Organic Micropollutants in Environment: Origin and Occurrence

  • Chapter
  • First Online:
Organic Micropollutants in Aquatic and Terrestrial Environments

Abstract

It is relatively recent in the history of human development that societies are facing the challenge of figuring out the fate and occurrence of organic micropollutants (OMPs) in the environment as well as their ecological significance. When these pollutants are discharged continuously without any regulatory measures, even at low concentrations, they may pose an environmental threat. In recent studies, many OMPs have been analyzed for their environmental fates and ecotoxicological effects. Chronic exposure to OMPs may cause ecosystem damage, but acute toxicity is unlikely at environmental concentrations. The purpose of this book chapter is to discuss the role played by OMPs including their origin, types, occurrences, and adverse effects on the environment and human health. Detection and analysis of OMPs in the environment will begin with the development of sensitive and robust methods. If proper measures are not taken by the relevant authorities and scientific community, unwanted consequences may result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asthana AN (2014) Thirty years after the cataclysm: toxic risk management in the chemical industry, American-Eurasian. J Toxicol Sci 1:1401–1408

    Google Scholar 

  • Benner J, Helbling DE, Kohler H-PE, Wittebol J, Kaiser E, Prasse C, Ternes TA, Albers CN, Aamand J, Horemans B, Springael D (2013) Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes? Water Res 47:5955–5976

    Article  CAS  PubMed  Google Scholar 

  • Blair B, Nikolaus A, Hedman C, Klaper R, Grundl T (2015) Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere 134:395–401

    Article  CAS  PubMed  Google Scholar 

  • Bofill J (2023) Microplastics and micropollutants in water: contaminants of emerging concern. European Investment Bank Microplastics and Micropollutants in Water (eib.org)

  • Boleda MR, Galceran MT, Ventura F (2011) Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (IJDWTP) using combined conventional and ultrafiltration and reverse osmosis (IJUF/RO) treatments. Environ Pollut 159:1584–1591

    Article  CAS  PubMed  Google Scholar 

  • Bourgin M, Borowska E, Helbing J, Hollender J, Kaiser HP, Kienle C (2017) Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product, and bromate formation in a surface water. Water Res 122:234–245

    Article  CAS  PubMed  Google Scholar 

  • Boxall AB, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S, Innes E, Ostapyk K, Staveley JP, Verslycke T, Ankley GT (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120:1221–1229

    Article  PubMed  PubMed Central  Google Scholar 

  • Brack W, Altenburger R, Schüürmann G, Krauss M, Herráez DL, van Gils J, Slobodnik J, Munthe J, Gawlik BM, van Wezel A, Schriks M (2015) The SOLUTIONS project: challenges and responses for present and future emerging pollutants in land and water resources management. Sci Total Environ 503–504:2–31

    Google Scholar 

  • Bradley PM, Journey CA, Romanok KM, Barber LB, Buxton HT, Foreman WT, Furlong ET, Glassmeyer ST, Hladik ML, Iwanowicz LR, Jones DK (2017) Expanded target-chemical analysis reveals extensive mixed-organic-contaminant exposure in US streams. Environ Sci Technol 51(9):4792–4802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brillas E, Garcia-Segura S, Skoumal M, Arias C (2010) Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and boron-doped diamond anodes. Chemosphere 79(6):605–612

    Article  CAS  PubMed  Google Scholar 

  • Cancino J, Soto K, Tapia J, Muñoz-Quezada MT, Lucero B, Contreras C, Moreno J (2023) Occupational exposure to pesticides and symptoms of depression in agricultural workers. A systematic review. Environ Res 116190. https://doi.org/10.1016/j.envres.2023.116190

  • Carballa M, Omil F, Lema JM, Llompart M, Garcı́a-Jares C, Rodrı́guez I, Gómez M, Ternes T (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38:2918–2926

    Article  CAS  PubMed  Google Scholar 

  • Castiglioni S, Bagnati R, Fanelli R, Pomati F, Calamari D, Zuccato E (2006) Removal of pharmaceuticals in sewage treatment plants in Italy. Environ Sci Technol 40(1):357–363

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti D, Das B, Murrill MT (2010) Examining India’s groundwater quality management. Environ Sci Technol 45:27–33

    Article  PubMed  Google Scholar 

  • Chen F, Ying GG, Ma YB, Chen ZF, Lai HJ, Peng FJ (2014) Field dissipation and risk assessment of typical personal care products TCC, TCS, AHTN, and HHCB in biosolid-amended soils. Sci Total Environ 470:1078–1086

    Article  PubMed  Google Scholar 

  • Corcoran J, Winter MJ, Tyler CR (2010) Pharmaceuticals in the aquatic environment: a critical review of the evidence for health effects in fish. Crit Rev Toxicol 40:287–304

    Article  CAS  PubMed  Google Scholar 

  • Corominas L, Acuña V, Ginebreda A, Poch M (2013) Integration of freshwater environmental policies and wastewater treatment plant management. Sci Total Environ 445–446:185–191

    Article  PubMed  Google Scholar 

  • Dasgupta S, Meisner C, Huq M (2007) A pinch or a pint? Evidence of pesticide overuse in Bangladesh. J Agric Econ 58(1):91–114

    Article  Google Scholar 

  • Daughton CG, Jones-Lepp TL (eds) (2001) Pharmaceuticals and care products in the environment: scientific and regulatory issues. American Chemical Society, Washington. ACS Symposium Series (ACS Publications) (accessed on 27 October 2021)

  • Deeb AA, Stephan S, Schmitz OJ, Schmidt TC (2017) Suspect screening of micropollutants and their transformation products in advanced wastewater treatment. Sci Total Environ 601:1247–1253

    Article  PubMed  Google Scholar 

  • Dulio V, van Bavel B, Brorström-Lundén E, Harmsen J, Hollender J, Schlabach M, Slobodnik J, Thomas K, Koschorreck J (2018) Emerging pollutants in the EU: 10 years of NORMAN in support of environmental policies and regulations. Environ Sci Eur 30(1):1–13

    Article  Google Scholar 

  • Escher BI, Baumgartner R, Koller M, Treyer K, Lienert J, McArdell CS (2011) Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Res 45(1):75–92

    Article  CAS  PubMed  Google Scholar 

  • Escher BI, Allinson M, Altenburger R, Bain PA, Balaguer P, Busch W, Crago J, Denslow ND, Dopp E, Hilscherova K, Humpage AR (2014) Benchmarking organic micropollutants in wastewater, recycled water, and drinking water with in vitro bioassays. Environ Sci Technol 48:940–1956

    Article  Google Scholar 

  • Falås P, Wick A, Castronovo S, Habermacher J, Ternes TA, Joss A (2016) Tracing the limits of organic micropollutant removal in biological wastewater treatment. Water Res 95:240–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76(2):122–159

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Fontaina E, Carballa M, Omil F, Lema JM (2014) Modelling metabolic biotransformation of organic micropollutants in nitrifying reactors. Water Res 65:371–383

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Tan YX, Gong Z, Bae S (2020) The toxic effect of triclosan and methyl-triclosan on biological pathways revealed by metabolomics and gene expression in zebrafish embryos. Ecotoxicol Environ Saf 189:110039

    Article  CAS  PubMed  Google Scholar 

  • Galloway T, Cipelli R, Guralnik J, Ferrucci L, Bandinelli S, Corsi AM, Money C, McCormack P, Melzer D (2010) Daily bisphenol excretion and associations with sex hormone concentrations: results from the inchianti adult population study. Environ Health Perspect 111:1603–1608

    Article  Google Scholar 

  • Gan W, Guo W, Mo J, He Y, Liu Y, Liu W, Liang Y, Yang X (2013) The occurrence of disinfection by-products in municipal drinking water in China’s Pearl River Delta and a multipathway cancer risk assessment. Sci Total Environ 447:108–115

    Article  CAS  PubMed  Google Scholar 

  • Gani KM, Kazmi AA (2016) Contamination of emerging contaminants in Indian aquatic sources: first overview of the situation. J Hazard Toxic Radio Waste 21(3):04016026. https://doi.org/10.1061/(ASCE)HZ.2153-5515.000034

    Article  Google Scholar 

  • García-Galán MJ, Garrido T, Fraile J, Ginebreda A, Díaz-Cruz MS, Barceló D (2010) Simultaneous occurrence of nitrates and sulfonamide antibiotics in two groundwater bodies of Catalonia (Spain). J Hydrol 383(1–2):93–101

    Article  Google Scholar 

  • Gavrilescu M (2010) Environmental biotechnology: achievements, opportunities and challenges. Dyn Biochem Process Biotechnol Mol Biol 4:1–36

    Google Scholar 

  • Grandclément C, Seyssiecq I, Piram A, Wong-Wah-Chung P, Vanot G, Tiliacos N, Roche N, Doumenq P (2017) From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water Res 111:297–317

    Article  PubMed  Google Scholar 

  • Gulde R, Anliker S, Kohler HP, Fenner K (2018) Ion trap** of amines in protozoa – a novel removal mechanism for micropollutants in activated sludge. Environ Sci Technol 52(1):52–60

    Article  CAS  PubMed  Google Scholar 

  • von Gunten U (2003) Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res 37(7):1443–1467

    Article  Google Scholar 

  • von Gunten U (2018) Oxidation processes in water treatment: are we on track? Environ Sci Technol 52(9):5062–5075

    Article  Google Scholar 

  • Ikehata K, Jodeiri Naghashkar N, Gamal El-Din M (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci Eng 28(6):353–414

    Article  CAS  Google Scholar 

  • Jones OA, Lester JN, Voulvoulis N (2005) Pharmaceuticals: a threat to drinking water? Trends Biotechnol 23:163–167

    Article  CAS  PubMed  Google Scholar 

  • Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2009) The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res 43:363–380

    Article  CAS  PubMed  Google Scholar 

  • Khatib JM, Baydoun S, ElKordi AA (2019) Water pollution and urbanisation trends in Lebanon: Litani River basin case study. In: Charlesworth M, Booth CA (eds) Urban pollution: science and management. Wiley Blackwell, pp 397–415. Urban Pollution: Science and Management - Google Books

    Google Scholar 

  • Kovalova L, Siegrist H, Von Gunten U, Eugster J, Hagenbuch M, Wittmer A, Moser R, McArdell CS (2013) Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV. Environ Sci Technol 47(14):7899–7908

    Article  CAS  PubMed  Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment – a review – part I. Chemosphere 75:417–434

    Article  PubMed  Google Scholar 

  • La Farre M, Pérez S, Kantiani L, Barceló D (2008) Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends Anal Chem 27:991–1007

    Article  CAS  Google Scholar 

  • Larsen TA, Lienert J, Joss A, Siegrist H (2004) How to avoid pharmaceuticals in the aquatic environment. J Biotechnol 113:295–304

    Article  CAS  PubMed  Google Scholar 

  • Lee DH (2018) Evidence of the possible harm of endocrine-disrupting chemicals in humans: ongoing debates and key issues. Endocrinol Metab 33(1):44–52

    Article  CAS  Google Scholar 

  • Lee Y, Von Gunten U (2012) Quantitative structure–activity relationship (QSARs) for the transformation of organic micropollutants during oxidative water treatment. Water Res 46(19):6177–6195

    Article  CAS  PubMed  Google Scholar 

  • Lepper P (2005) Manual on the methodological framework to derive environmental quality standards for priority substances in accordance with Article 16 of the Water Framework Directive (2000/60/EC). Schmallenberg, Germany: Fraunhofer-Institute Molecular Biology and Applied Ecology 15, pp. 51-52. 0 (europa.eu)

  • Li C, Qu R, Chen J, Zhang S, Allam AA, Ajarem J, Wang Z (2018) The pH-Dependent Toxicity of Triclosan to Five Aquatic Organisms (Daphnia Magna, Photobacterium Phosphoreum, Danio Rerio, Limnodrilus Hoffmeisteri, and Carassius Auratus). Environ Sci Pollut Res Int 25:9636–9646

    Article  CAS  PubMed  Google Scholar 

  • Lim FY, Ong SL, Hu J (2017) Recent advances in the use of chemical markers for tracing wastewater contamination in aquatic environment: a review. Water 9:143

    Article  Google Scholar 

  • Lin T, Yu S, Chen W (2016) Occurrence, Removal and Risk Assessment of Pharmaceutical and Personal Care Products (PPCPs) in an Advanced Drinking Water Treatment Plant (ADWTP) around Taihu Lake in China. Chemosphere 152:1–9

    Article  CAS  PubMed  Google Scholar 

  • Lloret L, Eibes G, Feijoo G, Moreira MT, Lema JM (2012) Degradation of estrogens by laccase from Myceliophthora thermophila in fed-batch and enzymatic membrane reactors. J Hazard Mater 213–214:175–183

    Article  PubMed  Google Scholar 

  • Madeła M, Neczaj E, Grosser A (2016) Fate of engineered nanoparticles in wastewater treatment plant. Inżynieria i Ochrona Środowiska 19(4):577–587

    Google Scholar 

  • McKie R (2012) Drug and water firms attack EU plan to reduce ethinylestradiol pollution. BMJ 344:40–29

    Article  Google Scholar 

  • Metcalfe CD, Kleywegt S, Letcher RJ, Topp E, Wagh P, Trudeau VL, Moon TW (2013) A multi assay screening approach for assessment of endocrine-active contaminants in wastewater effluent samples. Sci Total Environ 454–455:132–140

    Article  PubMed  Google Scholar 

  • Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidence, mechanisms, and perspectives. Toxicol Appl Pharmacol 268:157–177

    Article  CAS  PubMed  Google Scholar 

  • National Planning Commission (2013) National development plan vision 2030. National Development Plan 2030 | South African Government (www.gov.za) (Accessed on 27 May 2023)

  • Nesan D, Sewell LC, Kurrasch DM (2018) Opening the black box of endocrine disruption of brain development: lessons from the characterization of bisphenol A. Horm Behav 101:50–58

    Article  CAS  PubMed  Google Scholar 

  • Özkara A, Akyil D (2018) Environmental pollution and the effects of the pollutants on the ecosystem. Türk Bilimsel Derlemeler Dergisi 11(2):11–17

    Google Scholar 

  • Parra-Saldivar R, Castillo-Zacarías C, Bilal M, Iqbal HM, Barceló D (2020) Sources of Pharmaceuticals in Water. In: Solsona SP, Montemurro N, Chiron S, Barceló D (eds) Interaction and fate of pharmaceuticals in soil-crop systems: the impact of reclaimed wastewater. Springer, pp 33–47. Sources of Pharmaceuticals in Water | SpringerLink

    Google Scholar 

  • Pruden A, Pei R, Storteboom H, Carlson KH (2006) Antibiotic resistance genes as emerging contaminants: studies in Northern Colorado. Environ Sci Technol 40(23):7445–7450

    Article  CAS  PubMed  Google Scholar 

  • Ratola N, Cincinelli A, Alves A, Katsoyiannis A (2012) Occurrence of organic microcontaminants in the wastewater treatment process. A mini review. J Hazard Mater 239:1–18

    Article  PubMed  Google Scholar 

  • Reemtsma T, Alder L, Banasiak U (2013) Emerging pesticide metabolites in groundwater and surface water as determined by the application of a multimethod for 150 pesticide metabolites. Water Res 47(15):5535–5545

    Article  CAS  PubMed  Google Scholar 

  • Reyes NJ, Geronimo FK, Yano KA, Guerra HB, Kim LH (2021) Pharmaceutical and personal care products in different matrices: occurrence, pathways, and treatment processes. Water 13(9):1159

    Article  CAS  Google Scholar 

  • Ribeiro C, Ribeiro AR, Tiritan ME (2016) Priority substances and emerging organic pollutants in portuguese aquatic environment: a review. Rev Environ Contam Toxicol 238:1–44

    CAS  PubMed  Google Scholar 

  • Richardson SD, Kimura SY (2020) Water analysis: emerging contaminants and current issues. Anal Chem 92(1):473–505

    Article  CAS  PubMed  Google Scholar 

  • Rochester JR, Bisphenol A (2013) Human health: a review of literature. Reprod Toxicol 42:132–155

    Article  CAS  PubMed  Google Scholar 

  • Saravanan A, Kumar PS, Jeevanantham S, Karishma S, Tajsabreen B, Yaashikaa PR, Reshma B (2021) Effective water/wastewater treatment methodologies for toxic pollutants removal: processes and applications towards sustainable development. Chemosphere 280:130595

    Article  CAS  PubMed  Google Scholar 

  • Sarma J, Kalita A, Sharma P, Bora M, Rajkhowa S (2022) Removal of organic pollutants from waste water by adsorption onto rice husk, an agricultural waste. Ch 13. In: Madhav S, Singh P, Mishra V, Ahmed S, Mishra PK (eds) Recent trends in wastewater treatment. Springer, Cham, pp 287–313. https://doi.org/10.1007/978-3-030-99858-5_13

    Chapter  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65(5):725–759

    Article  CAS  PubMed  Google Scholar 

  • Schriks M, Heringa MB, van der Kooi MM, de Voogt P, van Wezel AP (2010) Toxicological relevance of emerging contaminants for drinking water quality. Water Res 44:461–476

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Singh UB, Khan MS (2023) Metabolomics-based mechanistic insights into revealing the adverse effects of pesticides on plants: an interactive review. Meta 13(2):246

    CAS  Google Scholar 

  • Singh VK, Singh R, Kumar A, Bhadouria R, Pandey S (2021) Sewage wastewater and sludge as source of traditional and emerging contaminants in agroecosystems. In: Kumar Singh V, Singh R, Lichtfouse E (eds) Sustainable agriculture reviews, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-030-63249-6_2

    Chapter  Google Scholar 

  • Singhal N, Perez-Garcia O (2016) Degrading organic micropollutants: the next challenge in the evolution of biological wastewater treatment processes. Front Environ Sci 4:36

    Article  Google Scholar 

  • Sivaranjanee R, Kumar PS (2021) A review on remedial measures for effective separation of emerging contaminants from wastewater. Environ Technol Innov 23:101741

    Article  CAS  Google Scholar 

  • Souza RC, Portella RB, Almeida PV, Pinto CO, Gubert P, Santos da Silva JD, Nakamura TC, do Rego EL (2020) Human milk contamination by nine Organochlorine Pesticide Residues (OCPs). J Environ Sci Health B 55(6):530–538

    Article  CAS  PubMed  Google Scholar 

  • Stackelberg PE, Furlong ET, Meyer MT, Zaugg SD, Henderson AK, Reissman DB (2004) Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci Total Environ 329(1–3):99–113

    Article  CAS  PubMed  Google Scholar 

  • Suárez S, Carballa M, Omil F, Lema JM (2008) How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Rev Environ Sci Biotechnol 7:125–138

    Article  Google Scholar 

  • Thomas AT (1998) Occurrence of drugs in German sewage treatment plants and rivers. Wat Res 32(11):3245–3260

    Article  Google Scholar 

  • Tiwari B, Sellamuthu B, Ouarda Y, Drogui P, Tyagi RD, Buelna G (2017) Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using the biological approach. Bioresour Technol 224:1–12

    Article  CAS  PubMed  Google Scholar 

  • Tousova Z, Oswald P, Slobodnik J, Blaha L, Muz M, Hu M, Brack W, Krauss M, Di Paolo C, Tarcai Z, Seiler TB (2017) European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters. Sci Total Environ 601:1849–1868

    Article  PubMed  Google Scholar 

  • Vandenberg LN, Ehrlich S, Belcher SM, Ben-Jonathan N, Dolinoy DC, Hugo ER, Hunt PA, Newbold RR, Rubin BS (2013) Low dose effects of bisphenol A: an integrated review of in vitro, laboratory animal, and epidemiology studies. Endocr Disrupt 1(1):e26490. Low dose effects of bisphenol A (tandfonline.com)

    Article  Google Scholar 

  • Weber DN, Hoffmann RG, Hoke ES, Tanguay RL (2015) An exposure during early development induces sex-specific changes in adult zebrafish social interactions. J Toxicol Environ Health Part A 78(1):50–66

    Article  CAS  Google Scholar 

  • Wilkinson JL, Boxall AB, Kolpin DW, Leung KM, Lai RW, Galbán-Malagón C, Adell AD, Mondon J, Metian M, Marchant RA, Bouzas-Monroy A (2022) Pharmaceutical pollution of the World’s Rivers. Proc Natl Acad Sci USA 119(8):e2113947119. https://doi.org/10.1073/pnas.211394711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wooten JM (2012) Pharmacotherapy considerations in elderly adults. South Med J 105(8):437–445

    Article  PubMed  Google Scholar 

  • Xue W, Wu C, **ao K, Huang X, Zhou H, Tsuno H, Tanaka H (2010) Elimination and the fate of selected micro-organic pollutants in a full-scale anaerobic/anoxic/aerobic process combined with a membrane bioreactor for municipal wastewater reclamation. Water Res 44(20):5999–6010

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Geißen SU, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73(8):1151–1161

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalita, A.J. et al. (2024). Organic Micropollutants in Environment: Origin and Occurrence. In: Bhadouria, R., Tripathi, S., Singh, P., Singh, R., Singh, H.P. (eds) Organic Micropollutants in Aquatic and Terrestrial Environments. Springer, Cham. https://doi.org/10.1007/978-3-031-48977-8_1

Download citation

Publish with us

Policies and ethics

Navigation