Geo-topology, Complexity and Resilience

  • Chapter
  • First Online:
Geo-Topology

Part of the book series: GeoJournal Library ((GEJL,volume 133))

  • 102 Accesses

Abstract

This chapter presents a new method for assessing the complexity of landscape changes based on topology and graph theory as well as a method for assessing resilience of each land use type in the course of time on the basis of its topological properties. The former is based on Levenshtein distances applied to graph analysis (graph edit distances) and the latter infers resilience from changes in a network of landscape boundaries. The higher the graph edit distance between two graphs representing boundary changes during a time interval, the higher the complexity of the landscape transformations whereas the mean degree per patch of a land use type can be used as measure of its resilience. Calculations are carried out on example landscape maps and on maps of landscape change of the Sounio area (Athens, Greece).

Fools ignore complexity.

Pragmatists suffer it.

Some can avoid it.

Geniuses remove it.

(Alan Perlis, 1922–1990, “Epigrams on Programming”)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu, J., & Rico-Juan, J. R. (2011). Characterization of contour regularities based on the Levenshtein edit distance. Pattern Recognition Letters, 32(10), 1421–1427.

    Google Scholar 

  • Adger, W. N., Eakin, H., & Winkels, A. (2009). Nested and teleconnected vulnerabilities to environmental change. Frontiers in Ecology and the Environment, 7, 150–157.

    Google Scholar 

  • Arianoutsou, M., Koukoulas, S., & Kazanis, D. (2011). Evaluating post-fire forest resilience using GIS and multi-criteria analysis: An example from Cape Sounion National Park, Greece. Environmental Management, 47(3), 384–397.

    Google Scholar 

  • Asllani, M., & Carletti, T. (2018). Topological resilience in non-normal networked systems. Physical Review E, 97(4), 042302.

    Google Scholar 

  • Assumma, V., Bottero, M., Monaco, R., & Soares, A. J. (2018). An integrated evaluation model for sha** future resilient scenarios in multi-pole territorial systems. Environmental and Territorial Modelling for Planning and Design, 4, 17–24.

    Google Scholar 

  • Baake, M., Grimm, U., & Giegerich, R. (2006). Surprises in approximating Levenshtein distances. Journal of Theoretical Biology, 243(2), 279–282.

    Google Scholar 

  • Bengtsson, J., Angelstam, P., Elmqvist, T., Emanuelsson, U., Folke, C., Ihse, M., et al. (2021). Reserves, resilience and dynamic landscapes 20 years later. Ambio, 50(5), 962–966.

    Google Scholar 

  • Berkes, F., Colding, J., & Folke, C. (2003). Navigating social–ecological systems: Building resilience for complexity and change. Cambridge University Press.

    Google Scholar 

  • Bernholz, C. D., & Pytlik Zillig, B. L. (2011). Comparing nearly identical treaty texts: A note on the treaty of Fort Laramie with Sioux, etc., 1851 and Levenshtein’s edit distance metric. Literary and linguistic computing, 26(1), 5–16.

    Google Scholar 

  • Biggs, D., Biggs, R., Dakos, V., Scholes, R. J., & Schoon, M. L. (2011). Are we entering an era of concatenated global crises? Ecology and Society, 14, 32.

    Google Scholar 

  • Biggs, R., Schlüter, M., Biggs, D., Bohensky, E. L., Burn Silver, S., Cundill, G., et al. (2012). Toward principles for enhancing the resilience of ecosystem services. Annual Review of Environment and Resources, 37, 421–448.

    Google Scholar 

  • Blumenthal, D. B., & Gamper, J. (2020). On the exact computation of the graph edit distance. Pattern Recognition Letters, 134, 46–57.

    Google Scholar 

  • Blumenthal, D. B., Boria, N., Gamper, J., Bougleux, S., & Brun, L. (2020). Comparing heuristics for graph edit distance computation. The VLDB Journal, 29(1), 419–458.

    Google Scholar 

  • Bunke, H. (1997). On a relation between graph edit distance and maximum common subgraph. Pattern Recognition Letters, 18(8), 689–694.

    Google Scholar 

  • Concepción, E. D., Díaz, M., & Baquero, R. A. (2008). Effects of landscape complexity on the ecological effectiveness of Agri-environment schemes. Landscape Ecology, 23, 135–148.

    Google Scholar 

  • Cormont, A., Siepel, H., Clement, J., Melman, T. C., Wallis DeVries, M. F., Van Turnhout, C. A. M., et al. (2016). Landscape complexity and farmland biodiversity: Evaluating the CAP target on natural elements. Journal for Nature Conservation, 30, 19–26.

    Google Scholar 

  • Costa, D., Pirmez, L., Carmo, L. F. R. C., & Bacellar, L. F. H. (2011). Enhancing Levenshtein distance algorithm for assessing behavioral trust. Computer Systems Science and Engineering, 26(2), 77–85.

    Google Scholar 

  • Cumming, G. S., Olsson, P., Chapin, F. S., & Holling, C. S. (2013). Resilience, experimentation, and scale mismatches in social-ecological landscapes. Landscape Ecology, 28(6), 1139–1150.

    Google Scholar 

  • Doran, H. C., & Van Wamelen, P. B. (2010). Application of the Levenshtein distance metric for the construction of longitudinal data files. Educational Measurement: Issues and Practice, 29(2), 13–23.

    Google Scholar 

  • Gabriel, D., Thies, C., & Tscharntke, T. (2005). Local diversity of arable weeds increases with landscape complexity. Perspectives in Plant Ecology, Evolution and Systematics, 7(2), 85–93.

    Google Scholar 

  • Gali, Z., & Giancarlo, R. (1988). Data structures and algorithms for approximate string matching. Journal of Complexity, 4(1), 33–72.

    Google Scholar 

  • Gao, X., **ao, B., Tao, D., & Li, X. (2010). A survey of graph edit distance. Pattern Analysis and Applications, 13(1), 113–129.

    Google Scholar 

  • Gelcich, S., Edwards-Jones, G., Kaiser, M. J., & Castilla, J. C. (2006). Co-management policy can reduce resilience in traditionally managed marine ecosystems. Ecosystems, 9, 951–966.

    Google Scholar 

  • Goli, J. D., & Menicocci, R. (2002). Computation of edit probabilities and edit distances for the A5-type keystream generator. Journal of Complexity, 18(1), 356–374.

    Google Scholar 

  • Goli, J. D., & Petrovi, S. V. (1995). Constrained many-to-one string editing with memory. Information Sciences, 86(1–3), 61–76.

    Google Scholar 

  • Henning, M., Herrmann, P., Zimmermann, T., Meier, M., Pietsch, M., & Schmidt, C. (2021). A scenario and monitoring based planning approach to strengthen the resilience of the cultural landscape. Journal of Digital Landscape Architecture, 6-2021, 123–132.

    Google Scholar 

  • Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1), 1–23.

    Google Scholar 

  • Honnay, O., Piessens, K., Van Landuyt, W., Hermy, M., & Gulinck, H. (2003). Satellite based land use and landscape complexity indices as predictors for regional plant species diversity. Landscape and Urban Planning, 63(4), 241–250.

    Google Scholar 

  • Lucash, M. S., Scheller, R. M., Gustafson, E., & Sturtevant, B. (2017). Spatial resilience of forested landscapes under climate change and management. Landscape Ecology, 32(5), 953–969.

    Google Scholar 

  • McPhearson, T., Iwaniec, D. M., & Bai, X. (2016). Positive visions for guiding urban transformations toward sustainable futures. Current Opinion in Environmental Sustainability, 22, 33–40.

    Google Scholar 

  • McPhearson, T., Iwaniec, D. M., Hamstead, Z. A., Berbés-Blázquez, M., Cook, E. M., Muñoz-Erickson, T. A., et al. (2021). A vision for resilient urban futures. In Z. A. Hamstead, D. M. Iwaniec, T. McPhearson, M. Berbés-Blázquez, E. M. Cook, & T. A. Muñoz-Erickson (Eds.), Resilient urban futures (pp. 173–186). Springer International Publishing.

    Google Scholar 

  • Melles, S., Glenn, S., & Martin, K. (2003). Urban bird diversity and landscape complexity: Species–environment associations along a multiscale habitat gradient. Conservation Ecology, 7(1), 5.

    Google Scholar 

  • Meyer, K. (2016). A mathematical review of resilience in ecology. Natural Resources Modeling, 29, 339–352.

    Google Scholar 

  • Nelson, K. S., & Burchfield, E. K. (2021). Landscape complexity and US crop production. Nature Food, 2(5), 330–338.

    Google Scholar 

  • Palunčić, F., Ferreira, H. C., Swart, T. G., & Clarke, W. A. (2010). Modelling distances between genetically related languages using an extended weighted Levenshtein distance. Southern African Linguistics and Applied Language Studies, 27(4), 381–389.

    Google Scholar 

  • Papadimitriou, F. (2002). Modelling indicators and indices of landscape complexity: An approach using GIS. Ecological Indicators, 2(1–2), 17–25.

    Google Scholar 

  • Papadimitriou, F. (2009). Modelling spatial landscape complexity using the Levenshtein algorithm. Ecological Informatics, 4(1), 48–55.

    Google Scholar 

  • Papadimitriou, F. (2012a). Artificial intelligence in modelling the complexity of Mediterranean landscape transformations. Computers and Electronics in Agricutlure, 81, 87–96.

    Google Scholar 

  • Papadimitriou, F. (2012b). Modelling landscape complexity for land use Management in Rio de Janeiro, Brazil. Land Use Policy, 29(4), 855–861.

    Google Scholar 

  • Papadimitriou, F. (2012c). The algorithmic complexity of landscapes. Landscape Research, 37(5), 599–611.

    Google Scholar 

  • Papadimitriou, F. (2020a). Spatial complexity: Theory, mathematical methods and applications. Springer.

    Google Scholar 

  • Papadimitriou, F. (2020b). The algorithmic basis of spatial complexity. In Spatial complexity: Theory, mathematical methods and applications (pp. 81–99). Springer.

    Google Scholar 

  • Papadimitriou, F. (2020c). The spatial complexity of 3×3 binary maps. In Spatial complexity: Theory, mathematical methods and applications (pp. 163–178). Springer.

    Google Scholar 

  • Papadimitriou, F. (2020d). Spatial complexity in nature, science and technology. In Spatial complexity: Theory, mathematical methods and applications (pp. 19–35). Springer.

    Google Scholar 

  • Papadimitriou, F. (2020e). The topological basis of spatial complexity. In Spatial complexity. Theory, mathematical methods and applications (pp. 63–79). Springer.

    Google Scholar 

  • Papadimitriou, F. (2020f). Modelling and visualization of landscape complexity with braid topology. In Modern approaches to the visualization of landscapes (pp. 79–101). Springer.

    Google Scholar 

  • Papadimitriou, F. (2023a). Modelling landscape resilience. In Modelling landscape dynamics. Determinism, stochasticity, complexity. Springer.

    Google Scholar 

  • Papadimitriou, F. (2023b). Landscape stability, instability and civilization collapse. In Modelling landscape dynamics. Determinism, stochasticity, complexity. Springer.

    Google Scholar 

  • Persson, A. S., Olsson, O., Rundlöf, M., & Smith, H. G. (2010). Land use intensity and landscape complexity—Analysis of landscape characteristics in an agricultural region in southern Sweden. Agriculture, Ecosystems & Environment, 136(1–2), 169–176.

    Google Scholar 

  • Peterson, G., Allen, C. R., & Holling, C. S. (1998). Ecological resilience, biodiversity, and scale. Ecosystems, 1(1), 6–18.

    Google Scholar 

  • Pettersen Gould, K. (2019). Precursor resilience in practice–an organizational response to weak signals. In Exploring Resilience: A Scientific Journey from Practice to Theory (pp. 51–58). Springer.

    Google Scholar 

  • Pighizzini, G. (2001). How hard is computing the edit distance? Information and Computation, 165, 1–13.

    Google Scholar 

  • Riesen, K., & Bunke, H. (2009). Approximate graph edit distance computation by means of bipartite graph matching. Image and Vision Computing, 27(7), 950–959.

    Google Scholar 

  • Robles-Kelly, A., & Hancock, E. R. (2003). Edit distance from graph spectra. In Proceedings of the IEEE International Conference on Computer Vision 1 (pp. 234–241). Nice.

    Google Scholar 

  • Roschewitz, I., Gabriel, D., Tscharntke, T., & Thies, C. (2005). The effects of landscape complexity on arable weed species diversity in organic and conventional farming. Journal of Applied Ecology, 42(5), 873–882.

    Google Scholar 

  • Satake, A., Leslie, H. M., Iwasa, Y., & Levin, S. A. (2007). Coupled ecological–social dynamics in a forested landscape: Spatial interactions and information flow. Journal of Theoretical Biology, 246(4), 695–707.

    Google Scholar 

  • Sauter, D., Randhawa, J., Tomateo, C., & McPhearson, T. (2021). Visualizing urban social–ecological–technological systems. In Resilient Urban Futures (pp. 145–157). Springer.

    Google Scholar 

  • Scheffer, M., Carpenter, S. R., Dakos, V., & van Nes, E. H. (2015). Generic indicators of ecological resilience: Inferring the chance of a critical transition. Annual Review of Ecology, Evolution, and Systematics, 46(1), 145–167.

    Google Scholar 

  • Selkirk, K., Selin, C., & Felt, U. (2018). A festival of futures: Recognizing and reckoning temporal complexity in foresight. In Handbook of anticipation: Theoretical and applied aspects of the use of future in decision making (pp. 1–23). Springer.

    Google Scholar 

  • Sole-Ribalta, A., & Serratosa, F. (2011). Exploration of the labelling space given graph edit distance costs. Lecture Notes in Computer Science, 6658, 164–174.

    Google Scholar 

  • Takahashi, S., & Izumi, T. (2006). Travel time measurement by vehicle sequence matching method-evaluation method of vehicle sequence using Levenshtein distance. In 2006 SICE-ICASE international joint conference (pp. 1625–1629). IEEE.

    Google Scholar 

  • Uhl, A., & Wild, P. (2010). Enhancing iris matching using levenshtein distance with alignment constraints. In Advances in visual computing: 6th international symposium, ISVC 2010. November 29–December 1, 2010. Proceedings, Part I 6 (pp. 469–478). Springer.

    Google Scholar 

  • Van de Leemput, I. A., Dakos, V., Scheffer, M., & van Nes, E. H. (2018). Slow recovery from local disturbances as an indicator for loss of ecosystem resilience. Ecosystems, 21(1), 141–152.

    Google Scholar 

  • Van Nes, E. H., & Scheffer, M. (2005). Implications of spatial heterogeneity for catastrophic regime shifts in ecosystems. Ecology, 86(7), 1797–1807.

    Google Scholar 

  • Verbesselt, J., Umlauf, N., Hirota, M., Holmgren, M., Van Nes, E. H., Herold, M., et al. (2016). Remotely sensed resilience of tropical forests. Nature Climate Change, 6(11), 1028–1031.

    Google Scholar 

  • Wan, Z., Mahajan, Y., Kang, B. W., Moore, T. J., & Cho, J. H. (2021). A survey on centrality metrics and their network resilience analysis. IEEE Access, 9, 104773–104819.

    Google Scholar 

  • White, I., & O’Hare, P. (2014). From rhetoric to reality: Which resilience, why resilience, and whose resilience in spatial planning? Environment and Planning C: Government and Policy, 32(5), 934–950.

    Google Scholar 

  • Wu, J., & Hobbs, R. (2002). Key issues and research priorities in landscape ecology: An idiosyncratic synthesis. Landscape Ecology, 17, 355–365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papadimitriou, F. (2023). Geo-topology, Complexity and Resilience. In: Geo-Topology. GeoJournal Library, vol 133. Springer, Cham. https://doi.org/10.1007/978-3-031-48185-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48185-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48184-0

  • Online ISBN: 978-3-031-48185-7

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics

Navigation