The Elastic Dielectric Response of Elastomers Filled with Liquid Inclusions: From Fundamentals to Governing Equations

  • Chapter
  • First Online:
Electro- and Magneto-Mechanics of Soft Solids

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 610))

  • 119 Accesses

Abstract

Over the past decade, soft solids containing electro-and magneto-active liquid—as opposed to solid—inclusions have emerged as a new class of smart materials with promising novel electro- and magneto-mechanical properties. In this context, a recent contribution has put forth a continuum theory that describes the macroscopic elastic behavior of elastomers filled with liquid inclusions under quasistatic finite deformations from the bottom up, directly in terms of their microscopic behavior at the length scale of the inclusions. This chapter presents the generalization of that theory to the coupled realm of the elastic dielectric behavior of such an emerging class of filled elastomers when in addition to undergoing quasistatic finite deformations they are subjected to quasistatic electric fields. The chapter starts with the description of the underlying fundamentals in the continuum—id est, kinematics, conservation of mass, Maxwell’s equations, balance of momenta, and constitutive behavior of both the bulk (the solid elastomer and the liquid inclusions) and the solid/liquid interfaces—and ends with their combination to formulate the resulting governing equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The focus here is on liquid inclusions, which naturally exhibit coherent interfaces with the surrounding solid matrix, thus our restriction to continuous deformation fields.

  2. 2.

    For studies of this fundamental limit, see, e.g., Stratton (1941), Tian et al. (2012), Lefèvre and Lopez-Pamies (2014), Spinelli et al. (2015).

References

  • Bartlett, M. D., Kazem, N., Powell-Palm, M. J., Huang, X., Sun, W., Malen, J. A., & Majidi, C. (2017). High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proceedings of the National Academy of Sciences, 114, 2143–2148.

    Article  Google Scholar 

  • Díaz, J. C., Francfort, G. A., Lopez-Pamies, O., & Mora, M. G. (2023) Liquid filled elastomers: From linearization to elastic enhancement.

    Google Scholar 

  • do Carmo, M. P. (2016) Differential geometry of curves and surfaces. Dover

    Google Scholar 

  • Dorfmann, A., & Ogden, R. W. (2005). Nonlinear electroelasticity. Acta Mechanica, 174, 167–183.

    Article  Google Scholar 

  • Ghosh, K., & Lopez-Pamies, O. (2022). Elastomers filled with liquid inclusions: Theory, numerical implementation, and some basic results. Journal of the Mechanics and Physics of Solids, 166, 104930.

    Google Scholar 

  • Ghosh, K., Lefèvre, V., & Lopez-Pamies, O. (2023a) Homogenization of elastomers filled with liquid inclusions: The small-deformation limit. Journal of Elasticity.

    Google Scholar 

  • Ghosh, K., Lefèvre, V., & Lopez-Pamies, O. (2023b). The effective shear modulus of a random isotropic suspension of monodisperse liquid \(n\)-spheres: From the dilute limit to the percolation threshold. Soft Matter, 19, 208–224.

    Article  Google Scholar 

  • Gibbs, J. W. (1878). On the equilibrium of heterogeneous substances. Transactions of the Connecticut Academy of Arts and Sciences, 3, 343–524.

    Google Scholar 

  • Gurtin, M. E., & Murdoch, A. I. (1975a). A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57, 291–323.

    Article  MathSciNet  Google Scholar 

  • Gurtin, M. E., & Murdoch, A. I. (1975b). Addenda to our paper a continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 59, 1–2.

    Article  MathSciNet  Google Scholar 

  • Gurtin, M. E., Weissmüller, J., & Larché, F. (1998). A general theory of curved deformable interfaces in solids at equilibrium. Philosophical Magazine A, 78, 1093–1109.

    Article  Google Scholar 

  • Javili, A., McBride, A., & Steinmann, P. (2013) Thermomechanics of solids with lower-dimensional energetics: On the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Applied Mechanics Reviews, 65, 010802.

    Google Scholar 

  • Kenmotsu, K. (2003). Surfaces with constant mean curvature. Providence: American Mathematical Society.

    Google Scholar 

  • Krichen, S., Liu, L., & Sharma, P. (2019). Liquid inclusions in soft materials: Capillary effect, mechanical stiffening and enhanced electromechanical response. Journal of the Mechanics and Physics of Solids, 127, 332–357.

    Google Scholar 

  • Laplace, P. S. (1806) Traité de mécanique céleste, Volume 4, Supplémeent au dixième livre, pp. 1–79.

    Google Scholar 

  • Lefèvre, V., & Lopez-Pamies, O. (2014). The overall elastic dielectric properties of a suspension of spherical particles in rubber: An exact explicit solution in the small-deformation limit. Journal of Applied Physics, 116, 134106.

    Google Scholar 

  • Lefèvre, V., & Lopez-Pamies, O. (2017a). Nonlinear electroelastic deformations of dielectric elastomer composites: I—Ideal elastic dielectrics. Journal of the Mechanics and Physics of Solids, 99, 409–437.

    Article  MathSciNet  Google Scholar 

  • Lefèvre, V., & Lopez-Pamies, O. (2017b). Nonlinear electroelastic deformations of dielectric elastomer composites: II–Non-Gaussian elastic dielectrics. Journal of the Mechanics and Physics of Solids, 99, 438–470.

    Article  MathSciNet  Google Scholar 

  • Lefèvre, V., Danas, K., & Lopez-Pamies, O. (2017). A general result for the magnetoelastic response of isotropic suspensions of iron and ferrofluid particles in rubber, with applications to spherical and cylindrical specimens. Journal of the Mechanics and Physics of Solids, 107, 343–364.

    Article  MathSciNet  Google Scholar 

  • Lopez-Pamies, O. (2014). Elastic dielectric composites: Theory and application to particle-filled ideal dielectrics. Journal of the Mechanics and Physics of Solids, 64, 61–82.

    Article  MathSciNet  Google Scholar 

  • Ogden, R. W. (1997). Non-linear elastic deformations. Dover.

    Google Scholar 

  • Pao, Y. H. (1978). Electromagnetic forces in deformable continua. Mechanics Today, 4, 209–306.

    Article  Google Scholar 

  • Popinet, S. (2018). Numerical models of surface tension. Annual Review of Fluid Mechanics, 50, 49–75.

    Article  MathSciNet  Google Scholar 

  • Spinelli, S. A., Lefèvre, V., & Lopez-Pamies, O. (2015). Dielectric elastomer composites: A general closed-form solution in the small-deformation limit. Journal of the Mechanics and Physics of Solids, 83, 263–284.

    Article  MathSciNet  Google Scholar 

  • Stratton, J. S. (1941). Electromagnetic theory. McGraw-Hill.

    Google Scholar 

  • Style, R. W., Boltyanskiy, R., Benjamin, A., Jensen, K. E., Foote, H. P., Wettlaufer, J. S., & Dufresne, E. R. (2015a). Stiffening solids with liquid inclusions. Nature Physics, 11, 82–87.

    Article  Google Scholar 

  • Style, R. W., Wettlaufer, J. S., & Dufresne, E. R. (2015b). Surface tension and the mechanics of liquid inclusions in compliant solids. Soft Matter, 11, 672–679.

    Article  Google Scholar 

  • Tian, L., Tevet-Deree, L., deBotton, G., & Bhattacharya, K. (2012) Dielectric elastomer composites. Journal of the Mechanics and Physics of Solids, 60, 181–198.

    Google Scholar 

  • Wang, Y., & Henann, D. L. (2016). Finite-element modeling of soft solids with liquid inclusions. Extreme Mechanics Letters, 9, 147–157.

    Article  Google Scholar 

  • Weatherburn, C. E. (2016). Differential geometry of three dimensions. Cambridge University Press.

    Google Scholar 

  • Young, T. (1805). Iii an essay on the cohesion of fluids. Philosophical Transactions of the Royal Society, 95, 9565–9587.

    Google Scholar 

  • Yun, G., Tang, S. Y., Sun, S., Yuan, D., Zhao, Q., Deng, L., Yan, S., Du, H., Dickey, M. D., & Li, W. (2019). Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nature Communications, 10, 1300.

    Google Scholar 

Download references

Acknowledgements

Support for this work by the National Science Foundation through the Grant DMREF–1922371 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Lopez-Pamies .

Editor information

Editors and Affiliations

Appendices

Appendix A. Gauss’s law in Lagrangian form

On substitution of the definitions \(Q=J q\), \({{\textbf {D}}}=J{{\textbf {F}}}^{-1}{\textbf {d}}\), \(\widehat{Q}=\widehat{J} \widehat{q}\), and \(\widehat{{{\textbf {D}}}}=\widehat{J}\widehat{{{\textbf {F}}}}^{-1}\widehat{{\textbf {d}}}\) in the Eulerian form (10) of Gauss’s law, we have

$$\begin{aligned} \left\{ \begin{array}{ll} \dfrac{\partial }{\partial x_k}\left[ J^{-1}F_{km}D_{m}\right] = J^{-1} Q, &{} {\textbf {x}}\in \Omega \setminus \Gamma \vspace{0.25cm}\\ \dfrac{\partial }{\partial x_l}\left[ \widehat{J}^{-1}\widehat{F}_{km}\widehat{D}_{m}\right] \,\widehat{i}_{kl} - \left[ \left[ J^{-1}F_{km}D_{m} \right] \right] \widehat{n}_{k} = \widehat{J}^{-1} \widehat{Q}, &{} {\textbf {x}}\in \Gamma \vspace{0.25cm}\\ \dfrac{\partial }{\partial x_k}\left[ J^{-1}F_{km}D_{m}\right] = 0, &{} {\textbf {x}}\in \mathbb {R}^3\setminus \Omega \vspace{0.25cm}\\ \left[ \left[ J^{-1}F_{km}D_{m} \right] \right] n_{k} = 0, &{} {\textbf {x}}\in \partial \Omega \end{array}\right. , \end{aligned}$$
(46)

where, again, by \({{\textbf {F}}}\) in \(\mathbb {R}^3\setminus \Omega \) we mean any suitably well-behaved extension to \(\mathbb {R}^3\) of the deformation gradient \({{\textbf {F}}}\) in the body. Given that \(\text {div} \left[ J^{-1} {{\textbf {F}}}^{T}\right] = \widehat{\text {div}}\left[ \widehat{J}^{-1}\widehat{{{\textbf {F}}}}^{T}\right] = \textbf{0}\), Eq. (46) simplify to

$$\begin{aligned} \left\{ \begin{array}{ll} J^{-1}F_{km}\dfrac{\partial D_{m}}{\partial x_k} = J^{-1} Q, &{} {\textbf {x}}\in \Omega \setminus \Gamma \vspace{0.25cm}\\ \widehat{J}^{-1}\widehat{F}_{km}\dfrac{\partial \widehat{D}_{m}}{\partial x_l}\,\widehat{i}_{kl} - \left[ \left[ J^{-1}F_{km}D_{m} \right] \right] \widehat{n}_{k} = \widehat{J}^{-1} \widehat{Q}, &{} {\textbf {x}}\in \Gamma \vspace{0.25cm}\\ J^{-1}F_{km}\dfrac{\partial D_{m}}{\partial x_k} = 0, &{} {\textbf {x}}\in \mathbb {R}^3\setminus \Omega \vspace{0.25cm}\\ \left[ \left[ J^{-1}F_{km}D_{m} \right] \right] n_{k} = 0, &{} {\textbf {x}}\in \partial \Omega \end{array}\right. . \end{aligned}$$

By employing now the chain rule and the identities \({\textbf {n}}= |J {{\textbf {F}}}^{-T}{\textbf {N}}|^{-1} \, J {{\textbf {F}}}^{-T}{\textbf {N}}\), \(\widehat{{{\textbf {F}}}}^{-1}={{\textbf {F}}}^{-1}\,\widehat{{{\textbf {i}}}}\), and \(\widehat{{\textbf {n}}} = \widehat{J}^{-1} \, J {{\textbf {F}}}^{-T}\widehat{{\textbf {N}}}\) together with the fact that \(J^{\texttt {i}} {{{\textbf {F}}}^{\texttt {i}}}^{-T}\widehat{{\textbf {N}}}=J^{\texttt {m}} {{{\textbf {F}}}^{\texttt {m}}}^{-T}\widehat{{\textbf {N}}}\), we obtain

$$\begin{aligned} \left\{ \begin{array}{ll} \dfrac{\partial D_{m}}{\partial X_n}F^{-1}_{nk}F_{km}= Q, &{} {{\textbf {X}}}\in \Omega _0\setminus \Gamma _0 \vspace{0.25cm}\\ \dfrac{\partial \widehat{D}_{m}}{\partial X_n}\,\widehat{F}^{-1}_{nk}\widehat{F}_{km} - \left[ \left[ D_{k} \right] \right] \widehat{N}_{k} =\widehat{Q}, &{} {{\textbf {X}}}\in \Gamma _0 \vspace{0.25cm}\\ \dfrac{\partial D_{m}}{\partial X_n}F^{-1}_{nk}F_{km} = 0, &{} {{\textbf {X}}}\in \mathbb {R}^3\setminus \Omega _0\vspace{0.25cm}\\ \left[ \left[ D_{k} \right] \right] \widehat{N}_{k} = 0, &{} {{\textbf {X}}}\in \partial \Omega _0\end{array}\right. \end{aligned}$$

Finally, recognizing that \(\widehat{{{\textbf {F}}}}^{-1}\widehat{{{\textbf {F}}}}=\widehat{{\textbf {I}}}\), Gauss’s law in Lagrangian form (11) readily follows:

$$\begin{aligned} \left\{ \begin{array}{ll} \dfrac{\partial D_{m}}{\partial X_m}= Q, &{} {{\textbf {X}}}\in \Omega _0\setminus \Gamma _0 \vspace{0.25cm}\\ \dfrac{\partial \widehat{D}_{m}}{\partial X_n}\,\widehat{I}_{mn} - \left[ \left[ D_{k} \right] \right] \widehat{N}_{k} =\widehat{Q}, &{} {{\textbf {X}}}\in \Gamma _0 \vspace{0.25cm}\\ \dfrac{\partial D_{m}}{\partial X_m} = 0, &{} {{\textbf {X}}}\in \mathbb {R}^3\setminus \Omega _0\vspace{0.25cm}\\ \left[ \left[ D_{k} \right] \right] \widehat{N}_{k} = 0, &{} {{\textbf {X}}}\in \partial \Omega _0\end{array}\right. \end{aligned}$$

Appendix B. Faraday’s law in Lagrangian form

Direct use of the definition \({\textbf {E}}={{\textbf {F}}}^{T}{{\textbf {e}}}\) and the transformation rule \(\text {d}{\textbf {x}}={{\textbf {F}}}\text {d}{{\textbf {X}}}\) for material line elements allows to recast the integral form (12) of Faraday’s law as

$$\begin{aligned} \int _{\partial \Sigma } {{\textbf {e}}}\cdot \text {d}{\textbf {x}}=\int _{\partial \Sigma _0} {\textbf {E}}\cdot \text {d}{{\textbf {X}}}=0. \end{aligned}$$
(47)

By making use of Stokes’s theorem

$$\begin{aligned} \int _{\Sigma _0}\left( \text {Curl}\,{\textbf {E}}\right) \cdot \widetilde{{\textbf {N}}}\,\text {d}{{\textbf {X}}}=\int _{\partial \Sigma _0} {\textbf {E}}\cdot \text {d}{{\textbf {X}}}+\int _{\partial \mathcal {S}_0} \left[ \left[ {\textbf {E}} \right] \right] \cdot \text {d}{{\textbf {X}}}, \end{aligned}$$

this time around in the initial configuration, the Lagrangian localized form (14) of Faraday’s law readily follows from (47).

Rights and permissions

Reprints and permissions

Copyright information

© 2024 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lopez-Pamies, O. (2024). The Elastic Dielectric Response of Elastomers Filled with Liquid Inclusions: From Fundamentals to Governing Equations. In: Danas, K., Lopez-Pamies, O. (eds) Electro- and Magneto-Mechanics of Soft Solids. CISM International Centre for Mechanical Sciences, vol 610. Springer, Cham. https://doi.org/10.1007/978-3-031-48351-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48351-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48350-9

  • Online ISBN: 978-3-031-48351-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation