Carbon Monoxide Against Ischemia-Reperfusion Injury: A Tour into the Immune System

  • Chapter
  • First Online:
Gasotransmitters in Organ Transplantation

Abstract

Carbon monoxide (CO) is quickly moving past its historic label as a molecule once feared, to a therapeutic drug that modulates inflammation. The development of carbon monoxide-releasing molecules (CO-RM) and utilization of heme oxygenase-1 inducers have shown CO to be a promising therapy in reducing renal ischemia-reperfusion injury (IRI) and other inflammatory diseases. In this chapter, we will discuss the developments and application of CO-RM in renal IRI, and organ transplantation as well as the anti-inflammatory mechanisms of CO in respect to mitigating apoptosis, suppressing dendritic cell maturation and signalling, inhibiting toll-like receptor activation, promoting anti-inflammatory responses, and the effects on renal vasculature.

This chapter is an expanded version by the same authors in the publication titled Carbon monoxide mechanism of protection against renal ischemia and reperfusion injury. Biochem Pharmacol. 2022; 202:115156.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mangano K, Cavalli E, Mammana S, Basile MS, Caltabiano R, Pesce A, et al. Involvement of the Nrf2/HO-1/CO axis and therapeutic intervention with the CO- releasing molecule CORM-A1, in a murine model of autoimmune hepatitis. J Cell Physiol. 2018;233:4156–65.

    Article  CAS  PubMed  Google Scholar 

  2. Nikolic I, Saksida T, Mangano K, Vujicic M, Stojanovic I, Nicoletti F, et al. Pharmacological application of carbon monoxide ameliorates islet-directed autoimmunity in mice via anti-inflammatory and anti-apoptotic effects. Diabetologia. 2014;57:980–90.

    Article  CAS  PubMed  Google Scholar 

  3. Fagone P, Mangano K, Mammana S, Cavalli E, Di Marco R, Barcellona ML, et al. Carbon monoxide-releasing molecule-A1 (CORM-A1) improves clinical signs of experimental autoimmune uveoretinitis (EAU) in rats. Clin Immunol. 2015;157:198–204.

    Article  CAS  PubMed  Google Scholar 

  4. Wang P, Huang J, Li Y, Chang R, Wu H, Lin J, et al. Exogenous carbon monoxide decreases sepsis-induced acute kidney injury and inhibits NLRP3 inflammasome activation in rats. Int J Mol Sci. 2015;16:20595–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang W, Tao A, Lan T, Cepinskas G, Kao R, Martin CM, et al. Carbon monoxide releasing molecule-3 improves myocardial function in mice with sepsis by inhibiting NLRP3 inflammasome activation in cardiac fibroblasts. Basic Res Cardiol. 2017;112:1–12.

    Article  CAS  Google Scholar 

  6. Bakrania BA, Spradley FT, Satchell SC, Stec DE, Rimoldi JM, Gadepalli RSV, et al. Heme oxygenase-1 is a potent inhibitor of placental ischemia-mediated endothelin-1 production in cultured human glomerular endothelial cells. Am J Physiol Regul Integr Comp Physiol. 2018;314:R427–32.

    Article  PubMed  Google Scholar 

  7. George EM, Cockrell K, Arany M, Stec DE, Rimoldi JM, Gadepalli RSV, et al. Carbon monoxide releasing molecules blunt placental ischemia-induced hypertension. Am J Hypertens. 2017;30:931–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schumacher A, Wafula PO, Teles A, El-Mousleh T, Linzke N, Zenclussen ML, et al. Blockage of Heme OXygenase-1 abrogates the protective effect of regulatory T cells on murine pregnancy and promotes the maturation of dendritic cells. PLoS One. 2012;7:e42301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhattacharjee RN, Richard-Mohamed M, Sun Q, Haig A, Aboalsamh G, Barrett P, et al. CORM-401 reduces ischemia reperfusion injury in an EX vivo renal porcine model of the donation after circulatory death. Transplantation. 2018;102:1066–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Caumartin Y, Stephen J, Deng JP, Lian D, Lan Z, Liu W, et al. Carbon monoxide-releasing molecules protect against ischemia-reperfusion injury during kidney transplantation. Kidney Int. 2011;79:1080–9.

    Article  CAS  PubMed  Google Scholar 

  11. Sener A, Tran KC, Deng JP, Garcia B, Lan Z, Liu W, et al. Carbon monoxide releasing molecules inhibit cell death resulting from renal transplantation related stress. J Urol. 2013;190:772–8. https://doi.org/10.1016/j.juro.2012.12.020.

    Article  CAS  PubMed  Google Scholar 

  12. Mattiuzzi C, Lippi G. Worldwide epidemiology of carbon monoxide poisoning. Hum Exp Toxicol. 2020;39:387–92.

    Article  CAS  PubMed  Google Scholar 

  13. Martins PNA, Reutzel-Selke A, Jurisch A, Denecke C, Attrot K, Pascher A, et al. Induction of carbon mono**de in donor animals prior to organ procurement reduces graft immunogenicity and inhibits chronic allograft dysfunction. Transplantation. 2006;82:938–44.

    Article  PubMed  Google Scholar 

  14. Gorman D, Drewry A, Huang YL, Sames C. The clinical toxicology of carbon monoxide. Toxicology. 2003;187:25–38.

    Article  CAS  PubMed  Google Scholar 

  15. Leikin JB, Goldenberg RM, Edwards D, Zell-Kantor M. Carbon monoxide poisoning. Vet Hum Toxicol. 1988;30:40–2.

    CAS  PubMed  Google Scholar 

  16. Neto JS, Nakao A, Kimizuka K, Romanosky AJ, Stolz DB, Uchiyama T, et al. Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide. Am J Physiol Renal Physiol. 2004;287:979–89.

    Article  Google Scholar 

  17. Rosas IO, Goldberg HJ, Collard HR, El-Chemaly S, Flaherty K, Hunninghake GM, et al. A phase II clinical trial of low-dose inhaled carbon monoxide in idiopathic pulmonary fibrosis. Chest. 2018;153:94–104.

    Article  PubMed  Google Scholar 

  18. Fredenburgh LE, Perrella MA, Barragan-Bradford D, Hess DR, Peters E, Welty-Wolf KE, et al. A phase I trial of low-dose inhaled carbon monoxide in sepsis-induced ARDS. JCI Insight. 2018;3:1–18.

    Article  Google Scholar 

  19. Fayad-Kobeissi S, Ratovonantenaina J, Dabire H, Wilson JL, Rodriguez AM, Berdeaux A, et al. Vascular and angiogenic activities of CORM-401, an oxidant- sensitive CO-releasing molecule. Biochem Pharmacol. 2016;102:64–77.

    Article  CAS  PubMed  Google Scholar 

  20. Bagul A, Hosgood SA, Kaushik M, Nicholson ML. Carbon monoxide protects against ischemia-reperfusion injury in an experimental model of controlled nonheartbeating donor kidney. Transplantation. 2008;85:576–81.

    Article  CAS  PubMed  Google Scholar 

  21. Botros FT, Navar LG. Interaction between endogenously produced carbon monoxide and nitric oxide in regulation of renal afferent arterioles. Am J Physiol Heart Circ Physiol. 2006;291:2772–8.

    Article  Google Scholar 

  22. Ruan Y, Wang L, Zhao Y, Yao Y, Chen S, Li J, et al. Carbon monoxide potently prevents ischemia-induced high-mobility group boX 1 translocation and release and protects against lethal renal ischemia-reperfusion injury. Kidney Int. 2014;86:525–37.

    Article  CAS  PubMed  Google Scholar 

  23. Sun B, Sun Z, ** Q, Chen X. CO-releasing molecules (CORM-2)-liberated CO attenuates leukocytes infiltration in the renal tissue of thermally injured mice. Int J Biol Sci. 2008;4:176–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vera T, Henegar JR, Drummond HA, Rimoldi JM, Stec DE. Protective effect of carbon monoxide-releasing compounds in ischemia-induced acute renal failure. J Am Soc Nephrol. 2005;16:950–8.

    Article  CAS  PubMed  Google Scholar 

  25. Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov. 2010;9:728–43.

    Article  CAS  PubMed  Google Scholar 

  26. Babu D, Leclercq G, Motterlini R, Lefebvre RA. Differential effects of CORM-2 and CORM-401 in murine intestinal epithelial MODE-K cells under oxidative stress. Front Pharmacol. 2017;8:31.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Crook SH, Mann BE, Meijer AJHM, Adams H, Sawle P, Scapens D, et al. [Mn(CO)4{S2CNMe(CH2CO2H)}], a new water-soluble CO-releasing molecule. Dalton Trans. 2011;40:4230–5.

    Article  CAS  PubMed  Google Scholar 

  28. Janík M, Ublová M, Kučerová Š, Hejna P. Carbon monoxide-related fatalities: a 60-year single institution experience. J Forensic Leg Med. 2017;48:23–9.

    Article  PubMed  Google Scholar 

  29. Wilbur S, Williams M, Williams R, Scinicariello F, Klotzbach JM, Diamond GL, Citra M. Toxicological profile for carbon monoxide. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2012.

    Google Scholar 

  30. McLean S, Mann BE, Poole RK. Sulfite species enhance carbon monoxide release from CO-releasing molecules: implications for the deoxymyoglobin assay of activity. Anal Biochem. 2012;427:36–40.

    Article  CAS  PubMed  Google Scholar 

  31. Chaves-Ferreira M, Albuquerque IS, Matak-Vinkovic D, Coelho AC, Carvalho SM, Saraiva LM, et al. Spontaneous CO release from Ru II (CO) 2-protein complexes in aqueous solution, cells, and mice. Angew Chem Int Ed Engl. 2015;54:1172–5.

    Article  CAS  PubMed  Google Scholar 

  32. Santos MFA, Seixas JD, Coelho AC, Mukhopadhyay A, Reis PM, Romao MJ, et al. New insights into the chemistry of fac-[Ru(CO)3]2 fragments in biologically relevant conditions: the CO releasing activity of [Ru(CO)3Cl2(1,3-thiazole)], and the x-ray crystal structure of its adduct with lysozyme. J Inorg Biochem. 2012;117:285–91.

    Article  CAS  PubMed  Google Scholar 

  33. Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997;37:517–54.

    Article  CAS  PubMed  Google Scholar 

  34. Baan C, Peetersa A, Lemos F, Uitterlinden A, Do**adis I, Claas F, et al. Fundamental role for HO-1 in the self-protection of renal allografts. Am J Transplant. 2004;4:811–8.

    Article  CAS  PubMed  Google Scholar 

  35. Hull TD, Kamal AI, Boddu R, Bolisetty S, Guo L, Tisher CC, et al. Heme oXygenase-1 regulates myeloid cell trafficking in AKI. J Am Soc Nephrol. 2015;26:2139–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee TS, Chau LY. Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med. 2002;8:240–6.

    Article  CAS  PubMed  Google Scholar 

  37. Correa-Costa M, Gallo D, Csizmadia E, Gomperts E, Lieberum JL, Hauser CJ, et al. Carbon monoxide protects the kidney through the central circadian clock and CD39. Proc Natl Acad Sci U S A. 2018;115:E2302–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin CC, der Hsiao L, Cho RL, Yang CM. Carbon monoxide releasing molecule- 2-upregulated ROS-dependent heme oxygenase-1 axis suppresses lipopolysaccharide-induced airway inflammation. Int J Mol Sci. 2019;20:3157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chi PL, Lin CC, Chen YW, der Hsiao L, Yang CM. CO induces Nrf2- dependent Heme OXygenase-1 transcription by cooperating with Sp1 and c-Jun in rat brain astrocytes. Mol Neurobiol. 2015;52:277–92.

    Article  CAS  PubMed  Google Scholar 

  40. Edelstein CL, Ling H, Schrier RW. The nature of renal cell injury. Kidney Int. 1997;51:1341–51.

    Article  CAS  PubMed  Google Scholar 

  41. Martin JL, Gruszczyk AV, Beach TE, Murphy MP, Saeb-Parsy K. Mitochondrial mechanisms and therapeutics in ischaemia reperfusion injury, pediatric nephrology. Pediatr Nephrol. 2019;34:1167–74.

    Article  PubMed  Google Scholar 

  42. Kezić A, Stajic N, Thaiss F. Thaiss, innate immune response in kidney ischemia/reperfusion injury: potential target for therapy. J Immunol Res. 2017;2017:6305439.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nieuwenhuijs-Moeke GJ, Pischke SE, Berger SP, Sanders JSF, Pol RA, Struys MMRF, et al. Ischemia and reperfusion injury in kidney transplantation: relevant mechanisms in injury and repair. J Clin Med. 2020;9:253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Al-Huseini LMA, Yeang HXA, Hamdam JM, Sethu S, Alhumeed N, Wong W, et al. Heme oxygenase-1 regulates dendritic cell function through modulation of p38 MAPK-CREB/ATF1 signaling. J Biol Chem. 2014;289:16442–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nace G, Evankovich J, Eid R, Tsung A. Dendritic cells and damage-associated molecular patterns: endogenous danger signals linking innate and adaptive immunity. J Innate Immun. 2011;4:6–15.

    Article  PubMed  Google Scholar 

  46. Dong X, Swaminathan S, Bachman LA, Croatt AJ, Nath KA, Griffin MD. Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int. 2007;71:619–28.

    Article  CAS  PubMed  Google Scholar 

  47. Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human dendritic cells: their heterogeneity and clinical application potential in cancer immunotherapy. Front Immunol. 2019;10:1–18.

    Google Scholar 

  48. Lau A, West L, Tullius SG. The impact of sex on alloimmunity. Trends Immunol. 2018;39:407–18.

    Article  CAS  PubMed  Google Scholar 

  49. Chong AS, Sage PT, Alegre ML. Regulation of alloantibody responses. Front Cell Dev Biol. 2021;9:706171.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhao D, Abou-Daya KI, Dai H, Oberbarnscheidt MH, Li XC, Lakkis FG. Innate allorecognition and memory in transplantation. Front Immunol. 2020;11:918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McKay D, Shigeoka A, Rubinstein M, Surh C, Sprent J. Simultaneous deletion of MyD88 and Trif delays major histocompatibility and minor antigen mismatch allograft rejection. Eur J Immunol. 2006;36:1994–2002.

    Article  CAS  PubMed  Google Scholar 

  52. Journal A. Special issue: KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9:S1–155.

    Article  Google Scholar 

  53. Salvadori M, Rosso G, Bertoni E. Update on ischemia-reperfusion injury in kidney transplantation: pathogenesis and treatment. World J Transplant. 2015;5:52–67.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bongoni AK, Lu B, McRae JL, Salvaris EJ, Toonen EJM, Vikstrom I, et al. Complement-mediated damage to the GlycocalyX plays a role in renal ischemia-reperfusion injury in mice. Transplant Direct. 2019;5:e341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ali S, Athar M, Ahmed SM. Endothelial glycocalyx: role in body fluid homeostasis and fluid management. Indian J Anaesth. 2019;49:257–62.

    Google Scholar 

  56. Siedlecki A, Irish W, Brennan DC. Delayed graft function in the kidney transplant. Am J Transplant. 2011;11:2279–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsuchihashi SI, Zhai Y, Bo Q, Busuttil RW, Kupiec-Weglinski JW. Heme oxygenase-1 mediated cytoprotection against liver ischemia and reperfusion injury: inhibition of type-1 interferon signaling. Transplantation. 2007;83:1628–34.

    Article  CAS  PubMed  Google Scholar 

  58. Alegre ML, Leemans J, Le Moine A, Florquin S, De Wilde V, Chong A, et al. The multiple facets of toll-like receptors in transplantation biology. Transplantation. 2008;86:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kaczorowski DJ, Nakao A, Mollen KP, Vallabhaneni R, Sugimoto R, Kohmoto J, et al. Toll-like receptor 4 mediates the early inflammatory response after cold ischemia/reperfusion. Transplantation. 2007;84:1279–87.

    Article  CAS  PubMed  Google Scholar 

  60. Krüger B, Krick S, Dhillon N, Lerner SM, Ames S, Bromberg JS, et al. Donor toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc Natl Acad Sci U S A. 2009;106:3390–5.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wu H, Sharland AF, Chadban SJ, Wu H, Chen G, Wyburn KR, et al. TLR4 activation mediates kidney ischemia /reperfusion injury. J Clin Investig. 2007;117:2847–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wolfs TG, Buurman WA, van Schadewijk A, de Vries B, Daemen MA, Hiemstra PS, et al. In vivo expression of toll-like receptor 2 and 4 by renal epithelial cells: IFN-γ and TNF-α mediated up-regulation during inflammation. J Immunol. 2002;168:1286–93.

    Article  CAS  PubMed  Google Scholar 

  63. Leemans JC, Weening JJ, Florquin S, Leemans JC, Stokman G, Claessen N, et al. Renal-associated TLR2 mediates ischemia /reperfusion injury in the kidney. J Clin Invest. 2005;115:2894–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jia L, Chang X, Qian S, Liu C, Lord CC, Ahmed N, et al. Hepatocyte toll-like receptor 4 deficiency protects against alcohol-induced fatty liver disease. Mol Metab. 2018;14:121–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Leow-Dyke S, Allen C, Denes A, Nilsson O, Maysami S, Bowie AG, et al. Neuronal toll-like receptor 4 signaling induces brain endothelial activation and neutrophil transmigration in vitro. J Neuroinflammation. 2012;9:1–11.

    Article  Google Scholar 

  66. Kawai T, Akira S. Toll-like receptor and RIG-1-like receptor signaling. Ann N Y Acad Sci. 2008;1143:1–20.

    Article  CAS  PubMed  Google Scholar 

  67. Hazeki K, Nigorikawa K, Hazeki O. Role of phosphoinositide 3-kinase in innate immunity. Biol Pharm Bull. 2007;30:1617–23.

    Article  CAS  PubMed  Google Scholar 

  68. Rémy S, Blancou P, Tesson L, Tardif V, Brion R, Royer PJ, et al. Carbon monoxide inhibits TLR-induced dendritic cell immunogenicity. J Immunol. 2009;182:1877–84.

    Article  PubMed  Google Scholar 

  69. Kuzmich NN, Sivak KV, Chubarev VN, Porozov YB, Savateeva- Lyubimova TN, Peri F. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines (Basel). 2017;5:1–25.

    Google Scholar 

  70. Wang S, Schmaderer C, Kiss E, Schmidt C, Bonrouhi M, Porubsky S, et al. Recipient toll-like receptors contribute to chronic graft dysfunction by both MyD88- and TRIF-dependent signaling. Dis Model Mech. 2010;3:92–103.

    Article  CAS  PubMed  Google Scholar 

  71. Hornef MW, Normark BH, Vandewalle A, Normark S. Intracellular recognition of lipopolysaccharide by toll-like receptor 4 in intestinal epithelial cells. J Exp Med. 2003;198:1225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nakahira K, Hong PK, Xue HG, Nakao A, Wang X, Murase N, et al. Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med. 2006;203:2377–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Riquelme SA, Bueno SM, Kalergis AM. Carbon monoxide down-modulates toll-like receptor 4/MD2 expression on innate immune cells and reduces endoto**c shock susceptibility. Immunology. 2015;144:321–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Powers KA, Szászi K, Khadaroo RG, Tawadros PS, Marshall JC, Kapus A, et al. Oxidative stress generated by hemorrhagic shock recruits toll-like receptor 4 to the plasma membrane in macrophages. J Cell Biol. 2006;174:1951–61.

    Article  Google Scholar 

  75. Matsuzawa A, Saegusa K, Noguchi T, Sadamitsu C, Nishitoh H, Nagai S, et al. ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat Immunol. 2005;6:587–92.

    Article  CAS  PubMed  Google Scholar 

  76. Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS. Cutting edge: direct interaction of TLR4 with NAD(P)H O**dase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-κB. J Immunol. 2004;173:3589–93.

    Article  CAS  PubMed  Google Scholar 

  77. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 2009;458:1191–5.

    Article  CAS  PubMed  Google Scholar 

  78. Yang H, Wang H, Ju Z, Ragab AA, Lundbäck P, Long W, et al. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling. J Exp Med. 2015;212:5–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Visintin A, Mazzoni A, Spitzer JA, Segal DM. Secreted MD-2 is a large polymeric protein that efficiently confers lipopolysaccharide sensitivity to toll-like receptor 4. Proc Natl Acad Sci U S A. 2001;98:12156–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Peng Y, Gong JP, Liu CA, Li XH, Gan L, Li SB. EXpression of toll-like receptor 4 and MD-2 and protein in Kupffer cells after ischemia-reperfusion in rat liver graft. World J Gastroenterol. 2004;10:2890–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Eckle T, Hartmann K, Bonney S, Reithel S, Walker LA, Lowes BD, et al. Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch critical for myocardial adaptation to ischemia. Nat Med. 2012;18:774–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hochhauser E, Pappo O, Ribakovsky E, Ravid A, Kurtzwald E, Cheporko Y, et al. Recombinant human erythropoietin attenuates hepatic injury induced by ischemia/reperfusion in an isolated mouse liver model. Apoptosis. 2008;13:77–86.

    Article  CAS  PubMed  Google Scholar 

  83. Caetano AMM, Vianna Filho PTG, Castiglia YMM, Golim MA, De Souza AVG, Raquel De Carvalho L, et al. Erythropoietin attenuates apoptosis after ischemia-reperfusion-induced renal injury in transiently hyperglycemic Wister rats. Transplant Proc. 2011;43:3618–21.

    Article  CAS  PubMed  Google Scholar 

  84. de Souza ACPC, Volpini RA, Shimizu MH, Sanches TR, Camara NOS, Semedo P, et al. Erythropoietin prevents sepsis-related acute kidney injury in rats by inhibiting NF-κB and upregulating endothelial nitric oxide synthase. Am J Physiol Renal Physiol. 2012;302:1045–54.

    Article  Google Scholar 

  85. Rodrigues CE, Sanches TR, Volpini RA, Shimizu MHM, Kuriki PS, Camara NOS, et al. Effects of continuous erythropoietin receptor activator in sepsis- induced acute kidney injury and multi-organ dysfunction. PLoS One. 2012;7:1–10.

    Article  Google Scholar 

  86. Ren D, Tu HC, Kim H, Wang GX, Bean GR, Takeuchi O, et al. BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science. 1979;2010(330):1390–3.

    Google Scholar 

  87. Queiroga CSF, Almeida AS, Vieira HLA. Carbon monoxide targeting mitochondria. Biochem Res Int. 2012;2012:749845.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zhao S, Lin Q, Li H, He Y, Fang X, Chen F, et al. Carbon monoxide releasing molecule-2 attenuated ischemia/reperfusion- induced apoptosis in cardiomyocytes via a mitochondrial pathway. Mol Med Rep. 2014;9:754–62.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang X, Shan P, Alam J, Davis RJ, Flavell RA, Lee PJ. Carbon monoxide modulates Fas/Fas ligand, caspases, and Bcl-2 family proteins via the p38α mitogen-activated protein kinase pathway during ischemia-reperfusion lung injury. J Biol Chem. 2003;278:22061–70.

    Article  CAS  PubMed  Google Scholar 

  90. Niture SK, Jaiswal AK. Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J Biol Chem. 2012;287:9873–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Evankovich J, Cho SW, Zhang R, Cardinal J, Dhupar R, Zhang L, et al. High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J Biol Chem. 2010;285:39888–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A. HMGB1: endogenous danger signaling. Mol Med. 2008;14:476–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rabadi MM, Ghaly T, Goligorksy MS, Ratliff BB. HMGB1 in renal ischemic injury. Am J Physiol Renal Physiol. 2012;303:873–85.

    Article  Google Scholar 

  94. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5.

    Article  CAS  PubMed  Google Scholar 

  95. Jia Y, Wang L, Zhao GY, Wang ZQ, Chen S, Chen G. Carbon monoxide inhibits the nuclear-cytoplasmic translocation of HMGB1 in an in vitro oxidative stress injury model of mouse renal tubular epithelial cells. J Huazhong Univ Sci Technolog Med Sci. 2016;36:791–5.

    Article  CAS  PubMed  Google Scholar 

  96. Chiquet-Ehrismann R, Chiquet M. Tenascins: regulation and putative functions during pathological stress. J Pathol. 2003;200:488–99.

    Article  CAS  PubMed  Google Scholar 

  97. Midwood KS, Hussenet T, Langlois B, Orend G. Advances in tenascin-C biology. Cell Mol Life Sci. 2011;68:3175–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Goh FG, Piccinini AM, Krausgruber T, Udalova IA, Midwood KS. Transcriptional regulation of the endogenous danger signal tenascin-C: a novel autocrine loop in inflammation. J Immunol. 2010;184:2655–62.

    Article  CAS  PubMed  Google Scholar 

  99. Midwood KS, Orend G. The role of tenascin-C in tissue injury and tumorigenesis. J Cell Commun Signal. 2009;3:287–310.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Uddin MJ, Li CS, Joe Y, Chen Y, Zhang Q, Ryter SW, et al. Carbon monoxide inhibits Tenascin-C mediated inflammation via IL-10 expression in a septic mouse model. Mediators Inflamm. 2015;2015:613249.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hyndman KA, Kasztan M, Mendoza LD, Monteiro-Pai S. Dynamic changes in histone deacetylases following kidney ischemia-reperfusion injury are critical for promoting proximal tubule proliferation. Am J Physiol Renal Physiol. 2019;316:F875–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rossi M, Thierry A, Delbauve S, Preyat N, Soares MP, Roumeguère T, et al. Specific expression of heme oXygenase-1 by myeloid cells modulates renal ischemiareperfusion injury. Sci Rep. 2017;7:197.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Schumacher A, Zenclussen AC. Effects of heme oxygenase-1 on innate and adaptive immune responses promoting pregnancy success and allograft tolerance. Front Pharmacol. 2015;5:288.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Riquelme SA, Pogu J, Anegon I, Bueno SM, Kalergis AM. Carbon monoxide impairs mitochondria-dependent endosomal maturation and antigen presentation in dendritic cells. Eur J Immunol. 2015;45:3269–88.

    Article  CAS  PubMed  Google Scholar 

  105. Iacono LL, Boczkowski J, Zini R, Salouage I, Berdeaux A, Motterlini R, et al. A carbon monoxide-releasing molecule (CORM-3) uncouples mitochondrial respiration and modulates the production of reactive oxygen species. Free Radic Biol Med. 2011;50:1556–64. https://doi.org/10.1016/j.freeradbiomed.2011.02.033.

    Article  CAS  PubMed  Google Scholar 

  106. Kantengwa S, Jornot L, Devenoges C, Nicod LP. Superoxide anions induce the maturation of human dendritic cells. Am J Respir Crit Care Med. 2003;167:431–7.

    Article  PubMed  Google Scholar 

  107. Long R, Salouage I, BerdeauX A, Motterlini R, Morin D. CORM-3, a water soluble CO-releasing molecule, uncouples mitochondrial respiration via interaction with the phosphate carrier. Biochim Biophys Acta Bioenerg. 2014;1837:201–9. https://doi.org/10.1016/j.bbabio.2013.10.002.

    Article  CAS  Google Scholar 

  108. Lu TX, Hartner J, Lim E, Fabry V, Mingler MK, Manuscript A, et al. The dendritic cell lineage. Change. 2009;41:15–25.

    Google Scholar 

  109. Park DJ, Agarwal A, George JF. Heme oxygenase-1 expression in murine dendritic cell subpopulations: effect on CD8 dendritic cell differentiation in vivo. Am J Pathol. 2010;176:2831–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Thurman JM, Lucia MS, Ljubanovic D, Holers VM. Acute tubular necrosis is characterized by activation of the alternative pathway of complement. Kidney Int. 2005;67:524–30.

    Article  CAS  PubMed  Google Scholar 

  111. Lublin DM, Atkinsont JP. Decay-accelerating factor: biochemistry, molecular biology, and function. Annu Rev Immunol. 1989;7:35–58. www.annualreviews.org.

    Article  CAS  PubMed  Google Scholar 

  112. Kinderlerer AR, Pombo Gregoire I, Hamdulay SS, Ali F, Steinberg R, Silva G, et al. Heme oxygenase-1 expression enhances vascular endothelial resistance to complement-mediated injury through induction of decay-accelerating factor: a role for increased bilirubin and ferritin. Blood. 2009;113:1598–607.

    Article  CAS  PubMed  Google Scholar 

  113. Abdelbaset-Ismail A, Borkowska-Rzeszotek S, Kubis E, Bujko K, Brzezniakiewicz-Janus K, Bolkun L, et al. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1. Leukemia. 2017;31:446–58.

    Article  CAS  PubMed  Google Scholar 

  114. Pal M, Bao W, Wang R, Liu Y, An X, Mitchell WB, et al. Hemolysis inhibits humoral B-cell responses and modulates alloimmunization risk in patients with sickle cell disease. Blood. 2021;137:269–80. http://ashpublications.org/blood/article-pdf/137/2/269/1797418/bloodbld2020008511.pdf.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cepinskas G, Savickiene J, Ionescu CV, Kvietys PR. PMN transendothelial migration decreases nuclear NFκB in IL-1β-activated endothelial cells: role of PECAM-1. J Cell Biol. 2003;161:641–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu SF, Malik AB. NF-κB activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol. 2006;290:622–45.

    Article  Google Scholar 

  117. Katada K, Bihari A, Mizuguchi S, Yoshida N, Yoshikawa T, Fraser DD, et al. Carbon monoxide liberated from co-releasing molecule (CORM-2) attenuates ischemia/reperfusion (I/R)-induced inflammation in the small intestine. Inflammation. 2010;33:92–100.

    Article  CAS  PubMed  Google Scholar 

  118. Cepinskas G, Katada K, Bihari A, Potter RF. Carbon monoxide liberated from carbon monoxide-releasing molecule CORM-2 attenuates inflammation in the liver of septic mice. Am J Physiol Gastrointest Liver Physiol. 2007;294:G184–91.

    Article  PubMed  Google Scholar 

  119. Liu Y, Wang X, Xu X, Qin W, Sun B. Protective effects of carbon monoxide releasing molecule–2 on pancreatic function in septic mice. Mol Med Rep. 2019;49:3449–58.

    Google Scholar 

  120. Lee CW, Wu CH, Chiang YC, Chen YL, Chang KT, Chuang CC, et al. Carbon monoxide releasing molecule-2 attenuates Pseudomonas aeruginosa-induced ROS-dependent ICAM-1 expression in human pulmonary alveolar epithelial cells. Redox Biol. 2018;18:93–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kaczara P, Proniewski B, Lovejoy C, Kus K, Motterlini R, Abramov AY, et al. CORM-401 induces calcium signalling, NO increase and activation of pentose phosphate pathway in endothelial cells. FEBS J. 2018;285:1346–58.

    Article  CAS  PubMed  Google Scholar 

  122. Yang PM, Huang YT, Zhang YQ, Hsieh CW, Wung BS. Carbon monoxide releasing molecule induces endothelial nitric oxide synthase activation through a calcium and phosphatidylinositol 3-kinase/Akt mechanism. Vascul Pharmacol. 2016;87:209–18. https://doi.org/10.1016/j.vph.2016.09.010.

    Article  CAS  PubMed  Google Scholar 

  123. Zhao W, Wang R. Carbon monoxide-induced vasorelaxation and the underlying mechanisms. In: Carbon monoxide and cardiovascular functions; 2001. p. 23–44.

    Google Scholar 

  124. Jaggar JH, Leffler CW, Cheranov SY, Tcheranova D, Shuyu E, Cheng X. Carbon monoxide dilates cerebral arterioles by enhancing the coupling of Ca2 sparks to Ca2+-activated K+ channels. Circ Res. 2002;91:610–7.

    Article  CAS  PubMed  Google Scholar 

  125. Ren YL, D’Ambrosio MA, Wang H, Falck JR, Peterson EL, Garvin JL, OAC. Mechanisms of carbon monoxide attenuation of Tubuloglomerular feedback (TGF). Hypertension. 2012;59:1139–44.

    Article  CAS  PubMed  Google Scholar 

  126. Lin HH, Lai SC, Chau LY. Heme oxygenase-1/carbon monoxide induces vascular endothelial growth factor expression via p38 kinase-dependent activation of Sp1. J Biol Chem. 2010;286:3829–38.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Choi YK, Kim CK, Lee H, Jeoung D, Ha KS, Kwon YG, et al. Carbon monoxide promotes VEGF expression by increasing HIF-1α protein level via two distinct mechanisms, translational activation and stabilization of HIF-1α protein. J Biol Chem. 2010;285:32116–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lakkisto P, Kyto V, Forsten H, Siren JM, Segersvard H, Voipio-Pulkki LM, et al. Heme oxygenase-1 and carbon monoxide promote neovascularization after myocardial infarction by modulating the expression of HIF-1α, SDF-1α and VEGF-B. Eur J Pharmacol. 2010;635:156–64.

    Article  CAS  PubMed  Google Scholar 

  129. Ahmad S, Hewett PW, Fujisawa T, Sissaoui S, Cai M, Gueron G, et al. Carbon monoxide inhibits sprouting angiogenesis and vascular endothelial growth factor receptor-2 phosphorylation. Thromb Haemost. 2015;113:329–37.

    Article  PubMed  Google Scholar 

  130. El-Mousleh T, Casalis PA, Wollenberg I, Zenclussen ML, Volk HD, Langwisch S, et al. Exploring the potential of low doses carbon monoxide as therapy in pregnancy complications. Med Gas Res. 2012;2:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mino T, Murakawa Y, Fukao A, Vandenbon A, Wessels HH, Ori D, et al. Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell. 2015;161:1058–73.

    Article  CAS  PubMed  Google Scholar 

  132. Mao R, Yang R, Chen X, Harhaj EW, Wang X, Fan Y. Regnase-1, a rapid response ribonuclease regulating inflammation and stress responses. Cell Mol Immunol. 2017;14:412–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Garg AV, Amatya N, Chen K, Cruz JA, Grover P, Whibley N, et al. MCPIP1 endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation. Immunity. 2015;43:475–87. https://doi.org/10.1016/j.immuni.2015.07.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Niu J, ** Z, Kim H, Kolattukudy PE. MCP-1-induced protein attenuates post- infarct cardiac remodeling and dysfunction through mitigating NF-κB activation and suppressing inflammation-associated microRNA expression. Basic Res Cardiol. 2015;110:26.

    Article  PubMed  Google Scholar 

  135. Suzuki HI, Arase M, Matsuyama H, Choi YL, Ueno T, Mano H, et al. MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell. 2011;44:424–36.

    Article  CAS  PubMed  Google Scholar 

  136. Liang J, Saad Y, Lei T, Wang J, Qi D, Yang Q, et al. MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-κB signaling. J Exp Med. 2010;207:2959–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dugbartey GJ, Alornyo KK, Luke PPW, Sener A. Application of carbon monoxide in kidney and heart transplantation: a novel pharmacological strategy for a broader use of suboptimal renal and cardiac grafts. Pharmacol Res. 2021;173:105883.

    Article  CAS  PubMed  Google Scholar 

  138. Dugbartey GJ. Carbon monoxide as an emerging pharmacological tool to improve lung and liver transplantation protocols. Biochem Pharmacol. 2021;193:114752.

    Article  CAS  PubMed  Google Scholar 

  139. Dugbartey GJ. Emerging role of carbon monoxide in intestinal transplantation. Biomed Pharmacother. 2021;143:112237.

    Article  CAS  PubMed  Google Scholar 

  140. Dugbartey GJ. Carbon monoxide in pancreatic islet transplantation: a new therapeutic alternative to patients with severe type 1 diabetes mellitus. Front Pharmacol. 2021;12:750816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Neto JS, Nakao A, Kimizuka K, Romanosky AJ, Stolz DB, Uchiyama T, Nalesnik MA, Otterbein LE, Murase N. Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide. Am J Physiol Renal Physiol. 2004;287(5):F979–89.

    Article  PubMed  Google Scholar 

  142. Faleo G, Neto JS, Kohmoto J, Tomiyama K, Shimizu H, Takahashi T, et al. Carbon monoxide ameliorates renal cold ischemia-reperfusion injury with an upregulation of vascular endothelial growth factor by activation of hypoxia-inducible factor. Transplantation. 2008;85(12):1833–40.

    Article  CAS  PubMed  Google Scholar 

  143. Ozaki KS, Yoshida J, Ueki S, Pettigrew GL, Ghonem N, Sico RM, et al. Carbon monoxide inhibits apoptosis during cold storage and protects kidney grafts donated after cardiac death. Transpl Int. 2012;25(1):107–17.

    Article  CAS  PubMed  Google Scholar 

  144. Nakao A, Kimizuka K, Stolz DB, Neto JS, Kaizu T, Choi AM, et al. Protective effect of carbon monoxide inhalation for cold-preserved small intestinal grafts. Surgery. 2003;134(2):285–92.

    Article  PubMed  Google Scholar 

  145. Kohmoto J, Nakao A, Kaizu T, Tsung A, Ikeda A, Tomiyama K, et al. Low-dose carbon monoxide inhalation prevents ischemia/reperfusion injury of transplanted rat lung grafts. Surgery. 2006;140(2):179–85.

    Article  PubMed  Google Scholar 

  146. Nakao A, Toyokawa H, Abe M, Kiyomoto T, Nakahira K, Choi AM, et al. Heart allograft protection with low-dose carbon monoxide inhalation: effects on inflammatory mediators and alloreactive T-cell responses. Transplantation. 2006;81(2):220–30.

    Article  PubMed  Google Scholar 

  147. Musameh MD, Green CJ, Mann BE, Fuller BJ, Motterlini R. Improved myocardial function after cold storage with preservation solution supplemented with a carbon monoxide-releasing molecule (CORM-3). J Heart Lung Transplant. 2007;26(11):1192–8.

    Article  PubMed  Google Scholar 

  148. Ikeda A, Ueki S, Nakao A, Tomiyama K, Ross MA, Stolz DB, Geller DA, Murase N. Liver graft exposure to carbon monoxide during cold storage protects sinusoidal endothelial cells and ameliorates reperfusion injury in rats. Liver Transpl. 2009;15(11):1458–68.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Pizarro MD, Rodriguez JV, Mamprin ME, Fuller BJ, Mann BE, Motterlini R, Guibert EE. Protective effects of a carbon monoxide-releasing molecule (CORM-3) during hepatic cold preservation. Cryobiology. 2009;58(3):248–55.

    Article  CAS  PubMed  Google Scholar 

  150. Ohtsuka T, Kaseda K, Shigenobu T, Hato T, Kamiyama I, Goto T, Kohno M, Shimoda M. Carbon monoxide-releasing molecule attenuates allograft airway rejection. Transpl Int. 2014;27(7):741–7.

    Article  CAS  PubMed  Google Scholar 

  151. Fujisaki N, Kohama K, Nishimura T, Yamashita H, Ishikawa M, Kanematsu A, et al. Donor pretreatment with carbon monoxide prevents ischemia/reperfusion injury following heart transplantation in rats. Med Gas Res. 2016;6(3):122–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Steiger C, Lühmann T, Meinel L. Oral drug delivery of therapeutic gases-carbon monoxide release for gastrointestinal diseases. J Control Release. 2014;189:46–53.

    Article  CAS  PubMed  Google Scholar 

  153. Sudan K, Vijayan V, Madyaningrana K, Gueler F, Igarashi K, Foresti R, et al. TLR4 activation alters labile heme levels to regulate BACH1 and heme oxygenase- 1 expression in macrophages. Free Radic Biol Med. 2019;137:131–42.

    Article  CAS  PubMed  Google Scholar 

  154. Das D, Tarafdar PK, Chakrabarti A. Structure-activity relationship of heme and its analogues in membrane damage and inhibition of fusion. FEBS Lett. 2018;592:2458–65.

    Article  CAS  PubMed  Google Scholar 

  155. Janciauskiene S, Vijayan V, Immenschuh S. TLR4 signaling by heme and the role of heme-binding blood proteins. Front Immunol. 2020;11:1964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kapturczak MH, Wasserfall C, Brusko T, Campbell-Thompson M, Ellis TM, Atkinson MA, et al. Heme oxygenase-1 modulates early inflammatory responses: evidence from the heme oxygenase-1-deficient mouse. Am J Pathol. 2004;165:1045–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Uehata T, Iwasaki H, Vandenbon A, Matsushita K, Hernandez-Cuellar E, Kuniyoshi K, et al. XMalt1-induced cleavage of regnase-1 in CD4 helper T cells regulates immune activation. Cell. 2013;153:1036. https://doi.org/10.1016/j.cell.2013.04.034.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George J. Dugbartey .

Ethics declarations

None.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kwong, A.M., Luke, P.P.W., Dugbartey, G.J., Bhattacharjee, R.N. (2024). Carbon Monoxide Against Ischemia-Reperfusion Injury: A Tour into the Immune System. In: Gasotransmitters in Organ Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-031-48067-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48067-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48066-9

  • Online ISBN: 978-3-031-48067-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation