Application of Black Silicon

  • Chapter
  • First Online:
Black Silicon

Part of the book series: Synthesis Lectures on Materials and Optics ((SLMO))

  • 27 Accesses

Abstract

As a new functional material, b-Si has drawn worldwide attention in recent years. It is an ideal material for achieving sensitive photodetectors, photodiodes, biochemical sensors, hydrogen generators and display devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 44.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Lv, T. Zhang, P. Zhang, Y. Zhao, S. Li, Review application of nanostructured black silicon. Nanoscale Res. Lett. 13, 1–10 (2018). https://doi.org/10.1186/s11671-018-2523-4

  2. J. Soueiti, R. Sarieddine, H. Kadiri, A. Alhussein, G. Lerondel, R. Habchi, A review of cost-effective black silicon fabrication techniques and applications. Nanoscale. 15, 4738–4761 (2023). https://doi.org/10.1039/D2NR06087F

    Article  CAS  PubMed  Google Scholar 

  3. X. Liu, P. Coxon, M. Peters, B. Hoex, J. Cole, D. Frayc, Black silicon: Fabrication methods, properties and solar energy applications. Energy & Env. Sci. 7(10), 3223–3263 (2014). https://doi.org/10.1039/C4EE01152J

    Article  CAS  Google Scholar 

  4. Z. Fan, D. Cui, Z. Zhang, Z. Zhao, H. Chen, Y. Fan, P. Li, Z. Zhang, C. Xue, S. Yan, Recent progress of black silicon: from fabrications to applications. Nanomat., 11, 41 (2021). https://doi.org/10.3390/nano11010041

    Article  CAS  Google Scholar 

  5. T. Pasanen, Black Silicon. In: Handbook of Silicon Based MEMS Materials and Technologies (Elsevier, Kidlington, UK, 2020), pp. 186–196. https://doi.org/10.1016/B978-0-12-817786-0.00006-2

  6. M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. Sprafke, J. Ziegler, M. Zilk, R. Wehrspoh, Black silicon photovoltaics. Adv. Opt. Mater. 3, 147–164 (2015). https://doi.org/10.1002/adom.201400395

  7. M. Akbari-Saatlu, M. Procek, C. Mattsson, G. Thungström, H.-E. Nilsson, W. **ong, B. Xu, Y. Li, H.H. Radamson, Silicon nanowires for gas sensing: a review. Nanomat. 10, 2215 (2020). https://doi.org/10.3390/nano10112215

    Article  CAS  Google Scholar 

  8. G. Korotcenkov, E. Rusu, How to improve the performance of porous silicon-based gas and vapor sensors? Approaches and achievements. Phys. Status Solidi A. 216, 190348 (2019). https://doi.org/10.1002/pssa.201900348

    Article  CAS  Google Scholar 

  9. I. Ivanov, V. Skryshevsky, A. Belarouci, Engineering porous silicon-based microcavity for chemical sensing. ACS Omega, 8 (23), 21265–21276 (2023). https://doi.org/10.1021/acsomega.3c02526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. L. De Stefano, Porous silicon optical biosensors: still a promise or a failure? Sensors 19 (21), 4776 (2019). https://doi.org/10.3390/s19214776

  11. Y. Qin, Y. Liu, Y. Wang, Vertically aligned silicon nanowires with rough surfaces and NO2 sensing properties. J Mater Sci: Mater Electron. 27, 11319–11324 (2016). https://doi.org/10.1007/s10854-016-5255-1

    Article  CAS  Google Scholar 

  12. L. Yuan, M. Hu, Y. Wei, W. Ma, Enhanced NO2 sensing characteristics of Au modified porous silicon/thorn-sphere-like tungsten oxide composites. Appl. Surf. Sci. 389, 824 (2016). https://doi.org/10.1016/j.apsusc.2016.07.068

    Article  CAS  Google Scholar 

  13. T.Y. Li, C.Y. Duan, Y.X. Zhu, Y.F. Chen, Y. Wang, Graphene quantum dots modified silicon nanowire array for ultrasensitive detection in the gas phase. J. Phys. D: Appl. Phys. 50, 114002 (2017). https://doi.org/10.1088/1361-6463/aa5a36

    Article  CAS  Google Scholar 

  14. S. Zhao, Z. Li, G. Wang, J. Liao, S. Lv, Z. Zhu, Highly enhanced response of MoS2/porous silicon nanowire heterojunctions to NO2 at room temperature. RSC Adv. 8, 11070 (2018). https://doi.org/10.1039/C7RA13484C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. X. Liu, M. Hu, Y. Wang, J. Liu, Y. Qin, High sensitivity NO2 sensor based on CuO/p-porous silicon heterojunction at room temperature. J. Alloys Compd. 685, 364 (2016). https://doi.org/10.1016/j.jallcom.2016.05.215

    Article  CAS  Google Scholar 

  16. J.H. Bang, M.S. Choi, A. Mirzaei, W. Oum, S. Han, S.S. Kim, H.W. Kim, Porous Si/SnO2 nanowires heterostructures for H2S gas sensing. Ceram. Int. 46, 604 (2020). https://doi.org/10.1016/j.ceramint.2019.09.010

    Article  CAS  Google Scholar 

  17. X. Liu, Y. Zhao, W. Wang, S. Ma, X. Ning, L. Zhao, J. Zhuang, Photovoltaic self-powered gas sensing: a review. IEEE Sens. J. 21, 5628 (2021). https://doi.org/10.1109/JSEN.2020.3037463

    Article  CAS  Google Scholar 

  18. W. Wang, S. Ma, X. Liu, Y. Zhao, Y. Li, H. Li, X. Ning, L. Zhao, J. Zhuang, NO2 gas sensor with excellent performance based on thermally modified nitrogen-hyperdoped silicon. Sens. Actuators, B. 354, 131193 (2022). https://doi.org/10.1016/j.snb.2021.131193

  19. W. Wang, H. Li, X. Liu, S. Ma, Y. Zhao, B. Dong, Y. Li, X. Ning, L. Zhao, J. Zhuang, Hyperdo**-regulated room-temperature NO2 gas sensing performances of black silicon based on lateral photovoltaic effect. Sens. Actuators, B. 382, 133473 (2023). https://doi.org/10.1016/j.snb.2023.133473

  20. G. Ayvazyan, K. Ayvazyan, L. Hakhoyan, A. Semchenko A. NO2 gas sensor based on pristine black silicon formed by reactive ion etching. Phys. Status Solidi RRL. 17, 2300058 (2023). https://doi.org/10.1002/pssr.202300058

  21. G. Ayvazyan, A. Vaseashta, F. Gasparyan, S. Khudaverdyan, Effect of thermal annealing on the structural and optical properties of black silicon. J. Mater Sci: Mater. Electron. 33, 17001–17010 (2022). https://doi.org/10.1007/s10854-022-08578-y

    Article  CAS  Google Scholar 

  22. G. Barillaro, P. Bruschi, F. Pieri, L. M. Strambini, Phys. Status Solidi A. CMOS-compatible fabrication of porous silicon gas sensors and their readout electronics on the same chip. Phys. Status Solidi A. 204(5), 1423–1428 (2007). https://doi.org/10.1002/pssa.200674370

  23. P. Raju, Q. Li, Review-semiconductor materials and devices for gas sensors. J. Electrochem. Soc.169, 057518 (2022). https://doi.org/10.1149/1945-7111/ac6e0a

    Article  CAS  Google Scholar 

  24. V. Kashyap, H. Pawar, C. Kumar, N. Chaudhary, K. Saxena, Analysis of synthesized doped vertical silicon nanowire arrays for effective sensing of nitrogen dioxide: As gas sensors. Front. Mater. 9, 102237 (2022). https://doi.org/10.3389/fmats.2022.1022317

    Article  Google Scholar 

  25. A. Mirzaei, S. Y. Kang, S.-W. Choi, Y. J. Kwon, M. S. Choi, J. H. Bang, S. S. Kim, H. W. Kim, Fabrication and gas sensing properties of vertically aligned Si nanowires. Appl. Surf. Sci. 427, 215–226 (2018). https://doi.org/10.1016/j.apsusc.2017.08.182

    Article  CAS  Google Scholar 

  26. Y.J. Kwon, A. Mirzaei, H.G. Na, S.Y. Kang, M.S. Choi, J.H. Bang, W. Oum, S.S. Kim, H.W. Kim, Porous Si nanowires for highly selective room-temperature NO2 gas sensing. Nanotech. 29, 294001 (2018). https://doi.org/10.1088/1361-6528/aac17b

    Article  CAS  Google Scholar 

  27. H. Mhamdi, K. Azaiez, T. Fiorido, R. B. Zaghouani, J. L. Lazzari, M. Bendahan, W. Dimassi, Room temperature NO2 gas sensor based on stain-etched porous silicon: Towards a low-cost gas sensor integrated on silicon. Inorg. Chem. Commun. 2022, 139, 109325 (2022). https://doi.org/10.1016/j.inoche.2022.109325

  28. J. Liao, Z. Li, G. Wang, C. Chen, S. Lv, M. Li, ZnO nanorod/porous silicon nanowire hybrid structures as highly-sensitive NO2 gas sensors at room temperature. Phys. Chem. Chem. Phys. 18, 4835 (2016). https://doi.org/10.1039/C5CP07036H

    Article  CAS  PubMed  Google Scholar 

  29. W. Yan, M. Hu, P. Zeng, S. Ma, M. Li, Room temperature NO2-sensing properties of WO3 nanoparticles/porous silicon. Appl. Surf. Sci. 292, 551–555 (2014). https://doi.org/10.1016/j.apsusc.2013.11.169

    Article  CAS  Google Scholar 

  30. Y. Wu, M. Hu, Y. Qin, X. Wei, S. Ma, D. Yan, Enhanced response characteristics of p-porous silicon (substrate)/p-TeO2 (nanowires) sensor for NO2 detection. Sens. Actuators, B. 195, 181–188 (2014). https://doi.org/10.1016/j.snb.2014.01.019

  31. OSHA, https://www.osha.gov/chemicaldata. Accessed: 22 Aug 2023

  32. G. Seniutinas, G. Gervinskas, R. Verma, B.D. Gupta, F. Lapierre, P.R. Stoddart, F. Clark, S.L. McArthur, S. Juodkazis, Versatile SERS sensing based on black silicon. Opt. Express. 23(5), 6763–6772 (2015). https://doi.org/10.1364/OE.23.006763

    Article  CAS  PubMed  Google Scholar 

  33. Y.A. Peschenyuk, A.A. Semenov, G.Y. Ayvazyan, M.S. Lebedev, E.Ya. Gatapova, Bubble growth in a volatile liquid drop: interface dynamics. Thermophys. and Aeromech. 29 (6) 965–973 (2022). https://doi.org/10.1134/S0869864322060178

  34. Y.A. Peschenyuk, A.A. Semenov, G.Y. Ayvazyan, E.Ya. Gatapova, The final stage of droplet evaporation on black silicon by Schlieren technique with a graded filter. Exp. Fluids. 64, 1 (2023). https://doi.org/10.1007/s00348-022-03541-3

  35. M.A. Almeshaal, B. Abdouli, K. Choubani, L. Khezami, M.B. Rabha, Study of porous silicon layer effect in optoelectronics properties of multi-crystalline silicon for photovoltaic applications. Silicon (2023). https://doi.org/10.1007/s12633-023-02482-8

    Article  Google Scholar 

  36. A. Liu, S.P. Phang, D. Macdonald, Gettering in silicon photovoltaics: A review. Solar Energy Mat. Solar Cells. 234, 111447 (2022). https://doi.org/10.1016/j.solmat.2021.111447

    Article  CAS  Google Scholar 

  37. H.S. Radhakrishnan, C. Ahn, J. Van Hoeymissen, F. Dross, N. Cowern, K. Van Nieuwenhuysen, I. Gordon, R. Mertens, J. Poortmans, Gettering of transition metals by porous silicon in epitaxial silicon solar cells. Phys. Status Solidi A. 209(10), 1866–1871 (2012). https://doi.org/10.1002/pssa.201200232

    Article  CAS  Google Scholar 

  38. A. Zarroug, A., Z.B. Hamed, F. Laatar, L. Derbali, H. Ezzaouia, The removal of metal impurities from the surface of Czochralski wafers using a porous silicon-based gettering under a gas flow HCl/O2 dry. Mat. Res. Bull. 91, 127–134 (2017). https://doi.org/10.1016/j.materresbull.2017.03.038

  39. P.N. Vinod, Porous silicon and aluminum co-gettering experiment in p-type multi crystalline silicon substrate. Sci. Techn. Adv. Mat. 8 (4), 231–236 (2007). https://doi.org/10.1016/j.stam.2007.02.002

    Article  CAS  Google Scholar 

  40. N. Khedher, M. Hajji, M. Hassen, A. Ben Jaballah, B. Ouertani, H. Ezzaouia, H., B. Bessais, A. Selmi, R. Bennaceur, Gettering impurities from crystalline silicon by phosphorus diffusion using a porous silicon layer. Solar Energy Mat. Solar Cells. 87(1–4), 605–611 (2005). https://doi.org/10.1016/j.solmat.2004.09.017

  41. M. Ouadhour, L. Derbali, S. Zargouni, M. Hajji, H. Ezzaouia, ZnO thin film and porous silicon co-gettering of impurities in multicrystalline silicon through a VTP process. J. Mat. Sci.: Mat. Electron. 29(10), 8216–8223 (2018). https://doi.org/10.1007/s10854-018-8828-3

  42. H. Nouri, M. Bouaïcha, B. Bessaïs, Effect of porous silicon on the performances of silicon solar cells during the porous silicon-based gettering procedure. Solar Energy Mat. Solar Cells, 93(10), 1823–1826 (2009). https://doi.org/10.1016/j.solmat.2009.06.015

    Article  CAS  Google Scholar 

  43. T.P. Pasanen, H.S. Laine, V. Vähänissi, J. Schön, H. Savin, Black silicon significantly enhances phosphorus diffusion gettering. Sci. Reports. 8(1). 1991 (2018). https://doi.org/10.1038/s41598-018-20494-y

  44. G. Ayvazyan, L. Hakhoyan, K. Ayvazyan, A. Aghabekyan, External gettering of metallic impurities by black silicon layer. Phys. Status Solidi A. 220(5), 2200793 (2023). https://doi.org/10.1002/pssa.202200793

    Article  CAS  Google Scholar 

  45. J.D. Murphy, R.E. McGuire, K.Bothe, V.V. Voronkov, R.J. Falster, Minority carrier lifetime in silicon photovoltaics: the effect of oxygen precipitation. Sol. Energy Mat. Sol. Cells. 120, 402–441 (2014). https://doi.org/10.1016/j.solmat.2013.06.018

    Article  CAS  Google Scholar 

  46. G.Y. Ayvazyan, A.V. Aghabekyan, L.A. Hakhoyan, M.V. Katkov, M.S. Lebedev, Passivation properties of atomic-layer-deposited hafnium oxide on black silicon surface, in Proceedings of the 32nd Int. Conf. on Microel., Nis, Serbia, 12–14 September 2021, p. 145–147. https://doi.org/10.1109/MIEL52794.2021.9569183

  47. Z. Chun-Lan, W. Wen-**g, L. Hai-Ling, Z. Lei, D. Hong-Wei, Li-Xu-Dong, Influence of ring oxidation-induced stack faults on efficiency in silicon solar cells. Chin. Phys. Lett. 25(8), 3005–3008 (2008). https://doi.org/10.1088/0256-307x/25/8/073

    Article  Google Scholar 

  48. J. Paloheimo, Properties of silicon crystals. In: Handbook of Silicon Based MEMS Materials and Technologies, Elsevier, Amsterdam, pp. 61–96 (2020). https://doi.org/10.1016/B978-0-12-817786-0.00003-7

  49. M. Fleck, A. Zuschlag, G. Hahn, Etch pit density reduction in POCl3 and atmospheric pressure chemical vapor deposition-gettered mc-Si. Phys. Status Solidi A. 216 (17), 1900316 (2019). https://doi.org/10.1002/pssa.201900316

    Article  CAS  Google Scholar 

  50. D. Lu, Q. Jiang, X. Ma, Q. Zhang, X. Fu, L. Fan, Defect-related etch pits on crystals and their utilization. Crystals, 12, 1549 (2022). https://doi.org/10.3390/cryst12111549

    Article  CAS  Google Scholar 

  51. X. Liu, B. Radfar, K. Chen, O.E. Setälä, T.P. Pasanen, M. Yli-Koski, H. Savin, V. Vähänissi, Perspectives on black silicon in semiconductor manufacturing: experimental comparison of plasma etching, MACE, and Fs-Laser Etching. IEEE Trans. Semicond. Manuf., 35 (3), 504–510 (2022). https://doi.org/10.1109/TSM.2022.3190630

    Article  CAS  Google Scholar 

  52. T.P. Pasanen, H.S. Laine, V. Vahanissi, K. Salo, S. Husein, H. Savin, Impact of standard cleaning on electrical and optical properties of phosphorus-doped black silicon. IEEE J. Photovolt. 8, 697–702 (2018). https://doi.org/10.1109/JPHOTOV.2018.2806298

    Article  Google Scholar 

  53. L. Derbali, A. Zarroug, H. Ezzaouia, Minority carrier lifetime and efficiency improvement of multicrystalline silicon solar cells by two-step process. Renew. Energy. 77, 331–337 (2015). https://doi.org/10.1016/j.renene.2014.12.014

    Article  CAS  Google Scholar 

  54. J. Fichtner, H. Zunft, A. Zuschlag, H. Knauss, G. Hahn, Gettering efficacy of APCVD-based process steps for low-cost PERT-type multicrystalline silicon solar cells. IEEE J. Photovolt. 8 (6), 1464–1469 (2018). https://doi.org/10.1109/JPHOTOV.2018.2865509

    Article  Google Scholar 

  55. V. Vahanissi, A. Haarahiltunen, M. Yli-Koski, H. Savin, Gettering of iron in silicon solar cells with implanted emitters. IEEE J. Photovolt. 4, 142–147 (2014). https://doi.org/10.1109/JPHOTOV.2013.2285961

    Article  Google Scholar 

  56. V. Vahanissi, A. Haarahiltunen, H. Talvitie, M. Yli-Koski, H. Savin, Impact of phosphorus gettering parameters and initial iron level on silicon solar cell properties. Prog. Photovolt.: Res. Appl. 21, 1127–1135 (2013). https://doi.org/10.1002/pip.2215

  57. A. Zarroug, L. Derbali, H. Ezzaouia, The impact of thermal treatment on gettering efficiency in silicon solar cell. Mater. Sci. Semicond. Proc. 30, 451–455 (2015). https://doi.org/10.1016/j.mssp.2014.10.042

    Article  CAS  Google Scholar 

  58. C. Modanese, H.S. Laine, T.P. Pasanen, H. Savin, J.M. Pearce, Economic advantages of dry-etched black silicon in passivated emitter rear cell (PERC) PV manufacturing. Energies. 11, 2337–2335 (2018). https://doi.org/10.3390/en11092337

  59. T. Pasanen, V. Vähänissi, N. Theut, H. Savin, Surface passivation of black silicon phosphorus emitters with atomic layer deposited SiO2/Al2O3 stacks. Energy Procedia. 124, 307–312 (2017). https://doi.org/10.1016/j.egypro.2017.09.304

    Article  CAS  Google Scholar 

  60. Z. Shen, B. Liu, Y. **a, J. Liu, S. Zhong, C. Li, Black silicon on emitter diminishes the lateral electric field and enhances the blue response of a solar cell by optimizing depletion region uniformity. Scripta Mater. 68, 199–202. (2013). https://doi.org/10.1016/j.scriptamat.2012.10.023

    Article  CAS  Google Scholar 

  61. J. Oh., H.C. Yuan, H.M. Branz, An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat. Nanotechnol. 7(11), 743–748 (2012). https://doi.org/10.1038/nnano.2012.166

  62. S. Khudaverdyan, A. Vaseashta, G. Ayvazyan, L. Matevosyan, A. Khudaverdyan, M. Khachatryan, E. Makaryan, On the selective spectral sensitivity of oppositely placed double-barrier structures. Photonics. 9, 558–568 (2022). https://doi.org/10.3390/photonics9080558

    Article  Google Scholar 

  63. A. Vaseashta, S. Khudaverdyan, G. Ayvazyan, L. Matevosyan, S. Tsaturyan, H. Babajanyan, On the unusually high photosensitivity of two barrier structures. Appl. Phys. B. 129, 101 (2023). https://doi.org/10.1007/s00340-023-08048-1

    Article  CAS  Google Scholar 

  64. S. Khudaverdyan, A. Vaseashta, G. Ayvazyan, M. Khachatryan, A. Atvars, M. Lapkis, S. Rudenko, On the semiconductor spectroscopy for identification of emergent contaminants in transparent mediums, in Advanced Sciences and Technologies for Security Applications; ed. by A. Vaseashta, C. Maftei (Springer Nature, Cham, Switzerland, 2021), pp. 663–689. https://doi.org/10.1007/978-3-030-76008-3_29

  65. S.P. Muduli, P. Kale, State-of-the-art passivation strategies of c-Si for photovoltaic applications: A review. Mater. Sci. Semicond. Process. 154, 107202 (2023). https://doi.org/10.1016/j.mssp.2022.107202

    Article  CAS  Google Scholar 

  66. Y. Liu, T. Lai, H. Li, Nanostructure formation and passivation of large-area black silicon for solar cell applications. Small. 8(9), 1392–1397 (2012). https://doi.org/10.1002/smll.201101792

    Article  CAS  PubMed  Google Scholar 

  67. A.A. Kabalan, Comparative study on the effects of passivation methods on the carrier lifetime of RIE and MACE silicon micropillars. Appl. Sci. 9(9), 1804 (2019). https://doi.org/10.3390/app9091804

    Article  CAS  Google Scholar 

  68. W.F. Liu, J.M. Bian, Z.C. Zhao, Y.L. Luo, Z. Yuan, B.Y. Zhang, A.M. Liua, Low-temperature surface passivation of black silicon solar cells by high-pressure O2 thermal oxidation. ECS Solid State Lett. 2(4), Q17–Q20 (2013). https://doi.org/10.1149/2.003304ssl

    Article  CAS  Google Scholar 

  69. R. Tasmiat, R. Nawabjan, P. Wilshaw, S. Boden, Passivation of all-angle black surfaces for silicon solar cells. Solar Energy Mat. Solar Cells. 160, 44–453 (2017). https://doi.org/10.1016/j.solmat.2016.10.044

    Article  CAS  Google Scholar 

  70. P. Repo, H. Savin, Effect of different ALD Al2O3 oxidants on the surface passivation of black silicon. Energy Procedia. V. 92, 381–385 (2016). https://doi.org/10.1016/j.egypro.2016.07.116

    Article  CAS  Google Scholar 

  71. E. Calle, P. Ortega, G. Gastrow, I. Martín, H. Savin, R. Alcubilla, Long-term stability of Al2O3 passivated black silicon. Energy Procedia. 92, 341–346 (2016). https://doi.org/10.1016/j.egypro.2016.07.093

    Article  CAS  Google Scholar 

  72. G.Y. Ayvazyan, K.G. Ayvazyan, L.M. Lakhoyan, D.L. Kovalenko, Surface passivation of black silicon solar cells. Proc. of Eng. Academy of Armenia. 13(4), 607–609 (2016)

    Google Scholar 

  73. A.V. Semchenko, V.V. Sidsky, O.I. Tyulenkova, V.E. Gaishun, D.L. Kovalenko, G.Y. Ayvazyan, L.A. Hakhoyan. Characteristics of nanocomposite sol-gel films on black silicon surface, in Research and Education: Traditions and Innovations. INTER-ACADEMIA 2021. Lecture Notes in Networks and Systems, ed. by S. Khakhomov, I. Semchenko, O. Demidenko, D. Kovalenko. Vol. 422, 213–220 (Springer, Singapore, 2022). https://doi.org/10.1007/978-981-19-0379-3_21

  74. A.V. Semchenko, G.Y. Ayvazyan, V.V. Malyutina-Bronskaya, S.A. Khakhomov, D.L. Kovalenko, A.A. Boiko, V.V. Sidski, A.V. Nestsiaronak, A.A. Mayevsky, K.D. Danilchenko, D.V. Zhigulin, V.A. Pilipenko, R. Subasri, N.V. Gaponenko, Photoactive properties of transport sol-gel layers based on strontium titanate for perovskite solar cells. Photonics. 10(7), 845–855 (2023). https://doi.org/10.3390/photonics10070845

    Article  CAS  Google Scholar 

  75. M.V. Katkov, G.Y. Ayvazyan, V.R. Shayapov, M.S. Lebedev, Modeling of the optical properties of black silicon passivated by thin films of metal oxides. J. Contemp. Phys. 55(1) 16–22 (2020). https://doi.org/10.3103/S106833722001003X

    Article  CAS  Google Scholar 

  76. G.Y. Ayvazyan, M.V. Katkov, M.S. Lebedev, V.R. Shayapov, M.Yu. Afonin, D.E. Petukhova, I.V. Yushina, E.A. Maksimovskii, A.V. Aghabekyan, Anti-reflection properties of black silicon coated with thin films of metal oxides by atomic layer deposition. J. Contemp. Phys. 56(3), 240–246 (2021). https://doi.org/10.3103/S1068337221030075

  77. K.G. Ayvazyan, M.V. Katkov, M.S. Lebedev, G.Y. Ayvazyan, Enhanced light-trap** with conformal ALD coating of black silicon by high-k metal oxides, in Proceedings of the IEEE 11th Int. Conf. Nanomat.: Appl. & Property., Odessa, Ukraine, 05–11 September 2021, P. 1–4. https://doi.org/10.1109/NAP51885.2021.9568530

  78. G.Y. Ayvazyan, Mechanical stresses in SiO2 of polycrystalline Si. Phys. State Solidi A. 177(1) R5–R6 (2000). https://doi.org/10.1002/(SICI)1521396X(200001)177:1<R5

    Article  CAS  Google Scholar 

  79. A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of “sol–gel” chemistry as a technique for materials synthesis. Mater. Horizons. 91112 (2011). https://doi.org/10.1039/c5mh00260e

  80. D. Navas, S. Fuentes, A. Castro-Alvarez, E. Chavez-Angel, Review on sol-gel synthesis of perovskite and oxide nanomaterials. Gels. 7(4), 275–281 (2021). https://doi.org/10.3390/gels7040275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. M. Otto, M. Kroll, T. KŠsebierb, S.M. Lee, M. Putkonen, R. Salzer, P.T. Miclea, R.B. Wehrspohn, Conformal transparent conducting oxides on black silicon. Adv. Mater., 22, 5035–5038 (2010). https://doi.org/10.1002/adma.201002515

  82. O. Koralli, S.F. Varol, G. Mousdis, D.E. Mouzakis, Z. Merdan, M. Kompitsas, Comparative studies of undoped/Al-doped/in-doped ZnO transparent conducting oxide thin films in optoelectronic applications. Chemosensors. 10(5), 162 (2022). https://doi.org/10.3390/chemosensors10050162

    Article  CAS  Google Scholar 

  83. Z. Feng, R. Jia, B. Dou, H. Li, Z. **, X. Liu, F. Li, W. Zhang, C. Wu, Fabrication and properties of ZnO nanorods within silicon nanostructures for solar cell application. Appl. Phys. Lett. 106, 053118 (2015). https://doi.org/10.1063/1.4907645

    Article  CAS  Google Scholar 

  84. Richter, H., C. Reichel, J. Benick, S.W. Glunz, Improved silicon surface passivation by ALD Al2O3/SiO2 multilayers with in-situ plasma treatments. Adv. Mat. 10(16), 2202469 (2023). https://doi.org/10.1002/admi.202202469

    Article  CAS  Google Scholar 

  85. J. Xu, C. Chen, C. Liu, J. Chen, Z. Liu, X. Yuan, H. Li, High-efficiency black silicon tunnel oxide passivating contact solar cells through modifying the nano-texture on micron-pyramid surface, Solar Energy Mat. Solar Cells. 233, 111409 (2021). https://doi.org/10.1016/j.solmat.2021.111409

    Article  CAS  Google Scholar 

  86. W-C. Wang, M-C Tsai, J. Yang, C Hsu, M-J Chen, Efficiency enhancement of nanotextured black silicon solar cells using Al2O3/TiO2 dual-layer passivation stack prepared by atomic layer deposition. ACS Appl. Mat. Interf. 7(19), 10228–10237 (2015). https://doi.org/10.1021/acsami.5b00677

  87. B. Loo, A. Ingenito, M. Verheijen, O. Isabella, M. Zeman, W.M.M. Kessels, Surface passivation of N-type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks. Appl. Phys. Lett. 110 (26), 263106 (2017). https://doi.org/10.1063/1.4989824

    Article  CAS  Google Scholar 

  88. X. Cheng, P. Repo, H. Haug, A.P. Perros, E.S. Marstein, M. Di Sabatino, H. Savin, Surface passivation properties of HfO2 thin film on n-type crystalline Si. IEEE J. Photovolt. 7(2), 479–485 (2017). https://doi.org/10.1109/JPHOTOV.2016.2645399

    Article  Google Scholar 

  89. X. Zhang, C. Hsu, S. Lien, Surface passivation of silicon using HfO2 thin films deposited by remote plasma atomic layer deposition system. Nanoscale Res. Lett. 12, 324–331 (2017). https://doi.org/10.1186/s11671-017-2098-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. M.S. Lebedev, V.N. Kruchinin, M.Yu. Afonin, I.V. Korolkov, A.A. Saraev, A.A. Gismatulin, V.A. Gritsenko, Optical properties and charge transport of textured Sc2O3 thin films obtained by atomic layer deposition. Appl. Surf. Sci. 478, 690–698 (2019). https://doi.org/10.1016/j.apsusc.2019.01.288

  91. V.V. Atuchin, M.S. Lebedev, I.V. Korolkov, V.N. Kruchinin, E.A. Maksimovskii, S.V. Trubin S.V. Composition-sensitive growth kinetics and dispersive optical properties of thin HfxTi1−xO2 films prepared by the ALD method. J Mater Sci: Mater Electron. 30, 812–823 (2019). https://doi.org/10.1007/s10854-018-0351-z

  92. A. ur Rehman, S.H. Lee, Advancements in n-type base crystalline silicon solar cells and their emergence in the photovoltaic industry. Sci. World J. 2013, 470347 (2013). https://doi.org/10.1155/2013/470347

  93. G.Y. Ayvazyan, A.V. Aghabekyan, Fabrication and testing of black silicon solar cells Proc. NPUA: Inf. Techn., Electronics, Radio Eng. 1, 72–78 (2021). https://doi.org/10.53297/18293336-2021.1-73

  94. G.Y. Ayvazyan, R.N. Barseghyan, S.A. Minasyan, Optimization of surface reflectance for silicon solar cells. Green Energy and Smart Grids. E3S Web of Conf. 69, 01008 (2018). https://doi.org/10.1051/e3sconf/20186901008

  95. S. Ray, S. Mitra, H. Ghosh, A. Mondal, C. Banerjee, U. Gangopadhyay, Novel technique for large area n-type black silicon solar cell by formation of silicon nanograss after diffusion process. J. Mater. Sci.: Mater. Electron. 32, 2590–2600 (2021). https://doi.org/10.1007/s10854-020-05027-6

  96. F. Marangi, M. Lombardo, A. Villa, F. Scotognella, New strategies for solar cells beyond the visible spectral range. Opt. Mat.: X. 11, 100083 (2021). https://doi.org/10.1016/j.omx.2021.100083

  97. A. Kumar, S. Singh, A. Sharma, E.M. Ahmed, Efficient and stable perovskite solar cells by interface engineering at the interface of electron transport layer/perovskite, Opt. Mat. 132, 112846 (2022). https://doi.org/10.1016/j.optmat.2022.112846

    Article  CAS  Google Scholar 

  98. M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe, G. Siefer, H. **ao**g, Solar cell efficiency tables (version 62), Progress Photovolt.: Res. Appl. 31 (7), 651–663 (2023). https://doi.org/10.1002/pip.3726

  99. A. Mallick, I. Visoly-Fisher, Pb in halide perovskites for photovoltaics: reasons for optimism. Mater. Adv. 2, 6125–6135 (2021). https://doi.org/10.1039/D1MA00355K

    Article  CAS  Google Scholar 

  100. D. Li, J. Shi, Y. Xu, Y. Luo, H. Wu, Q. Meng, Inorganic–organic halide perovskites for new photovoltaic technology. Nat. Sci. Rev. 5, 559–576 (2018). https://doi.org/10.1093/nsr/nwx100

    Article  CAS  Google Scholar 

  101. H. Choe, D. Jeon, S. J. Lee, J. Cho, Mixed or segregated: toward efficient and stable nixed halide perovskite-based devices. ACS Omega. 6, 24304–24315 (2021). https://doi.org/10.1021/acsomega.1c03714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. M.M. Tavakoli, P. Yadav, D. Prochowicz, R. Tavakoli, M. Saliba, Multilayer evaporation of MAFAPbI3−xClx for the fabrication of efficient and large-scale device perovskite solar cells. J. Phys. D: Appl. Phys. 52, 034005 (2019). https://doi.org/10.1088/1361-6463/aaebf1

    Article  CAS  Google Scholar 

  103. Y. Hu, L. Song, Y. Chen, W. Huan, Two-terminal perovskites tandem solar cells: Recent advances and perspectives. Sol. RRL 3, 1900080 (2019). https://doi.org/10.1002/solr.201900080

    Article  CAS  Google Scholar 

  104. M. Haider, Y. Jun-Liang, Efficient and stable perovskite–silicon two-terminal tandem solar cells. Rare Met. 39, 745–747 (2020). https://doi.org/10.1007/s12598-020-01430-4

    Article  CAS  Google Scholar 

  105. F. Fu, J. Li, T. C.-J. Yang, H. Liang, A. Faes, Q. Jeangros, C. Ballif, Y. Hou, Monolithic perovskite-silicon tandem solar cells: from the lab to fab? Adv. Mat. 34, 2106540 (2022). https://doi.org/10.1002/adma.202106540

    Article  CAS  Google Scholar 

  106. B. Chen, Z.J. Yu, S. Manzoor, S. Wang, W. Weigand, Z. Yu, G. Yang, Z. Ni, X. Dai, Z.C. Holman, J. Huang, Blade-coated perovskites on textured Silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule. 4, 850–864 (2020). https://doi.org/10.1016/j.joule.2020.01.008

    Article  CAS  Google Scholar 

  107. K. Hamada, K. Yonezawa, K. Yamamoto, T. Taima, S. Hayase, N. Ooyagi, Y. Yamamoto, K. Ohdaira, Vacuum deposition of CsPbI3 layers on textured Si for perovskite/Si tandem solar cells. Jap. J. Appl. Phys. 58, SBBF06 (2019). https://doi.org/10.7567/1347-4065/aafb56

  108. L. Gil-Escrig, M. Roß, J. Sutter, A. Al-Ashouri, C. Becker, S. Albrecht, Fully vacuum-processed perovskite solar cells on pyramidal microtextures. Sol. RRL. 5, 2000553 (2020). https://doi.org/10.1002/solr.202000553

    Article  CAS  Google Scholar 

  109. M. Jošt, E. Köhnen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield Energy Environ. Sci. 11, 3511–3523 (2018). https://doi.org/10.1039/C8EE02469C

  110. S.L. Hamukwaya, H. Hao, Z. Zhao, J. Dong, T. Zhong, J. **ng, L. Hao, M.M. Mashingaidze, A review of recent developments in preparation methods for large-area perovskite solar cells. Coatings. 12, 252 (2022). https://doi.org/10.3390/coatings12020252

    Article  CAS  Google Scholar 

  111. D. Zhou, T. Zhou, Y. Tian, X. Zhu, Y. Tu, Perovskite-based solar cells: materials, methods, and future perspectives. J. Nanomater. 2018, 1 (2018). https://doi.org/10.1155/2018/8148072

    Article  CAS  Google Scholar 

  112. B. Salhi, Y.S. Wudil, M.K. Hossain, A. Al-Ahmed, F.A. Al-Sulaiman, Review of recent developments and persistent challenges in stability of perovskite solar cells. Renewable Sustainable Energy Rev. 90, 210–222 (2018). https://doi.org/10.1016/j.rser.2018.03.058

    Article  CAS  Google Scholar 

  113. Q. Guesnay, F. Sahli, C. Ballif, Q. Jeangros, Vapor deposition of metal halide perovskite thin films: Process control strategies to shape layer properties. APL Mater. 9, 100703 (2021). https://doi.org/10.1063/5.0060642

    Article  CAS  Google Scholar 

  114. L. Cojocaru, K. Wienands, T.W. Kim, S. Uchida, A.J. Bett, S. Rafizadeh, J.C. Goldschmidt, S.W. Glunz, Detailed investigation of evaporated perovskite absorbers with high crystal quality on different substrates. ACS Appl. Mater. Interfaces. 10, 26293–26302 (2018). https://doi.org/10.1021/acsami.8b07999

    Article  CAS  PubMed  Google Scholar 

  115. E. Köhnen, M. Jošt, A. B. Morales-Vilches, P. Tockhorn, A. Al-Ashouri, B. Macco, L. Kegelmann, L. Korte, B. Rech, R. Schlatmann, B. Stannowski, S. Albrecht, Highly efficient monolithic perovskite silicon tandem solar cells: Analyzing the influence of current mismatch on device performance. Sustainable Energy Fuels. 3, 1995–2005 (2019). https://doi.org/10.1039/C9SE00120D

    Article  Google Scholar 

  116. K. Jäger, J. Sutter, M. Hammerschmidt, P.-L. Schneider, C. Becker, Prospects of light management in perovskite/silicon tandem solar cells. Nanophotonics. 10, 1991 (2020). https://doi.org/10.1515/nanoph-2020-0674

    Article  CAS  Google Scholar 

  117. D. Liu, M.K. Gangishetty, T.L. Kelly, Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells. J. Mater. Chem. A. 2, 19873–19881 (2014). https://doi.org/10.1039/C4TA02637C

    Article  CAS  Google Scholar 

  118. R. Kottokkaran, H.A. Gaonkar, H.A. Abbas, M. Noack, V. Dalal, J. Mater. Performance and stability of co-evaporated vapor deposited perovskite solar cells. Sci.: Mater. Electron. 30, 5487–5494 (2019) https://doi.org/10.1007/s10854-019-00842-y

  119. T. Gallet, R.G. Poeira, E.M. Lanzoni, T. Abzieher, U.W. Paetzold, A. Redinger, Co-evaporation of CH3NH3PbI3: How growth conditions impact phase purity, photostriction, and intrinsic stability. ACS Appl. Mater. Interfaces. 13, 2642–2653 (2021). https://doi.org/10.1021/acsami.0c19038

    Article  CAS  PubMed  Google Scholar 

  120. M. Kam, Y. Zhu, D. Zhang, L. Gu, J. Chen, Z. Fan, Efficient mixed-cation mixed-halide perovskite solar cells by all-vacuum sequential deposition using metal oxide electron transport layer. Sol. RRL. 3, 1900050 (2019). https://doi.org/10.1002/solr.201900050

    Article  CAS  Google Scholar 

  121. H. Li, J. Zhou, L. Tan, M. Li, C. Jiang, S. Wang, X. Zhao, Y. Liu, Y. Zhang, Y. Ye, W. Tress, C. Yi, Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci. Adv. 9, 7422 (2022). https://doi.org/10.1126/sciadv.abo742

    Article  Google Scholar 

  122. F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, C. Ballif, Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018). https://doi.org/10.1038/s41563-018-0115-4

  123. P. Du, L. Wang, J. Li, J. Luo, Y. Ma, J. Tang, T. Zhai, Thermal evaporation for halide perovskite optoelectronics: fundamentals, progress, and outlook. Adv. Opt. Mater. 10, 2101770 (2022). https://doi.org/10.1002/adom.202101770

    Article  CAS  Google Scholar 

  124. J. Li, H. Wang, X.Y. Chin, H.A. Dewi, K. Vergeer, T.W. Goh, J.W.M. Lim, J.H. Lew, K.P. Loh, C. Soci, T.C. Sum, H.J. Bolink, N. Mathews, S. Mhaisalkar, A. Bruno, Highly efficient thermally co-evaporated perovskite solar cells and mini-modules. Joule. 4, 1035–1053 (2020). https://doi.org/10.1016/j.joule.2020.03.005

    Article  CAS  Google Scholar 

  125. F.V. Gasparyan, G.Y. Ayvazyan, Reflection and transmission of radiation of the structure crystalline silicon–black silicon–perovskite. J. Contemp. Phys. 57(2), 234–241 (2022). https://doi.org/10.3103/S1068337222020116

    Article  Google Scholar 

  126. G.Y Ayvazyan, D.L. Kovalenko, M.S. Lebedev, L.A. Matevosyan, A.V. Sem-chenko, Investigation of the structural and optical properties of silicon-perovskite structures with a black silicon layer. J. Contemp. Phys. 57(3), 274–279 (2022). https://doi.org/10.1134/S1068337222030069.

    Article  CAS  Google Scholar 

  127. Z. Ying, Z. Yang, J. Zheng, H. Wei, L. Chen, C. **ao, J. Sun, C. Shou, G. Qin, J. Sheng, Y. Zeng, B. Yan, X. Yang, J. Ye, Monolithic perovskite/black-silicon tandems based on tunnel oxide passivated contacts. Joule. 6, 2644–2661 (2022). https://doi.org/10.1016/j.joule.2022.09.006

    Article  CAS  Google Scholar 

  128. A. Vaseashta, G. Ayvazyan, S. Khudaverdyan, L. Matevosyan, Structural and optical properties of vacuum-evaporated mixed-halide perovskite layers on nanotextured black silicon. Phys. Status Solidi RRL. 17, 2200482 (2023). https://doi.org/10.1002/pssr.202200482

    Article  CAS  Google Scholar 

  129. G.Y. Ayvazyan, L.A. Hakhoyan, H.R. Dashtoyan, L.A. Matevosyan, Preparation and investigation of vacuum-deposited CH3NH3PbI3−xClx perovskite films on black silicon. J. Contemp. Phys. 58(1), 85–91 (2023). https://doi.org/10.1134/S1068337223010024

    Article  CAS  Google Scholar 

  130. G. Ayvazyan, F. Gasparyan, V. Gasparian, Optical simulation and experimental investigation of the crystalline silicon/black silicon/perovskite tandem structures. Opt. Mat. 140, 113879 (2023). https://doi.org/10.1016/j.optmat.2023.113879

    Article  CAS  Google Scholar 

  131. Z. Gevorkian, L. Matevosyan, K. Avjyan, V. Harutyunyan, E. Aleksanyan, K. Manukyan, Determination of the complete set of optical parameters of micron-sized polycrystalline CH3NH3PbI3−xClx films from the oscillating transmittance and reflectance spectra. Mater. Res. Express. 7, 016408 (2019). https://doi.org/10.1088/2053-1591/ab5c46

    Article  CAS  Google Scholar 

  132. M.I. El-Henawey, I.M. Hossain, L. Zhang, B. Bagheri, R. Kottokkaran, V.L. Dalal, H. Wong, Influence of grain size on the photo-stability of perovskite solar cells. J. Mater. Sci: Mater. Electron. 32, 4067–4075 (2021). https://doi.org/10.1007/s10854-020-05148-y

    Article  CAS  Google Scholar 

  133. A.H. Ibrahim, L. Saad, A.A. Said, M. Soliman, S. Ebrahim, The impact of annealing process on the grain morphology and performance of mesoporous n-i-p carbon-based perovskite solar cells. AIP Adv. 12, 015007 (2022). https://doi.org/10.1063/5.0062247

    Article  CAS  Google Scholar 

  134. C.-C. Lai, R. Boyd, P.-O. Svensson, C. Höglund, L. Robinson, Effect of substrate roughness and material selection on the microstructure of sputtering deposited boron carbide thin film. Surf. Coat. Technol. 433, 128160 (2022). https://doi.org/10.1016/j.surfcoat.2022.128160

    Article  CAS  Google Scholar 

  135. W.S. Lau, J. Zhang, X. Wan, J.K. Luo, Y. Xu, H. Wong, Surface smoothing effect of an amorphous thin film deposited by atomic layer deposition on a surface with nano-sized roughness. AIP Adv. 4, 027120 (2014). https://doi.org/10.1063/1.4866988

    Article  CAS  Google Scholar 

  136. S. Ngqoloda, C.J. Arendse, S. Guha, T.F. Muller, S.C. Klue, S.S Magubane, C.J. Oliphant, Mixed-halide perovskites solar cells through PbICl and PbCl2 precursor films by sequential chemical vapor deposition. Sol. Energy. 215, 179–188 (2021). https://doi.org/10.1016/j.solener.2020.12.042

    Article  CAS  Google Scholar 

  137. G.Y. Ayvazyan, K.G. Ayvazyan, A.V. Aghabekyan, FDTD modeling of antireflection black silicon layers for solar cells applications, in Proceedings of the 13th Int. Conf. on Comp. Sci. and Inf. Techn., Yerevan, Armenia, 27 September-01 October 2021, P. 110–113

    Google Scholar 

  138. T. Rahman, S.A. Boden, Optical modeling of black silicon for solar cells using effective index techniques, IEEE J. Photovolt. 7, 1556–1562 (2017). https://doi.org/10.1109/JPHOTOV.2017.2748900

    Article  Google Scholar 

  139. D. Shi, Y. Zeng, W. Shen, Perovskite/c-Si tandem solar cell with inverted nanopyramids: Realizing high efficiency by controllable light trap**. Sci. Rep. 5, 16504 (2015). https://doi.org/10.1038/srep16504

    Article  PubMed  PubMed Central  Google Scholar 

  140. S. Ma, S. Liu, Q. Xu, J. Xu, R. Lu, Y. Liu, Z. Zhong, A theoretical study on the optical properties of black silicon. AIP Adv. 8, 035010 (2018). https://doi.org/10.1063/1.5018642

    Article  CAS  Google Scholar 

  141. S. Zandi, M. Razaghi, Finite element simulation of perovskite solar cell: A study on efficiency improvement based on structural and material modification. Sol. Energy. 179, 298–306 (2019). https://doi.org/10.1016/j.solener.2018.12.032

    Article  CAS  Google Scholar 

  142. A.J. Bett, J. Eisenlohr, O. Höhn, P. Repo, H. Savin, B. Bläsi, J.C. Goldschmidt, Wave optical simulation of the light trap** properties of black silicon surface textures. Opt. Express. 24, A434–A445 (2016). https://doi.org/10.1364/OE.24.00A434

    Article  CAS  PubMed  Google Scholar 

  143. M. Bellingeri, A. Chiasera, I. Kriegel, F. Scotognella, Optical properties of periodic, quasi-periodic, and disordered one-dimensional photonic structures. Opt. Mat. 72, 403–421 (2017). https://doi.org/10.1016/j.optmat.2017.06.033

    Article  CAS  Google Scholar 

  144. A.A. Elsayed, T.M. Sabry, F. Marty, T. Bourouina, K. Khalil, Optical modeling of black silicon using an effective medium/multi-layer approach. Opt. Express. 26, 13443–13460 (2018). https://doi.org/10.1364/OE.26.013443

    Article  CAS  PubMed  Google Scholar 

  145. C. Gao, D. Du, W. Shen, Monolithic perovskite/c-Si tandem solar cell: Progress on numerical simulation, Carbon Neutrality. 1, 9 (2022). https://doi.org/10.1007/s43979-022-00003-x

    Article  Google Scholar 

  146. R. Santbergen, R. Mishima, T. Meguro, M. Hino, H. Uzu, J. Blanker, K. Yamamoto, M. Zeman, Minimizing optical losses in monolithic perovskite/c-Si tandem solar cells with a flat top cell. Opt. Express. 24, A1288–A1299 (2016). https://doi.org/10.1364/OE.24.0A1288

    Article  CAS  PubMed  Google Scholar 

  147. K. Jäger, L. Korte, B. Rech, S. Albrecht, Numerical optical optimization of monolithic planar perovskite-silicon tandem solar cells with regular and inverted device architectures. Opt. Express. 25, A473–A482 (2017). https://doi.org/10.1364/OE.25.00A473

    Article  PubMed  Google Scholar 

  148. F.E. Cherif, H. Sammouda, Strategies for high performance perovskite/c-Si tandem solar cells: effects of bandgap engineering, solar concentration and device temperature. Opt. Mater. 106, 109935 (2020). https://doi.org/10.1016/j.optmat.2020.109935

    Article  CAS  Google Scholar 

  149. G. Ayvazyan, S. Khudaverdyan, L. Matevosyan, H. Dashtoyan, A. Vaseashta, Properties of vacuum-evaporated CH3NH3PbCl3−xIx perovskite layers, in IFMBE proceedings, ed. by V. Sontea, I. Tiginyanu, S. Railean. Vol 91, 3–11 (Springer, Cham, 2022). https://doi.org/10.1007/978-3-031-42775-6_1

  150. R.L. Milot, G.E. Eperon, H.J. Snaith, M.B. Johnson, L.M. Herz, Temperature dependent charge-carrier dynamics in CH3NH3Pbl3 perovskite thin films. Adv. Func. Mater. 25(39), 6218–6227 (2017). https://doi.org/10.1002/adfm.201502340

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gagik Ayvazyan .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ayvazyan, G. (2024). Application of Black Silicon. In: Black Silicon. Synthesis Lectures on Materials and Optics. Springer, Cham. https://doi.org/10.1007/978-3-031-48687-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48687-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48686-9

  • Online ISBN: 978-3-031-48687-6

  • eBook Packages: Synthesis Collection of Technology (R0)

Publish with us

Policies and ethics

Navigation