Algebraic and Quantum Mechanical Approach to Spinors

  • Conference paper
  • First Online:
Mathematical Methods for Engineering Applications (ICMASE 2023)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 439))

  • 92 Accesses

Abstract

Clifford algebras and quantum mechanics are closely associated to each other. We are familiar with some popular terms, such as algebra, light polarization, and quantum spin. Dirac spinors, Majorana spinors, and Weyl spinors are discussed in particular as subspaces of Clifford algebras with some remarkable algebraic features. Furthermore, we are interested in demonstrating how the quantum spin state and classical polarization of light waves can be derived from one another along with the Bloch sphere and Poincare sphere representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Veblen, O.: Spinors. Science 80(2080), 415–419 (1934)

    Article  Google Scholar 

  2. Cartan, É.: Les groupes projectifs qui ne laissent invariante aucune multiplicité plane. Bull. Soc. Math. France 41, 53–96 (1913)

    Article  MathSciNet  Google Scholar 

  3. De Sabbata, V., Datta, B.K.: Geometric Algebra and Applications to Physics. CRC Press (2006)

    Google Scholar 

  4. Ficek, Z.: Quantum Physics for Beginners. CRC Press (2017)

    Google Scholar 

  5. Held, A., Newman, E.T., Posadas, R.: The Lorentz group and the sphere. J. Math. Phys. 11(11), 3145–3154 (1970)

    Article  MathSciNet  Google Scholar 

  6. van der Waerden, B.L.: Group Theory and Quantum Mechanics, vol. 214. Springer Science & Business Media (2012)

    Google Scholar 

  7. Penrose, R., Rindler, W.: Spinors and Space-time: Volume 1, Two-spinor Calculus and Relativistic Fields, vol. 1. Cambridge University Press (1984)

    Google Scholar 

  8. Penrose, R., Rindler, W.: Spinors and Space-time. Volume 2: Spinor and Twistor Methods in Space-time Geometry (1986)

    Google Scholar 

  9. Klein, F., Sommerfeld, A.: The Theory of the Top. Volume IV: Technical Applications of the Theory of the Top, vol. 4. Springer Science & Business Media (2014)

    Google Scholar 

  10. Eaton, G.R., Eaton, S.S.: Foundations of Modern EPR. World Scientific (1998)

    Google Scholar 

  11. Sebens, C.T.: How electrons spin. Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Mod. Phys. 68, 40–50 (2019)

    Article  MathSciNet  Google Scholar 

  12. Uhlenbeck, G.E.: Personal reminiscences. Phys. Today 29(6), 43–48 (1976)

    Article  Google Scholar 

  13. Howard Haber Stephen Reucroft and Chris Quigg Michael Dine. What exactly is the Higgs Boson? Scientific American.

    Google Scholar 

  14. Greene, B.: How the Higgs Boson was Found. Smithsonian Magazine (2013)

    Google Scholar 

  15. Abe, K., Abgrall, N., Aihara, H., Ajima, Y., Albert, J. B., Allan, D., et al.: The T2K experiment. Nucl. Instrum. Methods Phys. Res. Sect. A Acceler. Spectrom. Detect. Assoc. Equip. 659(1), 106–135 (2011)

    Article  Google Scholar 

  16. Kaneyuki, K., T2K Collaboration: T2K experiment. Nucl. Phys. B Proc. Suppl. 145, 178–181 (2005)

    Article  Google Scholar 

  17. Valish, L.: Why is the Universe Made Up Almost Exclusively of Matter? neutrinos may hold the key. University of Rochester News Center (2020)

    Google Scholar 

  18. Sacchi, R., H1 Collaboration, & ZEUS Collaboration: Leading baryons at HERA. Nucl. Phys. B (Proc. Suppl.) 191, 214–220 (2009)

    Google Scholar 

  19. Trimble, V.: Existence and nature of dark matter in the universe. Annu. Rev. Astron. Astrophys. 25(1), 425–472 (1987)

    Article  Google Scholar 

  20. Penrose, R., Rindler, W.: Spinors and Space-time: Volume 1, Two-spinor Calculus and Relativistic Fields, vol. 1. Cambridge University Press (1984)

    Google Scholar 

  21. González-Miret Zaragoza, L.: Möbius Transformations (TrabajoFindeGradoInédito). Universidad de Sevilla, Sevilla (2019)

    Google Scholar 

  22. Yur’ev, D.V.E.: Complex projective geometry and quantum projective field theory. Theoret. Math. Phys. 101(3), 1387–1403 (1994)

    Article  MathSciNet  Google Scholar 

  23. Griffiths, D.J., Schroeter, D.F.: Introduction to Quantum Mechanics. Cambridge University Press (2018)

    Google Scholar 

  24. Newman, M.H.A.: Hermann Weyl, 1885–1955 (1957)

    Google Scholar 

  25. Gravel, P., Gauthier, C.: Classical applications of the Klein–Gordon equation. Am. J. Phys. 79(5), 447–453 (2011)

    Article  Google Scholar 

  26. Kaup, D.J.: Klein-gordon geon. Phys. Rev. 172(5), 1331 (1968)

    Article  Google Scholar 

  27. Shatah, J.: Normal forms and quadratic nonlinear Klein-Gordon equations. Commun. Pure Appl. Math. 38(5), 685–696 (1985)

    Article  MathSciNet  Google Scholar 

  28. Furey, C.: Unified theory of ideals. Phys. Rev. D 86(2), 025024 (2012)

    Article  Google Scholar 

  29. Bongaarts, P., Bongaarts, P.: Quantum Field Theory and Particle Physics: An Introduction. Quantum Theory: A Mathematical Approach, pp. 247–264 (2015)

    Google Scholar 

  30. Carmeli, M., Malin, S.: Theory of Spinors: An Introduction. World Scientific Publishing Company (2000)

    Google Scholar 

  31. Cottingham, W.N., Greenwood, D.A.: An Introduction to the Standard Model of Particle Physics. Cambridge University Press (2023)

    Google Scholar 

  32. Abłamowicz, R.: Construction of spinors via Witt decomposition and primitive idempotents: A review. In: Clifford Algebras and Spinor Structures: A Special Volume Dedicated to the Memory of Albert Crumeyrolle (1919–1992), pp. 113–123 (1995)

    MathSciNet  Google Scholar 

  33. Harari, H.: Quarks and leptons. Phys. Rep. 42(4), 235–309 (1978)

    Article  Google Scholar 

  34. Shupe, M.A.: A composite model of leptons and quarks. Phys. Lett. B 86(1), 87–92 (1979)

    Article  Google Scholar 

  35. Raitio, R.: A model of lepton and quark structure. Phys. Scr. 22(3), 197 (1980)

    Article  Google Scholar 

  36. Schray, J., Tucker, R.W., Wang, C.H.T.: LUCY: a Clifford algebra approach to spinor calculus approach to spinor calculus, pp. 121–143 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manzoor, T., Hasan, S.N. (2024). Algebraic and Quantum Mechanical Approach to Spinors. In: Gayoso Martínez, V., Yilmaz, F., Queiruga-Dios, A., Rasteiro, D.M., Martín-Vaquero, J., Mierluş-Mazilu, I. (eds) Mathematical Methods for Engineering Applications. ICMASE 2023. Springer Proceedings in Mathematics & Statistics, vol 439. Springer, Cham. https://doi.org/10.1007/978-3-031-49218-1_21

Download citation

Publish with us

Policies and ethics

Navigation