Abstract

Synthetic polymers have long been a cornerstone in the fields of tissue engineering, surgical interventions, and pharmacological applications, offering unparalleled versatility and innovation in medical treatments. Their appeal lies in the ability to customize mechanical properties and degradation rates, alongside the capacity to introduce functional groups tailored to specific medical needs. Moreover, their biodegradable and bioresorbable nature makes them particularly suited for integration and eventual absorption within biological systems. Among these polymers, poly(glycolic acid) (PGA), poly(lactic acid) (PLA), and poly(caprolactone) (PCL) are prominent for their widespread use as fundamental components in the manufacturing of sutures and suture anchors. These materials have revolutionized surgical practices, facilitating not only traditional surgical procedures but also pioneering minimally invasive techniques for aesthetic rejuvenation. This chapter discusses the diverse types and materials of threads utilized in lifting procedures, underscoring the technological advancements and material sciences that have propelled the use of polymer sutures to the forefront of surgical innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martins JA, et al. Polydioxanone implants: a systematic review on safety and performance in patients. J Biomater Appl. 2020;34(7):902–16.

    Article  PubMed  Google Scholar 

  2. Kim SI, et al. Preparation of enhanced hydrophobic poly(l-lactide-co-ε-caprolactone) films surface and its blood compatibility. Appl Surf Sci. 2013;276:586–91.

    Article  CAS  Google Scholar 

  3. Jeong SI, et al. In vivo biocompatibility and degradation behavior of elastic poly(l-lactide-co-ε-caprolactone) scaffolds. Biomaterials. 2004;25(28):5939–46.

    Article  CAS  PubMed  Google Scholar 

  4. Choi Y, et al. Biomechanical properties and biocompatibility of a non-absorbable elastic thread. J Funct Biomater. 2019;10(4):51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pihlajamaki H, et al. Absorbable pins of self-reinforced poly-l-lactic acid for fixation of fractures and osteotomies. J Bone Jt Surg Br. 1992;74(6):853–7.

    Article  CAS  Google Scholar 

  6. Inui A, et al. Potency of double-layered poly-l-lactic acid scaffold in tissue engineering of tendon tissue. Int Orthop. 2010;34(8):1327–32.

    Article  PubMed  Google Scholar 

  7. Lee DW, et al. Comparison of poly-l-lactic acid and poly-l-lactic acid/hydroxyapatite bioabsorbable screws for tibial fixation in ACL reconstruction: clinical and magnetic resonance imaging results. Clin Orthop Surg. 2017;9(3):270–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu S, et al. Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Compos Part B Eng. 2020;199:108238.

    Article  CAS  Google Scholar 

  9. Da Silva D, et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J. 2018;340:9–14.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shebi A, Lisa S. Pectin mediated synthesis of nano hydroxyapatite-decorated poly(lactic acid) honeycomb membranes for tissue engineering. Carbohydr Polym. 2018;201:39–47.

    Article  CAS  PubMed  Google Scholar 

  11. Al Tawil E, et al. Microarchitecture of poly(lactic acid) membranes with an interconnected network of macropores and micropores influences cell behavior. Eur Polym J. 2018;105:370–88.

    Article  Google Scholar 

  12. Wan P, et al. Fabrication and evaluation of bioresorbable PLLA/magnesium and PLLA/magnesium fluoride hybrid composites for orthopedic implants. Compos Sci Technol. 2014;98:36–43.

    Article  CAS  Google Scholar 

  13. Cui H. Aesthetic thread rejuvenation in Asians. In: Sulamanidze, editor. Several viewpoints on thread rejuvenation. Peking University Medical Press; 2019.

    Google Scholar 

  14. Chu CC. 10—Types and properties of surgical sutures. In: King MW, Gupta BS, Guidoin R, editors. Biotextiles as medical implants. Woodhead Publishing; 2013. p. 231–73.

    Chapter  Google Scholar 

  15. Ruff G. Technique and uses for absorbable barbed sutures. Aesthet Surg J. 2006;26(5):620–8.

    Article  CAS  PubMed  Google Scholar 

  16. Paul MD. Barbed sutures for aesthetic facial plastic surgery: indications and techniques. Clin Plast Surg. 2008;35(3):451–61.

    Article  PubMed  Google Scholar 

  17. Lee CG, et al. Histological evaluation of bioresorbable threads in rats. Korean J Clin Lab Sci. 2018;50(3):217–24.

    Article  Google Scholar 

  18. Suárez-Vega DV, et al. In vitro degradation of polydioxanone lifting threads in hyaluronic acid. J Cutan Aesthet Surg. 2019;12(2):145–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Damadzadeh B, et al. Effect of ceramic filler content on the mechanical and thermal behaviour of poly-l-lactic acid and poly-l-lactic-co-glycolic acid composites for medical applications. J Mater Sci Mater Med. 2010;21(9):2523–31.

    Article  CAS  PubMed  Google Scholar 

  20. Vasenius J, et al. Absorbable self-reinforced polyglycolide (SR-PGA) screws for the fixation of fractures and osteotomies: strength and strength retention in vitro and in vivo. Clin Mater. 1994;17(3):119–23.

    Article  CAS  PubMed  Google Scholar 

  21. Vert M, et al. Something new in the field of PLA/GA bioresorbable polymers? J Control Release. 1998;53(1–3):85–92.

    Article  CAS  PubMed  Google Scholar 

  22. Kulkarni R, et al. Polylactic acid for surgical implants. Washington, DC: Walter Reed Army Medical Center; 1966.

    Book  Google Scholar 

  23. Hollinger JO. Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA). J Biomed Mater Res. 1983;17(1):71–82.

    Article  CAS  PubMed  Google Scholar 

  24. Mäkelä P, et al. Strength retention properties of self-reinforced poly-l-lactide (SR-PLLA) sutures compared with polyglyconate (MaxonR) and polydioxanone (PDS) sutures. An in vitro study. Biomaterials. 2002;23(12):2587–92.

    Article  PubMed  Google Scholar 

  25. Bohnert K, et al. Randomized, controlled, multicentered, double-blind investigation of injectable poly-l-lactic acid for improving skin quality. Dermatol Surg. 2019;45(5):718–24.

    Article  CAS  PubMed  Google Scholar 

  26. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–97.

    Article  CAS  PubMed  Google Scholar 

  27. Budak K, Sogut O, Aydemir Sezer U. A review on synthesis and biomedical applications of polyglycolic acid. J Polym Res. 2020;27(8):208.

    Article  CAS  Google Scholar 

  28. Christen M-O, Vercesi F. Polycaprolactone: how a well-known and futuristic polymer has become an innovative collagen-stimulator in esthetics. Clin Cosmet Investig Dermatol. 2020;13:31–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wong V. The science of absorbable poly(l-lactide-co-ε-caprolactone) threads for soft tissue repositioning of the face: an evidence-based evaluation of their physical properties and clinical application. Clin Cosmet Investig Dermatol. 2021;14:45–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jelonek K, et al. Novel poly(l-lactide-co-ε-caprolactone) matrices obtained with the use of Zr[Acac]4 as nontoxic initiator for long-term release of immunosuppressive drugs. Biomed Res Int. 2013;2013:607351.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ramot Y, et al. Long-term local and systemic safety of poly(l-lactide-co-ε-caprolactone) after subcutaneous and intra-articular implantation in rats. Toxicol Pathol. 2015;43(8):1127–40.

    Article  CAS  PubMed  Google Scholar 

  32. Fukaya M. Two mechanisms of rejuvenation using thread lifting. Plast Reconstr Surg Glob Open. 2018;6(12):e2068.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Della Torre F, Della Torre E, Di Berardino F. Side effects from polydioxanone. Eur Ann Allergy Clin Immunol. 2005;37(2):47–8.

    CAS  PubMed  Google Scholar 

  34. Guardiani E, Davison SP. Angioedema after treatment with injectable poly-l-lactic acid (sculptra). Plast Reconstr Surg. 2012;129(1):187e–9e.

    Article  CAS  PubMed  Google Scholar 

  35. Gan Z, et al. Enzymatic degradation of poly(ε-caprolactone)/poly(dl-lactide) blends in phosphate buffer solution. Polymer. 1999;40(10):2859–62.

    Article  CAS  Google Scholar 

  36. Nakayama A, et al. Hydrolytic degradation of poly(l-lactide-co-ε-caprolactone). In: Advanced biomaterials in biomedical engineering and drug delivery systems. Tokyo: Springer Japan; 1996.

    Google Scholar 

  37. Sabino MA, et al. Study of the hydrolytic degradation of polydioxanone PPDX. Polym Degrad Stab. 2000;69(2):209–16.

    Article  CAS  Google Scholar 

  38. Loo JSC, Ooi CP, Boey FYC. Degradation of poly(lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA) by electron beam radiation. Biomaterials. 2005;26(12):1359–67.

    Article  CAS  PubMed  Google Scholar 

  39. Azimi B, et al. Poly(lactide-co-glycolide) fiber: an overview. J Eng Fibers Fabrics. 2014;9(1):155892501400900107.

    Google Scholar 

  40. Al-Mubarak L, Al-Haddab M. Cutaneous wound closure materials: an overview and update. J Cutan Aesthet Surg. 2013;6(4):178–88.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pillai CKS, Sharma CP. Absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance. J Biomater Appl. 2010;25(4):291–366.

    Article  CAS  PubMed  Google Scholar 

  42. Luck RP, et al. Cosmetic outcomes of absorbable versus nonabsorbable sutures in pediatric facial lacerations. Pediatr Emerg Care. 2008;24(3):137–42.

    Article  PubMed  Google Scholar 

  43. Moon H-J, Chang D, Lee W. Short-term treatment outcomes of facial rejuvenation using the mint lift fine. Plast Reconstr Surg Glob Open. 2020;8(4):e2775.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gavrila DE, et al. Advanced polypropylene and composites with polypropylene with applications in modern medicine. In: Composite materials. IntechOpen; 2020.

    Google Scholar 

  45. Orringer M, et al. Polypropylene suture in esophageal and gastrointestinal operations. Surg Gynecol Obstet. 1977;144(1):67–70.

    CAS  PubMed  Google Scholar 

  46. Razumov M, et al. Polypropylene suture material with anti-inflammatory action. Iran Polym J. 2018;27(9):629–34.

    Article  CAS  Google Scholar 

  47. Kim B, Oh S, Jung W. Type of absorbable thread products. In: The art and science of thread lifting. Springer; 2019. p. 73–7.

    Chapter  Google Scholar 

  48. Wu WT. Barbed sutures in facial rejuvenation. Aesthet Surg J. 2004;24(6):582–7.

    Article  PubMed  Google Scholar 

  49. Kalra R. Use of barbed threads in facial rejuvenation. Indian J Plast Surg. 2008;41(Suppl):S93–S100.

    PubMed  PubMed Central  Google Scholar 

  50. Fundaro SP, et al. Expert consensus on soft-tissue repositioning using absorbable barbed suspension double-needle threads in Asian and Caucasian patients. J Cutan Aesthet Surg. 2021;14(1):1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cui H. Aesthethic thread rejuvenation in Asians. In: Ruff GL, editor. Several viewpoints on thread rejuvenation. Peking University Medical Press; 2019.

    Google Scholar 

  52. Cobo R. Use of polydioxanone threads as an alternative in nonsurgical procedures in facial rejuvenation. Facial Plast Surg. 2020;36(04):447–52.

    Article  CAS  PubMed  Google Scholar 

  53. Fukaya M. Long-term effect of the insoluble thread-lifting technique. Clin Cosmet Investig Dermatol. 2017;10:483–91.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Alcolea JM, Trelles M. Biostimulation threads: scientific evidence and systematic review of their efficacy and safety. Union of Aesthetic Medicine-UIME; 2016. p. 26.

    Google Scholar 

  55. Amuso D, et al. Histological evaluation of a biorevitalisation treatment with PDO wires. Union of Aesthetic Medicine-UIME; 2015. p. 111.

    Google Scholar 

  56. Villa MT, et al. Barbed sutures: a review of the literature. Plast Reconstr Surg. 2008;121(3):102e–8e.

    Article  PubMed  Google Scholar 

  57. Bisaccia E, et al. Midface lift using a minimally invasive technique and a novel absorbable suture. Dermatol Surg. 2009;35(7):1073–8.

    Article  CAS  PubMed  Google Scholar 

  58. Matarasso A, Rosen AD. New and emerging uses of barbed suture technology in plastic surgery. Aesthet Surg J. 2013;33(3_Supplement):90S–5S.

    Article  Google Scholar 

  59. Beer K. Delayed complications from thread-lifting: report of a case, discussion of treatment options, and consideration of implications for future technology. Dermatol Surg. 2008;34(8):1120–3.

    CAS  PubMed  Google Scholar 

  60. Kim J, et al. Investigation on the cutaneous change induced by face-lifting monodirectional barbed polydioxanone thread. Dermatol Surg. 2017;43(1):74–80.

    Article  CAS  PubMed  Google Scholar 

  61. DeLorenzi CL. Barbed sutures: rationale and technique. Aesthet Surg J. 2006;26(2):223–9.

    Article  CAS  Google Scholar 

  62. Song JK, et al. Favorable crisscrossing pattern with polydioxanone: barbed thread lifting in constructing fibrous architecture. Aesthet Surg J. 2021;41(7):NP875–86.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souphiyeh Samizadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samizadeh, S., Samizadeh, S. (2024). Thread Types and Materials. In: Samizadeh, S. (eds) Thread Lifting Techniques for Facial Rejuvenation and Recontouring. Springer, Cham. https://doi.org/10.1007/978-3-031-47954-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47954-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47953-3

  • Online ISBN: 978-3-031-47954-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation