Quantum Query Lower Bounds for Key Recovery Attacks on the Even-Mansour Cipher

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14423))

Included in the following conference series:

  • 329 Accesses

Abstract

The Even-Mansour (EM) cipher is one of the famous constructions for a block cipher. Kuwakado and Morii demonstrated that a quantum adversary can recover its n-bit secret keys only with \(\mathcal {O}(n)\) nonadaptive quantum queries. While the security of the EM cipher and its variants is well-understood for classical adversaries, very little is currently known of their quantum security. Towards a better understanding of the quantum security, or the limits of quantum adversaries for the EM cipher, we study the quantum query complexity for the key recovery of the EM cipher and prove every quantum algorithm requires \(\Omega (n)\) quantum queries for the key recovery even if it is allowed to make adaptive queries. Therefore, the quantum attack of Kuwakado and Morii has the optimal query complexity up to a constant factor, and we cannot asymptotically improve it even with adaptive quantum queries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alagic, G., Bai, C., Katz, J., Majenz, C.: Post-quantum security of the Even-Mansour cipher. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EUROCRYPT 2022. LNCS, vol. 13277, pp. 458–487. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_17

  2. Beals, R., Buhrman, H., Cleve, R., Mosca, M.: Quantum lower bounds by polynomials. J. ACM 48(4), 778–797 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J., Tischhauser, E.: Key-alternating ciphers in a provable setting: encryption using a small number of public permutations. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_5

    Chapter  MATH  Google Scholar 

  4. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Yu., Schrottenloher, A.: Quantum attacks without superposition queries: the offline Simon’s algorithm. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 552–583. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_20

    Chapter  Google Scholar 

  5. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_19

    Chapter  Google Scholar 

  6. Chen, Y.L., Lambooij, E., Mennink, B.: How to build pseudorandom functions from public random permutations. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 266–293. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_10

    Chapter  Google Scholar 

  7. Daemen, J.: Limitations of the Even-Mansour construction. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 495–498. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1_46

    Chapter  Google Scholar 

  8. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom permutation. J. Cryptol. 10(3), 151–162 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th ACM Symposium on Theory of Computing, pp. 212–218 (1996)

    Google Scholar 

  10. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_8

    Chapter  Google Scholar 

  11. Koiran, P., Nesme, V., Portier, N.: The quantum query complexity of the abelian hidden subgroup problem. Theoret. Comput. Sci. 380, 115–126 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel cipher and the random permutation. In: IEEE International Symposium on Information Theory, pp. 2682–2685. IEEE (2010)

    Google Scholar 

  13. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In: Proceedings of the International Symposium on Information Theory and Its Applications, pp. 312–316 (2012)

    Google Scholar 

  14. Shinagawa, K., Iwata, T.: Quantum attacks on sum of Even-Mansour pseudorandom functions. Inf. Process. Lett. 173, 106172 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhandry, M.: How to construct quantum random functions. In: 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, pp. 679–687 (2012)

    Google Scholar 

  18. Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_9

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS Grant-in-Aid for Scientific Research (A) Nos. 21H04879, 23H00468, (C) No. 21K11887, JSPS Grant-in-Aid for Challenging Research (Pioneering) No. 23K17455, and MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) Grant Number JPMXS0120319794.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinori Kawachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kawachi, A., Naito, Y. (2024). Quantum Query Lower Bounds for Key Recovery Attacks on the Even-Mansour Cipher. In: Wu, W., Tong, G. (eds) Computing and Combinatorics. COCOON 2023. Lecture Notes in Computer Science, vol 14423. Springer, Cham. https://doi.org/10.1007/978-3-031-49193-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49193-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49192-4

  • Online ISBN: 978-3-031-49193-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation