Recent Advances in the Use of Sourdough Fermentation to Improve the Quality of Gluten-Free Bakery Products

  • Chapter
  • First Online:
Sourdough Microbiota and Starter Cultures for Industry
  • 89 Accesses

Abstract

Sourdough fermentation is one of the oldest and most widely studied food biotechnologies. In recent years, there has been a renewed interest in sourdough fermentation due to its numerous positive effects on bakery products. The use of sourdough in breadmaking contributes to the development of a desirable pore structure, increases bread volume, and promotes crust thickness. It also enhances the mineral content, antioxidant activity, and microbial shelf-life of the products. Additionally, sourdough fermentation modifies the starch bioavailability by retarding its digestion. Overall, these effects contribute to the improved sensory properties, nutritional quality, and extended shelf-life of bakery products incorporating sourdough. Gluten-free bakery products often have lower levels of fiber, minerals, and proteins compared to their gluten-containing counterparts. Gluten-free doughs typically exhibit lower elasticity and higher density compared to doughs containing gluten. The crumb structure of gluten-free bakery products tends to be less elastic and more prone to hardening quickly. Sourdough fermentation has shown great promise in addressing these challenges of gluten-free baked goods caused by the absence of gluten. The use of sourdough fermentation in gluten-free bakery products can help improve dough elasticity and enhance the properties of the final products. The presence of lactic acid bacteria (LAB) in sourdough fermentation not only contributes to flavor development but also provides natural preservation properties, enhancing sensory characteristics and extending the shelf-life of gluten-free bakery products. In addition, exopolysaccharides (EPS) produced by LAB during fermentation act as natural hydrocolloids, improving the rheological properties of gluten-free dough. Therefore, this book chapter provides valuable insights into the effects of sourdough fermentation on gluten-free bakery products, covering various aspects such as nutrition, flavor, microbial diversity, EPS production, and gluten detoxification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedfar A, Hosseininezhad M, Rafe A (2020) Effect of microbial exopolysaccharide on wheat bran sourdough: rheological, thermal and microstructural characteristics. Int J Biol Macromol 154:371–379

    Article  CAS  PubMed  Google Scholar 

  • Adepehin JO (2020) Microbial diversity and pasting properties of finger millet (Eleusine coracana), pearl millet (Pennisetum glaucum) and sorghum (Sorghum bicolor) sourdoughs. Food Biosci 37:100684

    Article  CAS  Google Scholar 

  • Aguilar N, Albanell E, Miñarro B, Capellas M (2016) Chestnut flour sourdough for gluten-free bread making. Eur Food Res Technol 242(10):1795–1802

    Article  CAS  Google Scholar 

  • Akinola SA, Osundahunsi OF (2017) Lactic acid bacteria and yeast diversities in spontaneously fermented millet sourdoughs. J Microbiol Biotechnol Food Sci 6(4):1030–1035

    Article  CAS  Google Scholar 

  • Alibašić H, Junuzović H, Selimović A, Selimović A, Brčina T (2020) Chemical composition and sensory properties of gluten-free crackers with buckwheat sourdough. Int J Res Appl Sci Biotechnol 7(4):108–113

    Article  Google Scholar 

  • Aponte M, Boscaino F, Sorrentino A, Coppola R, Masi P, Romano A (2013) Volatile compounds and bacterial community dynamics of chestnut-flour-based sourdoughs. Food Chem 141(3):2394–2404

    Article  CAS  PubMed  Google Scholar 

  • Arendt EK, O’Brien CM, Schober TJ, Gallagher E, Gormley TR (2002) Development of gluten-free cereal products. Farm Food 12:21–27

    Google Scholar 

  • Arendt EK, Morrissey A, Moore MM, Dal Bello F (2008) Gluten-free breads. In: Arendt EK, Dal Bello F (eds) Gluten-free cereal products and beverages. Academic/Elsevier, pp 289–319

    Chapter  Google Scholar 

  • Arendt EK, Moroni A, Zannini E (2011) Medical nutrition therapy: use of sourdough lactic acid bacteria as a cell factory for delivering functional biomolecules and food ingredients in gluten free bread. Microb Cell Factories 10(1):1–9

    Google Scholar 

  • Axel C, Röcker B, Brosnan B, Zannini E, Furey A, Coffey A, Arendt EK (2015) Application of Lactobacillus amylovorus DSM19280 in gluten-free sourdough bread to improve the microbial shelf life. Food Microbiol 47:36–44

    Article  CAS  PubMed  Google Scholar 

  • Axel C, Brosnan B, Zannini E, Furey A, Coffey A, Arendt EK (2016) Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread. Int J Food Microbiol 239:86–94

    Article  CAS  PubMed  Google Scholar 

  • Banwo K, Fasuyi TO, Olojede AO (2021) Potentials of Lactobacillus plantarum and Pichia kudriavzevii in co-fermentation of sourdough from millet. Int J Food Sci Technol 56(2):857–864

    Article  Google Scholar 

  • Barbaro MR, Cremon C, Stanghellini V, Barbara G (2018) Recent advances in understanding non-celiac gluten sensitivity [version 1; peer review: 2 approved]. F1000Research 7(F1000 Faculty Rev):1631

    Google Scholar 

  • Bascuñán KA, Vespa MC, Araya M (2017) Celiac disease: understanding the gluten-free diet. Eur J Nutr 56(2):449–459

    Article  PubMed  Google Scholar 

  • Bender D, Schönlechner R (2020) Innovative approaches towards improved gluten-free bread properties. J Cereal Sci 91:102904

    Article  CAS  Google Scholar 

  • Bender D, Fraberger V, Szepasvári P, D’Amico S, Tömösközi S, Cavazzi G et al (2018) Effects of selected lactobacilli on the functional properties and stability of gluten-free sourdough bread. Eur Food Res Technol 244(6):1037–1046

    Article  CAS  PubMed  Google Scholar 

  • Biesiekierski JR (2017) What is gluten? J Gastroenterol Hepatol 32:78–81

    Article  CAS  PubMed  Google Scholar 

  • Blanco CA, Ronda F, Pérez B, Pando V (2011) Improving gluten-free bread quality by enrichment with acidic food additives. Food Chem 127(3):1204–1209

    Article  CAS  PubMed  Google Scholar 

  • Brandt MJ (2019) Industrial production of sourdoughs for the baking branch–an overview. Int J Food Microbiol 302:3–7

    Article  CAS  PubMed  Google Scholar 

  • Caeiro C, Pragosa C, Cruz MC, Pereira CD, Pereira SG (2022) The role of pseudocereals in celiac disease: reducing nutritional deficiencies to improve well-being and health. J Nutrit Metab 2022:8502169

    Google Scholar 

  • Calasso M, Vincentini O, Valitutti F, Felli C, Gobbetti M, Di Cagno R (2012) The sourdough fermentation may enhance the recovery from intestinal inflammation of coeliac patients at the early stage of the gluten-free diet. Eur J Nutr 51(4):507–512

    Article  CAS  PubMed  Google Scholar 

  • Campo E, del Arco L, Urtasun L, Oria R, Ferrer-Mairal A (2016) Impact of sourdough on sensory properties and consumers' preference of gluten-free breads enriched with teff flour. J Cereal Sci 67:75–82

    Article  Google Scholar 

  • Caponio GR, Difonzo G, de Gennaro G, Calasso M, De Angelis M, Pasqualone A (2022) Nutritional improvement of gluten-free breadsticks by olive cake addition and sourdough fermentation: how texture, sensory, and aromatic profile were affected? Front Nutr 9:830932

    Article  PubMed  PubMed Central  Google Scholar 

  • Cappa C, Lucisano M, Raineri A, Fongaro L, Foschino R, Mariotti M (2016) Gluten-free bread: influence of sourdough and compressed yeast on proofing and baking properties. Foods 5(4):69

    Article  PubMed  PubMed Central  Google Scholar 

  • Cappelli A, Oliva N, Cini E (2020) A systematic review of gluten-free dough and bread: dough rheology, bread characteristics, and improvement strategies. Appl Sci 10(18):6559

    Article  CAS  Google Scholar 

  • Carbó R, Gordún E, Fernández A, Ginovart M (2020) Elaboration of a spontaneous gluten-free sourdough with a mixture of amaranth, buckwheat, and quinoa flours analyzing microbial load, acidity, and pH. Food Sci Technol Int 26(4):344–352

    Article  PubMed  Google Scholar 

  • Casper JL, Atwell WA (2014) Gluten-free: baked products. AACC International, St. Paul

    Google Scholar 

  • Chavan RS, Chavan SR (2011) Sourdough technology—a traditional way for wholesome foods: a review. Compr Rev Food Sci Food Saf 10(3):169–182

    Article  Google Scholar 

  • Chiş MS, Adriana P, Stan L, Muresan V, Vlaic RA, Man S et al (2018) Lactobacillus plantarum ATCC 8014 in quinoa sourdough adaptability and antioxidant potential. Rom Biotechnol Lett 23(3):13581–13591

    Google Scholar 

  • Chiș MS, Păucean A, Stan L, Suharoschi R, Socaci SA, Man SM et al (2019) Impact of protein metabolic conversion and volatile derivatives on gluten-free muffins made with quinoa sourdough. CyTA-J Food 17(1):744–753

    Article  Google Scholar 

  • Chiş MS, Păucean A, Man SM, Bonta V, Pop A, Stan L et al (2020) Effect of rice flour fermentation with Lactobacillus spicheri DSM 15429 on the nutritional features of gluten-free muffins. Foods 9(6):822

    Article  PubMed  PubMed Central  Google Scholar 

  • Chochkov R, Savova-Stoyanova D, Papageorgiou M, Rocha JM, Gotcheva V, Angelov A (2022) Effects of teff-based sourdoughs on dough rheology and gluten-free bread quality. Foods 11(7):1012

    Google Scholar 

  • Ciclitira PJ, Ellis HJ, Lundin KE (2005) Gluten-free diet—what is toxic? Best Pract Res Clin Gastroenterol 19(3):359–371

    Article  PubMed  Google Scholar 

  • Coda R, Rizzello CG, Gobbetti M (2010) Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). Int J Food Microbiol 137(2–3):236–245

    Article  CAS  PubMed  Google Scholar 

  • Coda R, Di Cagno R, Gobbetti M, Rizzello CG (2014) Sourdough lactic acid bacteria: exploration of non-wheat cereal-based fermentation. Food Microbiol 37:51–58

    Article  CAS  PubMed  Google Scholar 

  • Corsetti A, Settanni L (2007) Lactobacilli in sourdough fermentation. Food Res Int 40(5):539–558

    Article  CAS  Google Scholar 

  • Curiel JA, Coda R, Limitone A, Katina K, Raulio M, Giuliani G et al (2014) Manufacture and characterization of pasta made with wheat flour rendered gluten-free using fungal proteases and selected sourdough lactic acid bacteria. J Cereal Sci 59(1):79–87

    Article  CAS  Google Scholar 

  • Dar YL (2013) Advances and ongoing challenges in the development of gluten-free baked goods. Cereal Foods World 58(6):298–304

    Article  Google Scholar 

  • De Vuyst L, De Vin F, Vaningelgem F, Degeest B (2001) Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int Dairy J 11(9):687–707

    Article  Google Scholar 

  • De Vuyst L, Vrancken G, Ravyts F, Rimaux T, Weckx S (2009) Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol 26(7):666–675

    Article  PubMed  Google Scholar 

  • Deora NS, Deswal A, Mishra HN (2014) Alternative approaches towards gluten-free dough development: recent trends. Food Eng Rev 6(3):89–104

    Article  CAS  Google Scholar 

  • Di Cagno R, Rizzello CG, De Angelis M, Cassone A, Giuliani G, Benedusi A et al (2008) Use of selected sourdough strains of Lactobacillus for removing gluten and enhancing the nutritional properties of gluten-free bread. J Food Prot 71(7):1491–1495

    Google Scholar 

  • Di Cagno R, Barbato M, Di Camillo C, Rizzello CG, De Angelis M, Giuliani G et al (2010) Gluten-free sourdough wheat baked goods appear safe for young celiac patients: a pilot study. J Pediatr Gastroenterol Nutr 51(6):777–783

    Article  PubMed  Google Scholar 

  • Dingeo C, Difonzo G, Paradiso VM, Rizzello CG, Pontonio E (2020) Teff type-i sourdough to produce gluten-free muffin. Microorganisms 8(8):1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diowksz A, Kordialik-Bogacka E (2014) Stimulation of gluten-free sourdough fermentation. Acta Aliment 43(2):225–231

    Article  CAS  Google Scholar 

  • Drakula S, Novotni D, Mustač NČ, Voučko B, Krpan M, Hruškar M, Ćurić D (2021) Alteration of phenolics and antioxidant capacity of gluten-free bread by yellow pea flour addition and sourdough fermentation. Food Biosci 44:101424

    Article  CAS  Google Scholar 

  • Dubrovskaya N, Savkina O, Kuznetsova L, Parakhina O (2018) The development of gluten-free sourdough bread technology with rowan powder. Agron Res 16(S2):1360–1372

    Google Scholar 

  • Edema MO, Sanni AI (2008) Functional properties of selected starter cultures for sour maize bread. Food Microbiol 25(4):616–625

    Article  CAS  PubMed  Google Scholar 

  • Edema MO, Emmambux MN, Taylor JR (2013) Improvement of fonio dough properties through starch modification by sourdough fermentation. Starch-Stärke 65(9–10):730–737

    Article  CAS  Google Scholar 

  • El Khoury D, Balfour-Ducharme S, Joye IJ (2018) A review on the gluten-free diet: technological and nutritional challenges. Nutrients 10(10):1410

    Article  PubMed  PubMed Central  Google Scholar 

  • Falade AT, Emmambux MN, Buys EM, Taylor JR (2014) Improvement of maize bread quality through modification of dough rheological properties by lactic acid bacteria fermentation. J Cereal Sci 60(3):471–476

    Article  CAS  Google Scholar 

  • Foschia M, Horstmann S, Arendt EK, Zannini E (2016) Nutritional therapy–facing the gap between coeliac disease and gluten-free food. Int J Food Microbiol 239:113–124

    Article  CAS  PubMed  Google Scholar 

  • Franco W, Pérez-Díaz IM, Connelly L, Diaz JT (2020) Isolation of exopolysaccharide-producing yeast and lactic acid bacteria from quinoa (Chenopodium quinoa) sourdough fermentation. Foods 9(3):337

    Google Scholar 

  • Franco W, Evert K, Van Nieuwenhove C (2021) Quinoa flour, the germinated grain flour, and sourdough as alternative sources for gluten-free bread formulation: impact on chemical, textural and sensorial characteristics. Fermentation 7(3):115

    Article  CAS  Google Scholar 

  • Gallagher E, Gormley TR, Arendt EK (2004) Recent advances in the formulation of gluten-free cereal-based products. Trends Food Sci Technol 15(3–4):143–152

    Article  CAS  Google Scholar 

  • Galle S, Schwab C, Dal Bello F, Coffey A, Gänzle MG, Arendt EK (2012) Influence of in-situ synthesized exopolysaccharides on the quality of gluten-free sorghum sourdough bread. Int J Food Microbiol 155(3):105–112

    Article  CAS  PubMed  Google Scholar 

  • Galli V, Venturi M, Coda R, Maina NH, Granchi L (2020) Isolation and characterization of indigenous Weissella confusa for in situ bacterial exopolysaccharides (EPS) production in chickpea sourdough. Food Res Int 138:109785

    Article  CAS  PubMed  Google Scholar 

  • Gänzle MG (2014) Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol 37:2–10

    Article  PubMed  Google Scholar 

  • Giuliani G, Benedusi A, Di Cagno R, Rizzello CG, De Angelis M, Gobbetti M, Cassone A (2010) Process of microbic biotechnology for completely degrading gluten in flours. W.O. Patent 2010073283-A2, 1 July 2010

    Google Scholar 

  • Gobbetti M (1998) The sourdough microflora: interactions of lactic acid bacteria and yeasts. Trends Food Sci Technol 9(7):267–274

    Article  CAS  Google Scholar 

  • Greco L, Gobbetti M, Auricchio R, Di Mase R, Landolfo F, Paparo F et al (2011) Safety for patients with celiac disease of baked goods made of wheat flour hydrolyzed during food processing. Clin Gastroenterol Hepatol 9(1):24–29

    Article  PubMed  Google Scholar 

  • Green PH, Lebwohl B, Greywoode R (2015) Celiac disease. J Allergy Clin Immunol 135(5):1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Hager AS, Wolter A, Czerny M, Bez J, Zannini E, Arendt EK, Czerny M (2012) Investigation of product quality, sensory profile and ultrastructure of breads made from a range of commercial gluten-free flours compared to their wheat counterparts. Eur Food Res Technol 235(2):333–344

    Article  CAS  Google Scholar 

  • Hamad SH, Dieng MC, Ehrmann MA, Vogel RF (1997) Characterization of the bacterial flora of Sudanese sorghum flour and sorghum sourdough. J Appl Microbiol 83(6):764–770

    Article  CAS  PubMed  Google Scholar 

  • Hansen AS (2012) Sourdough bread. In: Hui YH, Evranuz EO, Arroyo-López FN, Fan L, Hansen AS, Jaramillo-Flores ME, Rakin M, Schwan RF, Zhou W (eds) Handbook of plant-based fermented food and beverage technology. CRC Press, Boca Raton, pp 493–515

    Chapter  Google Scholar 

  • Houben A, Höchstötter A, Becker T (2012) Possibilities to increase the quality in gluten-free bread production: an overview. Eur Food Res Technol 235(2):195–208

    Article  CAS  Google Scholar 

  • Hüttner EK, Dal Bello F, Arendt EK (2010) Identification of lactic acid bacteria isolated from oat sourdoughs and investigation into their potential for the improvement of oat bread quality. Eur Food Res Technol 230(6):849–857

    Article  Google Scholar 

  • Jagelaviciute J, Cizeikiene D (2021) The influence of non-traditional sourdough made with quinoa, hemp and chia flour on the characteristics of gluten-free maize/rice bread. LWT 137:110457

    Article  CAS  Google Scholar 

  • Jekle M, Houben A, Mitzscherling M, Becker T (2010) Effects of selected lactic acid bacteria on the characteristics of amaranth sourdough. J Sci Food Agric 90(13):2326–2332

    Article  CAS  PubMed  Google Scholar 

  • Kaim U, Wilk M (2022) Pseudocereals – source of essential amino acids and bioactive compounds in gluten-free diet. In: Goluch Z (ed) Medycyna i zdrowie we współczesnym świecie. ArchaeGraph, Łódź, pp 97–111

    Google Scholar 

  • Katina K, Arendt E, Liukkonen KH, Autio K, Flander L, Poutanen K (2005) Potential of sourdough for healthier cereal products. Trends Food Sci Technol 16(1–3):104–112

    Article  CAS  Google Scholar 

  • Lazaridou A, Biliaderis CG (2009) Gluten-free doughs: rheological properties, testing procedures–methods and potential problems. In: Gallagher E (ed) Gluten-free food science and technology. Wiley-Blackwell, London, pp 52–82

    Chapter  Google Scholar 

  • Lebwohl B, Ludvigsson JF, Green PH (2015) Celiac disease and non-celiac gluten sensitivity. BMJ 351

    Google Scholar 

  • Lopez HW, Ouvry A, Bervas E, Guy C, Messager A, Demigne C, Remesy C (2000) Strains of lactic acid bacteria isolated from sour doughs degrade phytic acid and improve calcium and magnesium solubility from whole wheat flour. J Agric Food Chem 48(6):2281–2285

    Article  CAS  PubMed  Google Scholar 

  • Lundin KE, Brottveit M, Skodje G (2022) Chapter 9- Noncoeliac gluten sensitivity. In: Schiepatti A, Sanders DS (eds) Coeliac disease and gluten-related disorders. Academic/Elsevier, pp 177–195

    Google Scholar 

  • Lynch KM, Coffey A, Arendt EK (2018) Exopolysaccharide producing lactic acid bacteria: their techno-functional role and potential application in gluten-free bread products. Food Res Int 110:52–61

    Article  CAS  PubMed  Google Scholar 

  • Maidana SD, Finch S, Garro M, Savoy G, Gänzle M, Vignolo G (2020a) Development of gluten-free breads started with chia and flaxseed sourdoughs fermented by selected lactic acid bacteria. LWT-Food Sci Technol 125:109189

    Article  Google Scholar 

  • Maidana SD, Ficoseco CA, Bassi D, Cocconcelli PS, Puglisi E, Savoy G, Vignolo G, Fontana C (2020b) Biodiversity and technological-functional potential of lactic acid bacteria isolated from spontaneously fermented chia sourdough. Int J Food Microbiol 316:108425

    Article  Google Scholar 

  • Mariotti M, Cappa C, Picozzi C, Tedesco B, Fongaro L, Lucisano M (2017) Compressed yeast and type I gluten-free sourdough in gluten-free breadmaking. Food Bioprocess Technol 10(5):962–972

    Article  CAS  Google Scholar 

  • Meroth CB, Hammes WP, Hertel C (2004) Characterisation of the microbiota of rice sourdoughs and description of Lactobacillus spicheri sp. nov. Syst Appl Microbiol 27(2):151–159

    Article  CAS  PubMed  Google Scholar 

  • Mert ID, Campanella OH, Sumnu G, Sahin S (2014) Gluten-free sourdough bread prepared with chestnut and rice flour. In 9th Baltic conference on food science and technology “food for consumer well-being”, 239

    Google Scholar 

  • Milani J, Maleki G (2012) Hydrocolloids in food industry. In: Valdez B (ed) Food industrial processes-methods and equipment. IntechOpen, Croatia, Rijeka, pp 17–38

    Google Scholar 

  • Montemurro M, Pontonio E, Rizzello CG (2021) Design of a “clean-label” gluten-free bread to meet consumers demand. Foods 10(2):462

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore MM, Juga B, Schober TJ, Arendt EK (2007) Effect of lactic acid bacteria on properties of gluten-free sourdoughs, batters, and quality and ultrastructure of gluten-free bread. Cereal Chem 84(4):357–364

    Article  CAS  Google Scholar 

  • Moore MM, Dal Bello F, Arendt EK (2008) Sourdough fermented by Lactobacillus plantarum FST 1.7 improves the quality and shelf life of gluten-free bread. Eur Food Res Technol 226(6):1309–1316

    Article  CAS  Google Scholar 

  • Moroni AV, Dal Bello F, Arendt EK (2009) Sourdough in gluten-free bread-making: an ancient technology to solve a novel issue? Food Microbiol 26(7):676–684

    Article  CAS  PubMed  Google Scholar 

  • Moroni, A. V., Arendt, E. K., Morrissey, J. P., Dal Bello, F. (2010). Development of buckwheat and teff sourdoughs with the use of commercial starters. Int J Food Microbiol, 142(1–2), 142–148, 142

    Google Scholar 

  • Moroni AV, Arendt EK, Dal Bello F (2011) Biodiversity of lactic acid bacteria and yeasts in spontaneously-fermented buckwheat and teff sourdoughs. Food Microbiol 28(3):497–502

    Article  PubMed  Google Scholar 

  • Mygdalia AS, Nouska C, Hatzikamari M, Biliaderis CG, Lazaridou A (2022) A sourdough process based on fermented chickpea extract as leavening and anti-staling agent for improving the quality of gluten-free breads. Food Res Int 159:111593

    Article  CAS  PubMed  Google Scholar 

  • Nami Y, Gharekhani M, Aalami M, Hejazi MA (2019) Lactobacillus-fermented sourdoughs improve the quality of gluten-free bread made from pearl millet flour. J Food Sci Technol 56(9):4057–4067

    Google Scholar 

  • Naqash F, Gani A, Gani A, Masoodi FA (2017) Gluten-free baking: combating the challenges-a review. Trends Food Sci Technol 66:98–107

    Article  CAS  Google Scholar 

  • Niewinski MM (2008) Advances in celiac disease and gluten-free diet. J Am Diet Assoc 108(4):661–672

    Article  PubMed  Google Scholar 

  • Nionelli L, Rizzello CG (2016) Sourdough-based biotechnologies for the production of gluten-free foods. Foods 5(3):65

    Article  PubMed  PubMed Central  Google Scholar 

  • Nissen L, Bordoni A, Gianotti A (2020a) Shift of volatile organic compounds (VOCs) in gluten-free hemp-enriched sourdough bread: a metabolomic approach. Nutrients 12(4):1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nissen L, Samaei SP, Babini E, Gianotti A (2020b) Gluten free sourdough bread enriched with cricket flour for protein fortification: antioxidant improvement and Volatilome characterization. Food Chem 333:127410

    Article  CAS  PubMed  Google Scholar 

  • Novotni D, Čukelj N, Smerdel B, Bituh M, Dujmić F, Ćurić D (2012) Glycemic index and firming kinetics of partially baked frozen gluten-free bread with sourdough. J Cereal Sci 55(2):120–125

    Article  CAS  Google Scholar 

  • Ogunsakin AO, Vanajakshi V, Anu-Appaiah KA, Vijayendra SVN, Walde SG, Banwo K et al (2017) Evaluation of functionally important lactic acid bacteria and yeasts from Nigerian sorghum as starter cultures for gluten-free sourdough preparation. LWT-Food Sci Technol 82:326–334

    Article  CAS  Google Scholar 

  • Olojede AO, Sanni AI, Banwo K (2020) Rheological, textural and nutritional properties of gluten-free sourdough made with functionally important lactic acid bacteria and yeast from Nigerian sorghum. LWT 120:108875

    Article  CAS  Google Scholar 

  • Păcularu-Burada B, Georgescu LA, Vasile MA, Rocha JM, Bahrim GE (2020) Selection of wild lactic acid bacteria strains as promoters of postbiotics in gluten-free sourdoughs. Microorganisms 8(5):643

    Article  PubMed  PubMed Central  Google Scholar 

  • Papadimitriou K, Zoumpopoulou G, Georgalaki M, Alexandraki V, Kazou M, Anastasiou R, Tsakalidou E (2019) Chapter 6-Sourdough bread. In: Galanakis CM (ed) Innovations in traditional foods. Elsevier-Woodhead Publishing, Cambridge, UK, pp 127–158

    Google Scholar 

  • Păucean A, Man SM, Chiş MS, Mureşan V, Pop CR, Socaci SA et al (2019) Use of pseudocereals preferment made with aromatic yeast strains for enhancing wheat bread quality. Foods 8(10):443

    Article  PubMed  PubMed Central  Google Scholar 

  • Plessas S (2021) Innovations in sourdough bread making. Fermentation 7(1):29

    Google Scholar 

  • Poutanen K, Flander L, Katina K (2009) Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol 26(7):693–699

    Article  CAS  PubMed  Google Scholar 

  • Rai S, Kaur A, Chopra CS (2018) Gluten-free products for celiac susceptible people. Front Nutr 5:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramos L, Alonso-Hernando A, Martínez-Castro M, Morán-Pérez JA, Cabrero-Lobato P, Pascual-Maté A et al (2021) Sourdough biotechnology applied to gluten-free baked goods: rescuing the tradition. Foods 10(7):1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reale A, Konietzny U, Coppola R, Sorrentino E, Greiner R (2007) The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation. J Agric Food Chem 55(8):2993–2997

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi M, Paciulli M, Caligiani A, Scazzina F, Chiavaro E (2017) Sourdough fermentation and chestnut flour in gluten-free bread: a shelf-life evaluation. Food Chem 224:144–152

    Article  CAS  PubMed  Google Scholar 

  • Rizzello CG, De Angelis M, Di Cagno R, Camarca A, Silano M, Losito I et al (2007) Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: new perspectives for celiac disease. Appl Environ Microbiol 73(14):4499–4507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzello CG, Montemurro M, Gobbetti M (2016) Characterization of the bread made with durum wheat semolina rendered gluten free by sourdough biotechnology in comparison with commercial gluten-free products. J Food Sci 81(9):H2263–H2272

    Article  CAS  PubMed  Google Scholar 

  • Różyło R, Rudy S, Krzykowski A, Dziki D, Gawlik-Dziki U, Różyło K, Skonecki S (2015) Effect of adding fresh and freeze-dried buckwheat sourdough on gluten-free bread quality. Int J Food Sci Technol 50(2):313–322

    Article  Google Scholar 

  • Różyło R, Rudy S, Krzykowski A, Dziki D, Siastała M, Polak R (2016) Gluten-free bread prepared with fresh and freeze-dried rice sourdough-texture and sensory evaluation. J Texture Stud 47(5):443–453

    Article  Google Scholar 

  • Rühmkorf C, Jungkunz S, Wagner M, Vogel RF (2012) Optimization of homoexopolysaccharide formation by lactobacilli in gluten-free sourdoughs. Food Microbiol 32(2):286–294

    Article  PubMed  Google Scholar 

  • Ruiz Rodríguez L, Vera **itore E, Rollan G, Cocconcelli PS, Fontana C, Saavedra L, Vignolo G, Hebert EM (2016a) Biodiversity and technological-functional potential of lactic acid bacteria isolated from spontaneously fermented quinoa sourdoughs. J Appl Microbiol 120(5):1289–1301

    Article  PubMed  Google Scholar 

  • Ruiz Rodríguez L, Vera **itore E, Rollan G, Martos G, Saavedra L, Fontana C, Hebert EM, Vignolo G (2016b) Biodiversity and technological potential of lactic acid bacteria isolated from spontaneously fermented amaranth sourdough. Lett Appl Microbiol 63(2):147–154

    Article  PubMed  Google Scholar 

  • Sáez GD, Saavedra L, Hebert EM, Zárate G (2018) Identification and biotechnological characterization of lactic acid bacteria isolated from chickpea sourdough in northwestern Argentina. LWT 93:249–256

    Article  Google Scholar 

  • Saturni L, Ferretti G, Bacchetti T (2010) The gluten-free diet: safety and nutritional quality. Nutrients 2(1):16–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherf KA, Wieser H, Koehler P (2018) Novel approaches for enzymatic gluten degradation to create high-quality gluten-free products. Food Res Int 110:62–72

    Article  CAS  PubMed  Google Scholar 

  • Schober TJ, Bean SR, Boyle DL (2007) Gluten-free sorghum bread improved by sourdough fermentation: biochemical, rheological, and microstructural background. J Agric Food Chem 55(13):5137–5146

    Article  CAS  PubMed  Google Scholar 

  • Shewry P (1992) Exploring the structure and functionality of wheat gluten proteins. Biotechnol Biotechnol Equip 6(2):5–10

    Article  Google Scholar 

  • Shewry PR, Tatham AS (1997) Disulphide bonds in wheat gluten proteins. J Cereal Sci 25(3):207–227

    Article  CAS  Google Scholar 

  • Šmídová Z, Rysová J (2022) Gluten-free bread and bakery products technology. Foods 11(3):480

    Article  PubMed  PubMed Central  Google Scholar 

  • Sterr Y, Weiss A, Schmidt H (2009) Evaluation of lactic acid bacteria for sourdough fermentation of amaranth. Int J Food Microbiol 136(1):75–82

    Article  CAS  PubMed  Google Scholar 

  • Tamani RJ, Goh KKT, Brennan CS (2013) Physico-chemical properties of sourdough bread production using selected lactobacilli starter cultures. J Food Qual 36(4):245–252

    Article  CAS  Google Scholar 

  • Tieking M, Korakli M, Ehrmann MA, Gänzle MG, Vogel RF (2003) In situ production of exopolysaccharides during sourdough fermentation by cereal and intestinal isolates of lactic acid bacteria. Appl Environ Microbiol 69(2):945–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ua-Arak T, Jakob F, Vogel RF (2016) Characterization of growth and exopolysaccharide production of selected acetic acid bacteria in buckwheat sourdoughs. Int J Food Microbiol 239:103–112

    Article  CAS  PubMed  Google Scholar 

  • Valerio F, Bavaro AR, Di Biase M, Lonigro SL, Logrieco AF, Lavermicocca P (2020) Effect of amaranth and quinoa flours on exopolysaccharide production and protein profile of liquid sourdough fermented by Weissella cibaria and Lactobacillus plantarum. Front Microbiol 11:967

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogelmann SA, Seitter M, Singer U, Brandt MJ, Hertel C (2009) Adaptability of lactic acid bacteria and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava and use of competitive strains as starters. Int J Food Microbiol 130(3):205–212

    Article  CAS  PubMed  Google Scholar 

  • Wieser H (2007) Chemistry of gluten proteins. Food Microbiol 24(2):115–119

    Article  CAS  PubMed  Google Scholar 

  • Wolter A, Hager AS, Zannini E, Arendt EK (2014a) Influence of sourdough on in vitro starch digestibility and predicted glycemic indices of gluten-free breads. Food Funct 5(3):564–572

    Article  CAS  PubMed  Google Scholar 

  • Wolter A, Hager AS, Zannini E, Czerny M, Arendt EK (2014b) Impact of sourdough fermented with Lactobacillus plantarum FST 1.7 on baking and sensory properties of gluten-free breads. Eur Food Res Technol 239(1):1–12

    Article  CAS  Google Scholar 

  • Wolter A, Hager AS, Zannini E, Galle S, Gänzle MG, Waters DM, Arendt EK (2014c) Evaluation of exopolysaccharide producing Weissella cibaria MG1 strain for the production of sourdough from various flours. Food Microbiol 37:44–50

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Rutherfurd-Markwick K, Mutukumira AN (2021) Identification of dominant lactic acid bacteria and yeast in rice sourdough produced in New Zealand. Curr Res Food Sci 4:729–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zannini E, Pontonio E, Waters DM, Arendt EK (2012) Applications of microbial fermentations for production of gluten-free products and perspectives. Appl Microbiol Biotechnol 93(2):473–485

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, She X, Zhu S, Zhou X (2022) The study of microbial diversity and volatile compounds in Tartary buckwheat sourdoughs. Food Chem X 14:100353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aylin Altan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alper, A., Altan, A. (2024). Recent Advances in the Use of Sourdough Fermentation to Improve the Quality of Gluten-Free Bakery Products. In: Ceresino, E.B., Juodeikiene, G., Miescher Schwenninger, S., Ferreira da Rocha, J.M. (eds) Sourdough Microbiota and Starter Cultures for Industry. Springer, Cham. https://doi.org/10.1007/978-3-031-48604-3_16

Download citation

Publish with us

Policies and ethics

Navigation