. 301(6), 1838–184 (2011). https://doi.org/10.1152/ajpregu.00089.2011

  16. Markou, T., Theophilidis, G.: The pacemaker activity generating the intrinsic myogenic contraction of the dorsal vessel of Tenebrio molitor (Coleoptera). J. Exp. Biol. 203(22), 3471–3483 (2000)

    Article  Google Scholar 

  17. Pacholska-Bogalska, J., Szymczak, M., Marciniak, P., Walkowiak-Nowicka, K., Rosiński, G.: Heart mechanical and hemodynamic parameters of a beetle, Tenebrio molitor, at selected ages. Arch. Insect Biochem. Physiol. 99(1), 1 (2018). https://doi.org/10.1002/arch.21474

    Article  Google Scholar 

  18. Lakatta, E.G.: Starling’s law of the heart is explained by an intimate interaction of muscle length and myofilament calcium activation. J. Am. Coll. Cardiol. 10(5), 1157–1164 (1987). https://doi.org/10.1016/S0735-1097(87)80361-3

    Article  Google Scholar 

  19. Endoh, M.: Force-frequency relationship in intact mammalian ventricular myocardium: physiological and pathophysiological relevance. Eur. J. Pharmacol. 500(1–3), 73–86 (2004). https://doi.org/10.1016/j.ejphar.2004.07.013

    Article  Google Scholar 

  20. Koch-Weser, J., Blinks, J.R.: The influence of the interval between beats on myocardial contractility. Pharmacol. Rev. 15, 601–652 (1963)

    Google Scholar 

  21. Mulieri, L.A., Hasenfuss, G., Leavitt, B., Allen, P.D., Alpert, N.R.: Altered myocardial force-frequency relation in human heart failure. Circulation 85(5), 1743–1750 (1992). https://doi.org/10.1161/01.CIR.85.5.1743

    Article  Google Scholar 

  22. Antoons, G., Mubagwa, K., Nevelsteen, I., Sipido, K.R.: Mechanisms underlying the frequency dependence of contraction and [Ca2+]i transients in mouse ventricular myocytes. J. Physiol. 543(3), 889–898 (2002). https://doi.org/10.1113/jphysiol.2002.025619

    Article  Google Scholar 

  23. Dibb, K.M., Eisner, D.A., Trafford, A.W.: Regulation of systolic [Ca2+]i and cellular Ca2+ flux balance in rat ventricular myocytes by SR Ca2+, L-type Ca2+ current and diastolic [Ca2+]i. J. Physiol. 585(2), 579–592 (2007). https://doi.org/10.1113/jphysiol.2007.141473

    Article  Google Scholar 

  24. Bassani, R.A., Ricardo, R.A., Bassani, J.W.M.: The mechanism of negative staircase in rodent myocardium. In: 16th Symposium on Ca2+-Binding Proteins and Ca2+ Function in Health and Disease, p. 1. Annals, Pucón, Chile (2009)

    Google Scholar 

  25. Shiels, H.A., Vornanen, M., Farrell, A.P.: The force–frequency relationship in fish hearts: a review. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 132(4), 811–826 (2002). https://doi.org/10.1016/S1095-6433(02)00050-8

    Article  Google Scholar 

  26. Balcazar, D., et al.: SERCA is critical to control the Bowditch effect in the heart. Sci. Rep. 8(1), 1–8 (2018). https://doi.org/10.1038/s41598-018-30638-9

    Article  Google Scholar 

Download references

Acknowledgment

The technical support of Ms. Elizângela S. Oliveira is greatly appreciated. Financial support: Brazilian National Council for Scientific and Technological Development - CNPq (304010/2016-2 grant to JWMB and scholarship, for FHKI, 127197/2021-4); Brazilian Ministry of Health/FINEP (grant# 01-13-0214-00); and Coordination for the Improvement of Higher Education Personnel (CAPES, scholarships for NCBC and ARS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. C. B. Calderon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Inazumi, F.H.K., Calderon, N.C.B., Santana, A.R., Bassani, R.A., Bassani, J.W.M. (2024). Estimation of Cardiac Output in Insect Hearts Paced at Different Rates. In: Marques, J.L.B., Rodrigues, C.R., Suzuki, D.O.H., Marino Neto, J., García Ojeda, R. (eds) IX Latin American Congress on Biomedical Engineering and XXVIII Brazilian Congress on Biomedical Engineering. CLAIB CBEB 2022 2022. IFMBE Proceedings, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-031-49401-7_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49401-7_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49400-0

  • Online ISBN: 978-3-031-49401-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation