A Physical Zero-Knowledge Proof for Sumplete, a Puzzle Generated by ChatGPT

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14422))

Included in the following conference series:

Abstract

In March 2023, ChatGPT generated a new puzzle, Sumplete. Sumplete consists of an \(n \times n\) grid, each whose cell has an integer. In addition, each row and column of the grid has an integer, which we call a target value. The goal of Sumplete is to make the sum of integers in each row and column equal to the target value by deleting some integers of the cells. In this paper, we prove that Sumplete is NP-complete and propose a physical zero-knowledge proof for Sumplete. To show the NP-completeness, we give a polynomial reduction from the subset sum problem to Sumplete. In our physical zero-knowledge proof protocol, we use a card protocol that realizes the addition of negative and positive integers using cyclic permutation on a sequence of cards. To keep the solution secret, we use a technique named decoy technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This name was also named by ChatGPT [19].

References

  1. Boer, B.: More efficient match-making and satisfiability the five card trick. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_23

    Chapter  Google Scholar 

  2. Bultel, X., Dreier, J., Dumas, J., Lafourcade, P.: Physical zero-knowledge proofs for Akari, Takuzu, Kakuro and KenKen. In: FUN, vol. 49, pp. 8:1–8:20 (2016)

    Google Scholar 

  3. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: SSS, pp. 111–125 (2018)

    Google Scholar 

  4. Chien, Y., Hon, W.: Cryptographic and physical zero-knowledge proof: from Sudoku to Nonogram. In: FUN, pp. 102–112 (2010)

    Google Scholar 

  5. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_27

    Chapter  Google Scholar 

  6. Dumas, J., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interactive physical zero-knowledge proof for Norinori. In: COCOON, pp. 166–177 (2019)

    Google Scholar 

  7. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical zero-knowledge proof systems for solutions of Sudoku puzzles. Theory Comput. Syst. 44(2), 245–268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In: UCNC, vol. 9252, pp. 215–226 (2015)

    Google Scholar 

  10. Komano, Y., Mizuki, T.: Card-based zero-knowledge proof protocol for pancake sorting. In: SecITC, pp. 222–239 (2022)

    Google Scholar 

  11. Lafourcade, P., et al.: How to construct physical zero-knowledge proofs for puzzles with a “single loop condition.” Theor. Comput. Sci. 888, 41–55 (2021)

    Google Scholar 

  12. Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: A physical ZKP for slitherlink: how to perform physical topology-preserving computation. In: ISPEC, pp. 135–151 (2019)

    Google Scholar 

  13. Miyahara, D., Hayashi, Y., Mizuki, T., Sone, H.: Practical card-based implementations of yao’s millionaire protocol. Theor. Comput. Sci. 803, 207–221 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Miyahara, D., et al.: Card-based ZKP protocols for Takuzu and Juosan. In: FUN, pp. 20:1–20:21 (2021)

    Google Scholar 

  15. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge proof for Kakuro. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 102-A(9), 1072–1078 (2019)

    Google Scholar 

  16. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: FAW, pp. 358–369 (2009)

    Google Scholar 

  17. Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for millionaires’ problem utilizing private permutations. In: CANS, pp. 500–517 (2016)

    Google Scholar 

  18. OpenAI: GPT-4 technical report (2023)

    Google Scholar 

  19. Penguin, P.: ChatGPT invented its own puzzle game (2023). https://puzzledpenguin.substack.com/p/chatgpt-invented-its-own-puzzle-game

  20. Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP for sudoku. New Gener. Comput. 40(1), 49–65 (2022)

    Article  MATH  Google Scholar 

  21. Ruangwises, S.: An improved physical ZKP for nonogram and nonogram color. J. Comb. Optim. 45(5), 122 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ruangwises, S., Itoh, T.: Securely computing the n-variable equality function with 2n cards. In: TAMC, pp. 25–36 (2020)

    Google Scholar 

  23. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Numberlink. In: FUN, vol. 157, pp. 22:1–22:11 (2021)

    Google Scholar 

  24. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink puzzle and k vertex-disjoint paths problem. New Gener. Comput. 39(1), 3–17 (2021)

    Article  Google Scholar 

  25. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Ripple Effect. In: WALCOM, vol. 12635, pp. 296–307 (2021)

    Google Scholar 

  26. Ruangwises, S., Itoh, T.: How to physically verify a rectangle in a grid: a physical ZKP for shikaku. In: FUN, pp. 24:1–24:12 (2022)

    Google Scholar 

  27. Ruangwises, S., Itoh, T.: Physical ZKP for makaro using a standard deck of cards. In: TAMC, vol. 13571, pp. 43–54 (2022)

    Google Scholar 

  28. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge proof for sudoku. Theor. Comput. Sci. 839, 135–142 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sasaki, T., Mizuki, T., Sone, H.: Card-based zero-knowledge proof for sudoku. In: FUN, vol. 100, pp. 29:1–29:10 (2018)

    Google Scholar 

  30. Shinagawa, K., et al.: Multi-party computation with small shuffle complexity using regular polygon cards. In: ProvSec, pp. 127–146 (2015)

    Google Scholar 

  31. Shinagawa, K., et al.: Card-based protocols using regular polygon cards. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 100-A(9), 1900–1909 (2017)

    Google Scholar 

  32. Takashima, K., et al.: Card-based protocols for secure ranking computations. Theor. Comput. Sci. 845, 122–135 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers JP22KJ1362 and JP23KJ0968.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyosuke Hatsugai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hatsugai, K., Asano, K., Abe, Y. (2024). A Physical Zero-Knowledge Proof for Sumplete, a Puzzle Generated by ChatGPT. In: Wu, W., Tong, G. (eds) Computing and Combinatorics. COCOON 2023. Lecture Notes in Computer Science, vol 14422. Springer, Cham. https://doi.org/10.1007/978-3-031-49190-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49190-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49189-4

  • Online ISBN: 978-3-031-49190-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation