A Microcontroller-Based Portable Transcutaneous Electrical Nerve Stimulator via Ultra-comfortable Tattoo Electrodes for Haptic Feedback

  • Conference paper
  • First Online:
Proceedings of SIE 2023 (SIE 2023)

Abstract

The non-invasive electrical stimulation of nerves requires neural stimulators with high voltage compliance to pass current through the skin and reach the targeted nerves. This study proposes a low-cost, microcontroller-based, wearable, high-voltage compliant current stimulator with four independent channels based on Components-Off-The-Shelf (COTS). The proposed system implements a voltage-current converter capable of generating custom stimulating waveforms with microseconds temporal resolution. The ±90 V voltage compliance enables the system to adapt to the possible variations in electrode-skin impedance during a daily life activity, allowing it to stimulate with currents up to 9 mA. The system was preliminary tested on humans using ultra-conformable Parylene-C based tattoo electrodes, showing the possibility of stimulating median and ulnar nerves and evoking sensation on the hand through more-than-wearable and completely unobtrusive technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cruccu, G., et al.: EAN guidelines on central neurostimulation therapy in chronic pain conditions. Eur. J. Neurol. 23(10), 1489–1499 (2016). https://doi.org/10.1111/ene.13103

    Article  Google Scholar 

  2. Schuepbach, W.M.M., et al.: Neurostimulation for Parkinson’s disease with early motor complications. N. Engl. J. Med. 368(7), 610–622 (2013). https://doi.org/10.1056/NEJMoa1205158

    Article  Google Scholar 

  3. Deer, T.R., et al.: The appropriate use of neurostimulation: new and evolving neurostimulation therapies and applicable treatment for chronic pain and selected disease states. Neuromodulation 17(6), 599–615 (2014). https://doi.org/10.1111/ner.12204

    Article  Google Scholar 

  4. Bergey, G.K.: Neurostimulation in the treatment of epilepsy. Exp. Neurol. 244, 87–95 (2013). https://doi.org/10.1016/j.expneurol.2013.04.004

    Article  Google Scholar 

  5. Bensmaia, S.J., Tyler, D.J., Micera, S.: Restoration of sensory information via bionic hands. Nat. Biomed. Eng. (2020). https://doi.org/10.1038/s41551-020-00630-8

    Article  Google Scholar 

  6. D’anna, E., et al.: A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback. Sci. Robot. 4(27), eaau8892 (2019). https://doi.org/10.1126/scirobotics.aau8892

  7. Raspopovic, S., et al.: Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6(222), 222ra19 (2014). https://doi.org/10.1126/scitranslmed.3006820

  8. Petrini, F.M., et al.: Six-month assessment of a hand prosthesis with intraneural tactile feedback. Ann. Neurol. 85(1), 137–154 (2019). https://doi.org/10.1002/ana.25384

    Article  Google Scholar 

  9. Tyler, D.J.: Neural interfaces for somatosensory feedback: bringing life to a prosthesis. Curr. Opinion Neurol. 28(6), 574–581 (2015). Lippincott Williams and Wilkins, https://doi.org/10.1097/WCO.0000000000000266

  10. Middleton, A., Ortiz-Catalan, M.: Neuromusculoskeletal arm prostheses: personal and social implications of living with an intimately integrated bionic arm. Front. Neurorobot. 14, 39 (2020). https://doi.org/10.3389/fnbot.2020.00039

  11. Cipriani, C., Segil, J.L., Clemente, F., Richard, R.F., Edin, B.: Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand. Exp. Brain Res. 232(11), 3421–3429 (2014). https://doi.org/10.1007/s00221-014-4024-8

    Article  Google Scholar 

  12. D’Anna, E., et al.: A somatotopic bidirectional hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback. Sci. Rep. 7(1), 10930 (2017). https://doi.org/10.1038/s41598-017-11306-w

  13. Scarpelli, A., Demofonti, A., Terracina, F., Ciancio, A.L., Zollo, L.: Evoking apparent moving sensation in the hand via transcutaneous electrical nerve stimulation. Front. Neurosci. 14, 534 (2020). https://doi.org/10.3389/fnins.2020.00534

  14. Osborn, L.E., et al.: Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Sci. Robot. 3(19), eaat3818 (2018). https://doi.org/10.1126/scirobotics.aat3818

  15. Cordella, F., et al.: Literature review on needs of upper limb prosthesis users. Front. Neurosci. 10, 209 (2016)

    Google Scholar 

  16. Mascia, A., et al.: Wearable system based on ultra-thin Parylene C tattoo electrodes for EEG recording. Sensors 23(2), 766 (2023)

    Google Scholar 

  17. Collu, R., et al.: A wearable electronic system for EEG recording. In: 2022 17th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME). IEEE (2022)

    Google Scholar 

  18. Spanu, A., et al.: Epidermal electrodes with ferrimagnetic/conductive properties for biopotential recordings. Bioengineering 9(5), 205 (2022)

    Google Scholar 

  19. Spanu, A., et al.: Parylene C-based, breathable tattoo electrodes for high-quality bio-potential measurements. Front. Bioeng. Biotechnol. 10, 820217 (2022)

    Google Scholar 

  20. Ferrari, L.M., et al.: Ultraconformable temporary tattoo electrodes for electrophysiology. Adv. Sci. 5(3), 1700771 (2018)

    Google Scholar 

  21. Günter, C., Delbeke, J., Ortiz-Catalan, M.: Safety of long-term electrical peripheral nerve stimulation: review of the state of the art. J. Neuroeng. Rehabil. 16, 1–16 (2019)

    Article  Google Scholar 

  22. Demofonti, A., Scarpelli, A., Cordella, F., Zollo, L.: Modulation of sensation intensity in the lower limb via Transcutaneous Electrical Nerve Stimulation. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 6470–6474. IEEE, November 2021

    Google Scholar 

  23. Demofonti, A., Scarpelli, A., Iannelli, V., Ciancio, A.L., Cordella, F., Zollo, L.: Somatotopical feedback restoration in the lower limb through TENS: a feasibility study. In: Convegno Nazionale di Bioingegneria, pp. 198–201 (2020)

    Google Scholar 

  24. Pan, L., Vargas, L., Fleming, A., Hu, X., Zhu, Y., Huang, H.H.: Evoking haptic sensations in the foot through high-density transcutaneous electrical nerve stimulations. J. Neural Eng. 17(3), 036020 (2020)

    Article  Google Scholar 

  25. Collu, R., et al.: Wearable high voltage compliant current stimulator for restoring sensory feedback. Micromachines 14(4), 782 (2023)

    Google Scholar 

  26. Collu, R., Earley, E.J., Barbaro, M., Ortiz-Catalan, M.: Non-rectangular neurostimulation waveforms elicit varied sensation quality and perceptive fields on the hand. Sci. Rep. 13(1), 1588 (2023). https://doi.org/10.1038/s41598-023-28594-0

    Article  Google Scholar 

  27. Valle, G., et al.: Comparison of linear frequency and amplitude modulation for intraneural sensory feedback in bidirectional hand prostheses. Sci. Rep. 8(1), 16666 (2018). https://doi.org/10.1038/s41598-018-34910-w

  28. Karpul, D., Cohen, G.K., Gargiulo, G.D., Schaik, A., McIntyre, S., Breen, P.P.: Low-power transcutaneous current stimulator for wearable applications. Biomed. Eng. Online 16(1), 118 (2017). https://doi.org/10.1186/s12938-017-0409-9

  29. Trout, M.A., Harrison, A.T., Brinton, M.R., George, J.A.: A portable, programmable, multichannel stimulator with high compliance voltage for noninvasive neural stimulation of motor and sensory nerves in humans. Sci. Rep. 13(1), 3469 (2023). https://doi.org/10.1038/s41598-023-30545-8

Download references

Acknowledgment

This study was partly supported by the European Union’s Horizon 2020 Research and Innovation Program under Grant agreement no. 899822 (SOMA project) and by the Italian Institute for Labour Accidents (INAIL) Prosthetic Center with WiFi-MyoHand project (CUP: E59E19001460005).

This work was partially funded by Fondazione di Sardegna, project BioVino (CUP F75F21001360007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Collu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Collu, R. et al. (2024). A Microcontroller-Based Portable Transcutaneous Electrical Nerve Stimulator via Ultra-comfortable Tattoo Electrodes for Haptic Feedback. In: Ciofi, C., Limiti, E. (eds) Proceedings of SIE 2023. SIE 2023. Lecture Notes in Electrical Engineering, vol 1113. Springer, Cham. https://doi.org/10.1007/978-3-031-48711-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48711-8_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48710-1

  • Online ISBN: 978-3-031-48711-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation