Adsorption Isotherms and Kinetic Models

  • Chapter
  • First Online:
Carbon Nanomaterials and their Composites as Adsorbents

Part of the book series: Carbon Nanostructures ((CARBON))

  • 116 Accesses

Abstract

Adsorption is a significant phenomenon that underlies a variety of crucial technical and environmental processes. There is no question about the importance of adsorption in protecting the environment and the industrial sector. Additionally, the first stage in many catalytic processes is adsorption of reactants over the catalyst. Therefore, numerous attempts have been made to explore the various adsorption process elements. However, a vital stage in the design and operation of adsorption equipment is having the working grasp of adsorption equilibrium and kinetics. To comprehend the adsorption equilibrium and kinetics, several different isotherms and kinetics models have been created. This chapter makes an effort to present an overview of a particular set of theories, isotherms and kinetic models used to describe adsorption events at the gas–solid interface. This chapter is split into two sections: the first section covers the theories and models (kinetics). The models that are used to analyze the isotherms of adsorption are the main topic of the second section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Largitte, L., Pasquier, R.: A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 109, 495–504 (2016). https://doi.org/10.1016/j.cherd.2016.02.006

    Article  CAS  Google Scholar 

  2. Qiu, H., Lv, L., Pan, B.C., Zhang, Q.J., Zhang, W.M., Zhang, Q.X.: Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. A 10(5), 716–724 (2009). https://doi.org/10.1631/jzus.A0820524

    Article  CAS  Google Scholar 

  3. Agboola, O.D., Benson, N.U.: Physisorption and chemisorption mechanisms influencing micro (Nano) plastics-organic chemical contaminants interactions: a review. Front. Environ. Sci. 9, 1–27 (2021). https://doi.org/10.3389/fenvs.2021.678574

    Article  Google Scholar 

  4. Vareda, J.P.: On validity, physical meaning, mechanism insights and regression of adsorption kinetic models. J. Mol. Liq. 376, 121416 (2023). https://doi.org/10.1016/j.molliq.2023.121416

    Article  CAS  Google Scholar 

  5. González-López, M.E., Laureano-Anzaldo, C.M., Pérez-Fonseca, A.A., Arellano, M., Robledo-Ortíz, J.R.: A critical overview of adsorption models linearization: methodological and statistical inconsistencies. Sep. Purif. Rev. 51(3), 358–372 (2022). https://doi.org/10.1080/15422119.2021.1951757

    Article  Google Scholar 

  6. Heinrich, P., Hanslik, L., Kämmer, N., Braunbeck, T.: The tox is in the detail: technical fundamentals for designing, performing, and interpreting experiments on toxicity of microplastics and associated substances. Environ. Sci. Pollut. Res. 27(18), 22292–22318 (2020). https://doi.org/10.1007/s11356-020-08859-1

    Article  Google Scholar 

  7. Benjelloun, M., Miyah, Y., Akdemir Evrendilek, G., Zerrouq, F., Lairini, S.: Recent advances in adsorption kinetic models: their application to dye types. Arab. J. Chem. 14(4), 103031 (2021). https://doi.org/10.1016/j.arabjc.2021.103031

  8. Lim, S.F., Lee, A.Y.W.: Kinetic study on removal of heavy metal ions from aqueous solution by using soil. Environ. Sci. Pollut. Res. 22(13), 10144–10158 (2015). https://doi.org/10.1007/s11356-015-4203-6

    Article  CAS  Google Scholar 

  9. Hameed, B.H., Mahmoud, D.K., Ahmad, A.L.: Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste. J. Hazard. Mater. 158(1), 65–72 (2008). https://doi.org/10.1016/j.jhazmat.2008.01.034

    Article  CAS  PubMed  Google Scholar 

  10. Ehiomogue, P., Ahuchaogu, I.I., Ahaneku, I.E.: Review of adsorption isotherms models. Acta Tech. Corviniensis 14(4), 87–96 (2022), [Online]. Available: https://www.researchgate.net/publication/358271705

  11. Musah, M., Azeh, Y., Mathew, J., Umar, M., Abdulhamid, Z., Muhammad, A.: Adsorption kinetics and isotherm models: a review. Caliphate J. Sci. Technol. 4(1), 20–26 (2022). https://doi.org/10.4314/cajost.v4i1.3

    Article  Google Scholar 

  12. Ayawei, N., Ebelegi, A.N., Wankasi, D.: Modelling and interpretation of adsorption isotherms. J. Chem. (2017). https://doi.org/10.1155/2017/3039817

  13. Shikuku, V.O., Mishra, T.: Adsorption isotherm modeling for methylene blue removal onto magnetic kaolinite clay: a comparison of two-parameter isotherms. Appl. Water Sci. 11(6), 1–9 (2021). https://doi.org/10.1007/s13201-021-01440-2

    Article  CAS  Google Scholar 

  14. Nandiyanto, A.B.D. et al.: Curcumin adsorption on carbon microparticles: synthesis from soursop (annonamuricata l.) peel waste, adsorption isotherms and thermodynamic and adsorption mechanism. Int. J. Nanoelectron. Mater. 13(Special issue), 173–192 (2020)

    Google Scholar 

  15. Ragadhita, R., Nandiyanto, A.B.D.: How to calculate adsorption isotherms of particles using two-parameter monolayer adsorption models and equations. Indones. J. Sci. Technol. 6(1), 205–234 (2021). https://doi.org/10.17509/ijost.v6i1.32354

    Article  Google Scholar 

  16. Saadi, R., Saadi, Z., Fazaeli, R., Fard, N.E.: Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean J. Chem. Eng. 32(5), 787–799 (2015). https://doi.org/10.1007/s11814-015-0053-7

    Article  CAS  Google Scholar 

  17. Shahbeig, H., Bagheri, N., Ghorbanian, S.A., Hallajisani, A., Poorkarimi, S.: A new adsorption isotherm model of aqueous solutions on granular activated carbon. World J. Model. Simul. 9(4), 243–254 (2013)

    Google Scholar 

  18. Dada, A.O.: Modeling of Biosorption of Pb ( Ii ) and Zn ( Ii ) Ions Onto Pamrh : Langmuir, Huggins, Fowler-Guggenheim and Kiselev Comparative Isotherm Studies 10(2), 1048–1058 (2019)

    Google Scholar 

  19. Kalam, S., Abu-Khamsin, S.A., Kamal, M.S., Patil, S.: Surfactant adsorption isotherms: a review. ACS Omega 6(48), 32342–32348 (2021). https://doi.org/10.1021/acsomega.1c04661

    Article  CAS  PubMed  Google Scholar 

  20. Hamdaoui, O., Naffrechoux, E.: Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part II. Models with more than two parameters. J. Hazard. Mater. 147(1–2), 401–411 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.023

    Article  CAS  PubMed  Google Scholar 

  21. Sundararaman, T.R. et al.: Adsorptive removal of malachite green dye onto coal-associated soil and conditions optimization. Adsorpt. Sci. Technol. (2021). https://doi.org/10.1155/2021/5545683

  22. Ramadoss, R., Subramaniam, D.: Removal of divalent nickel from aqueous solution using blue-green marine algae: adsorption modeling and applicability of various isotherm models. Sep. Sci. Technol. 54(6), 943–961 (2019). https://doi.org/10.1080/01496395.2018.1526194

    Article  CAS  Google Scholar 

  23. Jeppu, G.P., Clement, T.P.: A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. J. Contam. Hydrol. 129–130, 46–53 (2012). https://doi.org/10.1016/j.jconhyd.2011.12.001

  24. Kiełbasa, K., Kamińska, A., Niedoba, O., Michalkiewicz, B.: Co2 adsorption on activated carbons prepared from molasses: a comparison of two and three parametric models. Materials (Basel) 14(23) (2021). https://doi.org/10.3390/ma14237458

  25. Wu, F.C., Liu, B.L., Wu, K.T., Tseng, R.L.: A new linear form analysis of Redlich-Peterson isotherm equation for the adsorptions of dyes. Chem. Eng. J. 162(1), 21–27 (2010). https://doi.org/10.1016/j.cej.2010.03.006

    Article  CAS  Google Scholar 

  26. Vijayaraghavan, K., Padmesh, T.V.N., Palanivelu, K., Velan, M.: Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J. Hazard. Mater. 133(1–3), 304–308 (2006). https://doi.org/10.1016/j.jhazmat.2005.10.016

    Article  CAS  PubMed  Google Scholar 

  27. Koble, R.A., Corrigan, T.E.: Adsorption isotherms for pure hydrocarbons. Ind. Eng. Chem. 44(2), 383–387 (1952). https://doi.org/10.1021/ie50506a049

    Article  CAS  Google Scholar 

  28. McKay, G., Mesdaghinia, A., Nasseri, S., Hadi, M., Solaimany Aminabad, M.: Optimum isotherms of dyes sorption by activated carbon: fractional theoretical capacity and error analysis. Chem. Eng. J. 251, 236–247 (2014)

    Google Scholar 

  29. Yaneva, Z.L., Koumanova, B.K., Georgieva, N.V.: Linear regression and nonlinear regression methods for equilibrium modelling of p-nitrophenol biosorption by Rhyzopus oryzen: comparison of error analysic criteria. J. Chem. (2013), Article ID 517631, 10 p.

    Google Scholar 

  30. Parker, G.R., Jr.: Optimum isotherm equation and thermodynamic interpretation for aqueous 1,1,2-trichloroethene adsorption isotherms on three adsorbents. Adsorption 1(2), 113–132 (1995)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anitha Pius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanagalakshmi, M., Devi, S.G., Ananthi, P., Pius, A. (2024). Adsorption Isotherms and Kinetic Models. In: Tharini, J., Thomas, S. (eds) Carbon Nanomaterials and their Composites as Adsorbents. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-031-48719-4_8

Download citation

Publish with us

Policies and ethics

Navigation