Formation of Black Silicon

  • Chapter
  • First Online:
Black Silicon

Part of the book series: Synthesis Lectures on Materials and Optics ((SLMO))

  • 27 Accesses

Abstract

The crucial aspect of forming black silicon (b-Si) lies in develo** cost-effective and easily scalable methods for altering the surface of silicon wafers to enable mass production. Nanostructured b-Si layers can be fabricated by several different techniques, including both wet and dry etching methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 32.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 42.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.M. Donnelly, A. Kornblit, Plasma etching: yesterday, today, and tomorrow. J. Vacuum Sci. & Techn. 31(5), 050825 (2013). https://doi.org/10.1116/1.4819316

    Article  CAS  Google Scholar 

  2. H. Jansen, M. Boer, R. Legtenberg, M. Elwenspoek, The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control. J. Micromech. Microeng. 5(2), 115–120 (1995). https://doi.org/10.1088/0960-1317/5/2/015

  3. X. Liu, P. Coxon, M. Peters, B. Hoex, J. Cole, D. Frayc, Black silicon: fabrication methods, properties and solar energy applications. Energy & Env. Sci. 7(10), 3223–3263 (2014). https://doi.org/10.1039/C4EE01152J

    Article  CAS  Google Scholar 

  4. J. Soueiti, R. Sarieddine, H. Kadiri, A. Alhussein, G. Lerondel, R. Habchi, A review of cost-effective black silicon fabrication techniques and applications. Nanoscale. 15, 4738–4761 (2023). https://doi.org/10.1039/D2NR06087F

    Article  CAS  PubMed  Google Scholar 

  5. M.M. Plakhotnyuk, M. Gaudig, R.S. Davidsen, J.M. Lindhard, J. Hirsch, D. Lausch, M.S. Schmidt, E. Stamate, O. Hansen, Low surface damage dry etched black silicon. J. Appl. Phys. 122, 143101 (2017). https://doi.org/10.1063/1.4993425

    Article  CAS  Google Scholar 

  6. D. Abi-Saab, P. Basset, M.J. Pierotti, M.L. Trawick, D.E. Angelescu, Static and dynamic aspects of black silicon formation. Phys. Rev. Let. 113, 265502 (2014). https://doi.org/10.1103/PhysRevLett.113.265502

    Article  CAS  Google Scholar 

  7. G.Y. Ayvazyan, R.N. Barseghyan, S.A. Minasyan, Optimization of surface reflectance for silicon solar cells. Green Energy and Smart Grids. E3S Web of Conf. 69, 01008 (2018). https://doi.org/10.1051/e3sconf/20186901008

  8. G. Ayvazyan, A. Vaseashta, F. Gasparyan, S. Khudaverdyan, Effect of thermal annealing on the structural and optical properties of black silicon. J. Mater Sci: Mater. Electron.33, 17001–17010 (2022). https://doi.org/10.1007/s10854-022-08578-y

    Article  CAS  Google Scholar 

  9. G. Ayvazyan, L. Hakhoyan, K. Ayvazyan, A. Aghabekyan, External gettering of metallic impurities by black silicon layer. Phys. Status Solidi A. 220(5), 2200793 (2023). https://doi.org/10.1002/pssa.202200793

    Article  CAS  Google Scholar 

  10. G. Ayvazyan, K. Ayvazyan, L. Hakhoyan, A. Semchenko A. NO2 gas sensor based on pristine black silicon formed by reactive ion etching. Phys. Status Solidi RRL. 17, 2300058 (2023). https://doi.org/10.1002/pssr.202300058

  11. J.S. Yoo, I.O. Parm, U. Gangopadhyay, K. Kim, S.K. Dhunge, J. Yi, Black silicon layer formation for application in solar cells. Solar Energy Mat. Solar Cells. 90(18–19), 3085–3093 (2006). https://doi.org/10.1016/j.solmat.2006.06.015

    Article  CAS  Google Scholar 

  12. B. Liu, The applications of plasma immersion ion implantation to crystalline silicon solar cells. Energy Procedia. 38, 289–296 (2013). https://doi.org/10.1016/j.egypro.2013.07.280

    Article  CAS  Google Scholar 

  13. M. Steglich, T. Kasebierm, M. Zilk, T. Pertsch, E-B. Kley, A. Tunnermann, The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching. J. Appl. Phys. 116, 173503 (2014). https://doi.org/10.1063/1.4900996.

    Article  CAS  Google Scholar 

  14. K.S. Lee, M.H. Ha, J.H. Kim, J.W. Jeong, Damage-free reactive ion etch for high-efficiency large-area multi-crystalline silicon solar cells. Solar Energy Mat. Solar Cells. 95(1), 66–68 (2011). https://doi.org/10.1016/j.solmat.2010.03.007

    Article  CAS  Google Scholar 

  15. D. Murias, C. Reyes-Betanzo, M. Moreno, A. Torres, A. Itzmoyot, R. Ambrosio, M. Soriano, J. Lucas, P. Cabarrocas, Black silicon formation using dry etching for solar cells applications. Mater. Sci. Eng. B. 177, 1509–1513 (2012). https://doi.org/10.1016/j.mseb.2012.03.038

    Article  CAS  Google Scholar 

  16. C. Chartier, S. Bastide, C. Lévy-Clément, Metal-assisted chemical etching of silicon in HF–H2O2. Electrochim. Acta. 53(17), 5509–5516 (2008). https://doi.org/10.1016/j.electacta.2008.03.009

    Article  CAS  Google Scholar 

  17. L. Boarino., G. Amato., E. Enrico, N. De Leo, Silicon Nanostructures by Self-Assembly and Metal-Assisted Etching, in Nanostructured Semiconductors. From Basic Research to Applications, ed. by P. Granitzer, K. Rumpf (CRC Press, NW, 2013), pp. 86–137

    Google Scholar 

  18. F. Karbassian, B.K. Mousavi, S. Rajabali, R. Talei, S. Mohajerzadeh, E. Asl-Soleimani, Formation of luminescent si nanowires and porous silicon by metal-assisted electroless etching. J. Electronic Mat. 43(4), 1271–1279 (2014). https://doi.org/10.1007/s11664-014-3051-3

    Article  CAS  Google Scholar 

  19. Z. Huang, N. Geyer, P. Werner, J. Boor, U. Gösele, Metal-assisted chemical etching of silicon: a review. Adv. Mater. 23(2), 285–308 2011). https://doi.org/10.1002/adma.201001784

    Article  CAS  PubMed  Google Scholar 

  20. Y-T. Lua, A.R. Barronw, Nanopore-type black silicon anti-reflection layers fabricated by a one-step silver-assisted chemical etching. Phys. Chem. Phys. 15, 9862–9870 (2013). https://doi.org/10.1039/c3cp51835c

    Article  CAS  Google Scholar 

  21. J. Lv, T. Zhang, P. Zhang, Y. Zhao, S. Li, Review application of nanostructured black silicon. Nanoscale Res. Lett. 13, 1–10 (2018). https://doi.org/10.1186/s11671-018-2523-4

    Article  CAS  Google Scholar 

  22. Y. Li, J. Zhang, S. Zhu, H. Dong, Z. Wang, Z. Sun, J. Guo, B. Yang, Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings. J. Mater. Chem. 19(13), 1806–1810 (2009). https://doi.org/10.1039/B821967B

    Article  CAS  Google Scholar 

  23. M. Kamarauskas, M. Treideris, V Agafonov, A. Mironas, V. Strazdienė, A. Rėza, A. Šetkus, Black silicon quality control by conditions of nickel-assisted etching of crystalline silicon surfaces in photovoltaic devices. Lithuanian J. Phys. 60(1), 57–66 (2020). https://doi.org/10.3952/physics.v60i1.4164

    Article  Google Scholar 

  24. S. Kontermann, T. Gimpel, A.L. Baumann, K.-M. Guenther, W. Schade. Laser processed black silicon for photovoltaic applications. Energy Procedia. 27, 390–395 (2012). https://doi.org/10.1016/j.egypro.2012.07.082

    Article  CAS  Google Scholar 

  25. C. Li, J. Zhao, X.Yu Chen, J. Feng, H. Sun, Fabrication of black silicon with thermostable infrared absorption by femtosecond laser. IEEE Photonics J. 8(6), 1–6 (2016). https://doi.org/10.1109/JPHOT.2016.2617403

    Article  Google Scholar 

  26. B. Franta, E. Mazur, S.K. Sundaram, Ultrafast laser processing of silicon for photovoltaics. Int. Mat. Rev. 63(4), 227–240 (2018). https://doi.org/10.1080/09506608.2017.1389547.

    Article  CAS  Google Scholar 

  27. J. Neev, S. Nolte, A. Heisterkamp, C.B. Schaffer, Commercial and biomedical applications of ultrafast lasers. Proc. SPIE. 6881, 688119 (2008). https://doi.org/10.1117/12.768516

    Article  CAS  Google Scholar 

  28. G.Y. Dong, H.W. Yang, S.J. Zeng, Z.Q. Shi, Y.J. Ma, C. Wen, W.B. Yang, Nanosecond-laser hyperdo** of intrinsic silicon to modify its electrical and optical properties. Optics & Laser Techn. 164, 109517 (2023). https://doi.org/10.1016/j.optlastec.2023.109517

    Article  CAS  Google Scholar 

  29. J.E. Carey, C.H. Crouch, M.Y. Shen, E. Mazur, Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. Opt. Lett. 30, 1773–1775(2005). https://doi.org/10.1364/OL.30.001773

    Article  PubMed  Google Scholar 

  30. S. Huang, Q. Wu, Z.X. Jia, X.R. **, X.H. Fu, H. Huang, X.D. Zhang, J.H. Yao, J. J. Xu, Black silicon photodetector with excellent comprehensive properties by rapid thermal annealing and hydrogenated surface passivation. Adv. Opt. Mater. 8, 1901808 (2020). https://doi.org/10.1002/adom.201901808

    Article  CAS  Google Scholar 

  31. T. Gimpel, K.M. Guenther, S. Kontermann, W. Schade, Current-voltage characteristic and sheet resistances after annealing of femtosecond laser processed sulfur emitters for silicon solar cells. Appl. Phys. Lett. 105, 053504 (2014). https://doi.org/10.1063/1.4892474

  32. T. Gimpel, S. Winter, M. Boßmeyer, W. Schade, Quantum efficiency of femtosecond-laser sulfur hyperdoped silicon solar cells after different annealing regimes. Sol. Energ. Mat. Sol. Cells. 180, 168–172 (2018). https://doi.org/10.1016/j.solmat.2018.03.001

    Article  CAS  Google Scholar 

  33. W. Wang, H. Li, X. Liu, S. Ma, Y. Zhao, B. Dong, Y. Li, X. Ning, L. Zhao, J. Zhuang, Hyperdo**-regulated room-temperature NO2 gas sensing performances of black silicon based on lateral photovoltaic effect. Sens. Actuators, B. 382, 133473 (2023). https://doi.org/10.1016/j.snb.2023.133473

  34. W. Wang, S. Ma, X. Liu, Y. Zhao, Y. Li, H. Li, X. Ning, L. Zhao, J. Zhuang, NO2 gas sensor with excellent performance based on thermally modified nitrogen-hyperdoped silicon. Sens. Actuators, B. 354, 131193 (2022). https://doi.org/10.1016/j.snb.2021.131193

  35. M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. Sprafke, J. Ziegler, M. Zilk, R. Wehrspoh, Black silicon photovoltaics. Adv. Opt. Mater. 3, 147–164 (2015). https://doi.org/10.1002/adom.201400395

    Article  CAS  Google Scholar 

  36. C. Modanese, H.S. Laine, T.P. Pasanen, H. Savin, J.M. Pearce, Economic advantages of dry-etched black silicon in passivated emitter rear cell (PERC) PV manufacturing. Energies. 11, 2337–2335 (2018). https://doi.org/10.3390/en11092337

  37. T. Pasanen, Black Silicon, in Handbook of Silicon Based MEMS Materials and Technologies (Elsevier, Kidlington, UK, 2020), pp. 186–196. https://doi.org/10.1016/B978-0-12-817786-0.00006-2

  38. Z. Fan, D. Cui, Z. Zhang, Z. Zhao, H. Chen, Y. Fan, P. Li, Z. Zhang, C. Xue, S. Yan, Recent progress of black silicon: from fabrications to applications. Nanomat., 11, 41 (2021). https://doi.org/10.3390/nano11010041

    Article  CAS  Google Scholar 

  39. X. Liu, B. Radfar, K. Chen, O.E. Setälä, T.P. Pasanen, M. Yli-Koski, H. Savin, V. Vähänissi, Perspectives on black silicon in semiconductor manufacturing: experimental comparison of plasma etching, MACE, and Fs-Laser Etching. IEEE Trans. Semicond. Manuf., 35 (3), 504–510 (2022). https://doi.org/10.1109/TSM.2022.3190630

    Article  CAS  Google Scholar 

  40. J.Y.-H. Chai, B.T. Wong, S. Juodkazis, Black-silicon assisted photovoltaic cells for better conversion efficiencies: A review on recent research and development efforts. Mater. Today Energy, 18, 100539 (2020). https://doi.org/10.1016/j.mtener.2020.100539

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gagik Ayvazyan .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ayvazyan, G. (2024). Formation of Black Silicon. In: Black Silicon. Synthesis Lectures on Materials and Optics. Springer, Cham. https://doi.org/10.1007/978-3-031-48687-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48687-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48686-9

  • Online ISBN: 978-3-031-48687-6

  • eBook Packages: Synthesis Collection of Technology (R0)

Publish with us

Policies and ethics

Navigation