Responsible Data Science

  • Chapter
  • First Online:
Introduction to Data Science

Abstract

Data science has an increasing responsibility in society, which means it needs to consider more than just technical skills. Data scientists must recognize and embrace this responsibility, acknowledging its ethical, moral, and societal implications. Addressing these responsibilities ensures that data science is used for the benefit of society while preserving individual rights. Data science’s impact on privacy, autonomy, and well-being requires prioritizing personal data protection and respecting privacy rights. Ethical data handling, informed consent, and robust security measures are imperative to prevent unauthorized access and misuse of personal information. Upholding these principles fosters trust between individuals and the data-driven systems influencing their lives, ultimately guiding data science toward a socially responsible and ethically sound future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 39.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Spector, P. Norvig, C. Wiggins, J. Wing, Data Science in Context: Foundations, Challenges, Opportunities (Cambridge University Press, Cambridge, 2022). https://doi.org/10.1017/9781009272230

    Book  Google Scholar 

  2. L. Floridi, M. Taddeo, What is data ethics? Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 374(2083), 20160360 (2016)

    Article  Google Scholar 

  3. A. Jobin, M. Ienca, E. Vayena, The global landscape of AI ethics guidelines. Nat. Mach. Intell. 1(9), 389–399 (2019)

    Article  Google Scholar 

  4. L. Taylor, N. Purtova, What is responsible and sustainable data science? Big Data & Soc. 6(2), 2053951719858114 (2019)

    Article  Google Scholar 

  5. W.J. Von Eschenbach, Transparency and the black box problem: why we do not trust AI. Philos. & Technol. 34(4), 1607–1622 (2021)

    Article  Google Scholar 

  6. N. Burkart, M.F. Huber, A survey on the explainability of supervised machine learning. J. Artif. Intell. Res. 70, 245–317 (2021)

    Article  MathSciNet  Google Scholar 

  7. S. Garfinkel, J. Matthews, S.S. Shapiro, J.M. Smith, Toward algorithmic transparency and accountability. Commun. ACM 60(9), 5–5 (2017)

    Article  Google Scholar 

  8. M. Pushkarna, A. Zaldivar, O. Kjartansson, Data cards: purposeful and transparent dataset documentation for responsible AI, in Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency (2022), pp. 1776–1826

    Google Scholar 

  9. C. Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  10. C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, C. Zhong, Interpretable machine learning: fundamental principles and 10 grand challenges. Stat. Surv. 16, 1–85 (2022)

    Article  MathSciNet  Google Scholar 

  11. S.M. Lundberg, S.I. Lee, A unified approach to interpreting model predictions, in Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  12. M.T. Ribeiro, S. Singh, C. Guestrin, "Why should i trust you?" Explaining the predictions of any classifier, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016), pp. 1135–1144

    Google Scholar 

  13. T. Miller, Explanation in artificial intelligence: insights from the social sciences. Artif. intell. 267, 1–38 (2019)

    Article  MathSciNet  Google Scholar 

  14. M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, ... , T. Gebru, Model cards for model reporting, in Proceedings of the Conference on Fairness, Accountability, and Transparency (2019), pp. 220–229

    Google Scholar 

  15. S. Mitchell, E. Potash, S. Barocas, A. D’Amour, K. Lum, Algorithmic fairness: choices, assumptions, and definitions. Ann. Rev. Stat. Appl. 8, 141–163 (2021)

    Article  MathSciNet  Google Scholar 

  16. S.A. Friedler, C. Scheidegger, S. Venkatasubramanian, The (im) possibility of fairness: different value systems require different mechanisms for fair decision making. Commun. ACM 64(4), 136–143 (2021)

    Article  Google Scholar 

  17. Zemel, R., Wu, Y., Swersky, K., Pitassi, T., & Dwork, C. (2013, May). Learning fair representations. In International conference on machine learning (pp. 325-333). PMLR

    Google Scholar 

  18. G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, K.Q. Weinberger, On fairness and calibration, in Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  19. A.N. Carey, X. Wu, The causal fairness field guide: perspectives from social and formal sciences. Front. Big Data 5, 892837 (2022)

    Article  Google Scholar 

  20. S. Barocas, M. Hardt, A. Narayanan, Fairness and machine learning: limitations and opportunities (2019). http://www.fairmlbook.org

  21. P. Laskov, R. Lippmann, Machine learning in adversarial environments. Mach. Learn. 81, 115–119 (2010)

    Article  Google Scholar 

  22. S. Fort, J. Ren, B. Lakshminarayanan, Exploring the limits of out-of-distribution detection, Advances in Neural Information Processing Systems 34 (2021), pp. 7068–7081

    Google Scholar 

  23. J. Mena, O. Pujol, J. Vitria, A survey on uncertainty estimation in deep learning classification systems from a Bayesian perspective. ACM Comput. Surv. (CSUR) 54(9), 1–35 (2021)

    Article  Google Scholar 

  24. A. Subbaswamy, B. Chen, S. Saria, A unifying causal framework for analyzing dataset shift-stable learning algorithms. J. Causal Inf. 10(1), 64–89 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This chapter was written by Jordi Vitrià.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Igual .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Igual, L., Seguí, S. (2024). Responsible Data Science. In: Introduction to Data Science. Undergraduate Topics in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-031-48956-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48956-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48955-6

  • Online ISBN: 978-3-031-48956-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation