Turnstile Diamond Dipole Nanoantenna Based Smart City Compatible Thin Film Solar Cell

  • Conference paper
  • First Online:
Cognitive Computing and Cyber Physical Systems (IC4S 2023)

Abstract

A unit cell design of a thin film solar cell incorporating turnstile diamond dipole nanoantenna as a means of light trap** structure is proposed and investigated. Diamond dipole nanoantenna (DDNA) is a transformed version of the conventional dipole nanoantenna whereby the arms of the dipole nanoantenna are replaced by diamond shaped nanoparticles. In contrast to the dipole nanoantenna, DDNA offers larger area for field confinement and it resonates in the maximum solar spectrum range. The reduction of reflection losses along with generation of localized surface plasmons leads to improved photovoltaic characteristics of the thin film solar cell. The suggested TFSC model offers 99% absorption with 1.52 times photocurrent calculated based on finite element approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kraemer, F.A., Palma, D., Braten, A.E., Ammar, D.: Operationalizing solar energy predictions for sustainable autonomous IoT device management. IEEE Internet Things J. 7(12), 11803–11814 (2020)

    Article  Google Scholar 

  2. Pareek, P., Maurya, N.K., Singh, L., Gupta, N., Reis, M.J.C.S.: Study of smart city compatible monolithic quantum well photodetector. In: Gupta, N., Pareek, P., Reis, M. (eds.) Cognitive Computing and Cyber Physical Systems. IC4S 2022. LNICST, , vol. 472. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-28975-0_18

  3. Lee, T.D., Ebong, A.U.: A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 70, 1286–1297 (2017)

    Article  Google Scholar 

  4. Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html. Accessed 14 Feb 2023

  5. Muhammad, M.H., Hameed, M.F.O., Obayya, S.S.A.: Broadband absorption enhancement in modified grating thin-film solar cell. IEEE Photon. J. 9(3), 2700314 (2017)

    Article  Google Scholar 

  6. Catchpole, K.R., Polman, A.: Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 93, 191113 (2008)

    Article  Google Scholar 

  7. Zhu, J., Hsu, C.-M., Yu, Z., Fan, S., Cui, Y.: Nanodome solar cells with efficient lightmanagement and self-cleaning. Nano Lett. 10, 1979–1984 (2010)

    Article  Google Scholar 

  8. Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    Article  Google Scholar 

  9. Wu, J.L., Chen, F.C., Hasio, Y.S., Chien, F.C., Chen, P., Kuo, C.H., et al.: Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 5(2), 959–967 (2011)

    Article  Google Scholar 

  10. Maier, SA.: Plasmonics: Fundamentals and Applications, 2007th edn. Springer-Verlag, India (2007)

    Google Scholar 

  11. Green, M.A., Pillai, S.: Harnessing plasmonics for solar cells. Nat. Photon. 6, 130–132 (2012)

    Article  Google Scholar 

  12. Muhlschlegel, P., et al.: Resonant optical antennas. Science 308, 1607–1608 (2005)

    Article  Google Scholar 

  13. Taghian, F., Ahmadi, V., Yousefi, L.: Enhanced thin solar cells using optical nano-antenna induced hybrid plasmonic travelling-wave. IEEE J. Lightwave Technol. 34, 1267–1273 (2016)

    Article  Google Scholar 

  14. Di, V.M., et al.: Plasmonic nano-antenna a-Si: H solar cell. Opt. Express 20(25), 27327–27336 (2012)

    Article  Google Scholar 

  15. Yu, Y., et al.: Dielectric core−shell optical antennas for strong solar absorption enhancement. Nano Lett. 12(7), 3674–3681 (2012)

    Article  Google Scholar 

  16. Pahuja, A., Parihar, M.S., Dinesh Kumar, V.: Investigation of Euler spiral nanoantenna and its application in absorption enhancement of thin film solar cell. Opt. Quant. Electron. 50(11), 1–11 (2018). https://doi.org/10.1007/s11082-018-1665-z

    Article  Google Scholar 

  17. Pahuja, A., Parihar, M.S., Dinesh Kumar, V.: Performance enhancement of thin-film solar cell using Yagi–Uda nanoantenna array embedded inside the anti-reflection coating. Appl. Phys. A 126(1), 1–7 (2020). https://doi.org/10.1007/s00339-019-3250-0

    Article  Google Scholar 

  18. CST Studio Suite. https://www.3ds.com/products-services/simulia/products/cst-studio-suite/. Accessed 5 Jan 2023

  19. Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 1st edn. Springer, Berlin (1986)

    Google Scholar 

  20. Johnson, P.B., Christy, R.W.: Optical constant of the noble metals. Phys. Rev. Lett. 15, 4370–4379 (1972)

    Google Scholar 

  21. ASTM, Reference Solar Spectral Irradiance: Air Mass 1.5 Spectra. http://rredc.nrel.gov/solar/spectra/am1.5. Accessed 5 Dec 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Pahuja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pahuja, A., Kumar, S., Agarwal, V., Parihar, M.S., Dinesh Kumar, V. (2024). Turnstile Diamond Dipole Nanoantenna Based Smart City Compatible Thin Film Solar Cell. In: Pareek, P., Gupta, N., Reis, M.J.C.S. (eds) Cognitive Computing and Cyber Physical Systems. IC4S 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 537. Springer, Cham. https://doi.org/10.1007/978-3-031-48891-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48891-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48890-0

  • Online ISBN: 978-3-031-48891-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation