Abstract

Object detection is used to locate the occurrence of every object and analyze their important features. Detection over the land is far easier, and the results are more accurate. Still, when it comes to underwater object detection, it becomes more challenging due to the lack of visibility under the water. For better detection of underwater sea cucumbers, sea urchins, and scallops based on You Look Only Once version 7 (YOLOv7), it has been stated that among all of the real-time object detectors, this one shows 66.8% AP and surpasses all other detectors regarding speed. The detection outcomes exhibit a noteworthy improvement in the object detection and benefits in the further upcoming research works related to the deep study of underwater environment and exploration of unexplored, with the idea of the accuracy of YOLOv7 and comparison with other detection methods like YOLOv7-X, YOLOv7-E6, and YOLOv7-D6, which are generated by increasing the scaling of width and length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Juan, L.I., Chen, X., Jiang, L., **ao, Y.: Detection and Analysis of Behavior Trajectory for Sea Cucumbers Based on Deep Learning. IEEE (2019)

    Google Scholar 

  2. Basuel, R., Fajardo, A., Perez, N.: Identification of Dried Sea Cucumber Species Using Color and Texture Extraction, pp. 148–153 (2022). https://doi.org/10.1109/ICITACEE55701.2022.9924102. **a, C., Fu, L., Liu, H.: In situ sea cucumber detection based on deep learning approach

    Book  Google Scholar 

  3. Ma, K., Huang, B., Yin, H.: Underwater Sea Cucumbers Detection Based on Improved SSD, pp. 343–347 (2019). https://doi.org/10.1109/ICPICS47731.2019.8942503

    Book  Google Scholar 

  4. Han, F., et al.: Underwater image processing and object detection based on deep CNN method. J. Sens., 1–20 (2020). https://doi.org/10.1155/2020/6707328

  5. Kaiyan, Z., **ang, L., Weibo, S.: Underwater Object Detection Using Transfer Learning with Deep Learning, pp. 157–160 (2020). https://doi.org/10.1145/3419635.3419678

    Book  Google Scholar 

  6. Yu, Y., Zhao, J., Gong, Q., Huang, C., Zheng, G., Ma, J.: Real-time underwater maritime object detection in side-scan sonar images based on transformer-YOLOv5. Remote Sens. 13, 3555 (2021). https://doi.org/10.3390/rs13183555

    Article  Google Scholar 

  7. Salman, A., Siddiqui, S., Shafait, F., Mian, A., Shortis, M., Khurshid, K., Ulges, A., Schwanecke, U.: Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system. ICES J. Mar. Sci. 77 (2019). https://doi.org/10.1093/icesjms/fsz025

  8. Kim, B., Yu, S.-C.: Imaging sonar based real-time underwater object detection utilizing AdaBoost method. In: 2017 IEEE Underwater Technology (UT), pp. 1–5, Busan, Korea (South) (2017). https://doi.org/10.1109/UT.2017.7890300. Cui, S., Zhou, Y., Wang, Y., Zhai, L: Fish detection using deep learning. Published on 23 Jan 2020

  9. Cui, S., Zhou, Y., Wang, Y., Zhai, L.: Fish detection using deep learning. Appl. Comput. Intell. Soft Comput. 2020, 1–13 (2020). https://doi.org/10.1155/2020/3738108. Chuang, M.-C., Hwang, J.-N.: A feature learning and object recognition framework for underwater fish images

    Article  Google Scholar 

  10. Sun, B., Zhu, D.: Underwater target detection based on Faster R-CNN and adversarial occlusion network. Eng. Appl. Artif. Intell. 100, 104190 (2021)

    Article  Google Scholar 

  11. Chuang, M.-C., Hwang, J.-N., Williams, K.: A feature learning and object recognition framework for underwater fish images. IEEE Trans. Image Process. 25, 1–1 (2016). https://doi.org/10.1109/TIP.2016.2535342

    Article  MathSciNet  Google Scholar 

  12. Samiappan, D., Latha, S., Rama Rao, T., Verma, D., Sriharsha, C.S.A.: Enhancing machine learning aptitude using significant cluster identification for augmented image refining. Int. J. Pattern Recognit. Artif. Intell. 34(09), 2051009 (2020). https://doi.org/10.1142/S021800142051009X

    Article  Google Scholar 

  13. Mathias, A., Narayanamoorthi, R., Dhanalakshmi, S.: Tracking of underwater objects with occlusion awareness using an adaptive DEEP SORT and GMM approach. In: OCEANS 2022 – Chennai, pp. 1–5 (2022). https://doi.org/10.1109/OCEANSChennai45887.2022.9775470

    Chapter  Google Scholar 

  14. Yeoh, P.S.Q., Lai, K.W., Goh, S.L., Hasikin, K., Hum, Y.C., Tee, Y.K., Dhanalakshmi, S.: Emergence of deep learning in knee osteoarthritis diagnosis. Comput. Intell. Neurosci. 2021, 4931437 (2021). https://doi.org/10.1155/2021/4931437. PMID: 34804143; PMCID: PMC8598325

    Article  Google Scholar 

  15. Barui, S., Latha, S., Samiappan, D., Muthu, P.: SVM pixel classification on colour image segmentation. J. Phys. Conf. Ser. 1000(1), 012110 (2018). IOP Publishing

    Article  Google Scholar 

  16. Latha, S., Samiappan, D.: Despeckling of carotid artery ultrasound images with a calculus approach. Curr. Med. Imaging. 15(4), 414–426 (2019)

    Article  Google Scholar 

  17. Mathias, A., Dhanalakshmi, S., Kumar, R., Narayanamoorthi, R.: Underwater object detection based on bi-dimensional empirical mode decomposition and Gaussian Mixture Model approach. Eco. Inform. 66, 101469 (2021). https://doi.org/10.1016/j.ecoinf.2021.101469

    Article  Google Scholar 

  18. Dhanalakshmi, S., Venkatesh, C.: Classification of ultrasound carotid artery images using texture features. Int. Rev. Comput. Softw. (IRECOS). 8(4), 933–940 (2013)

    Google Scholar 

  19. Monika, R., Dhanalakshmi, S., Sreejith, S.: Coefficient random permutation based compressed sensing for medical image compression. In: Advances in Electronics, Communication and Computing, pp. 529–536. Springer, Singapore (2018)

    Chapter  Google Scholar 

  20. Ancuti, C.O., Ancuti, C., De Vleeschouwer, C., Bekaert, P.: Color balance and fusion for underwater image enhancement. IEEE Trans. Image Process. 27(1), 379–393 (2018). https://doi.org/10.1109/TIP.2017.2759252

    Article  MathSciNet  Google Scholar 

  21. Li, C., et al.: An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 29, 4376–4389 (2020). https://doi.org/10.1109/TIP.2019.2955241

    Article  Google Scholar 

  22. Qian, Y., Zheng, H., He, D., Zhang, Z., Zhang, Z.: R-CNN object detection inference with deep learning accelerator. In: 2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops), pp. 297–302, Bei**g, China (2018). https://doi.org/10.1109/ICCChinaW.2018.8674519

  23. Girshick, R.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448, Santiago, Chile (2015). https://doi.org/10.1109/ICCV.2015.169

  24. Hmidani, O., Ismaili Alaoui, E.M.: A comprehensive survey of the R-CNN family for object detection. In: 2022 5th International Conference on Advanced Communication Technologies and Networking (CommNet), pp. 1–6, Marrakech, Morocco (2022). https://doi.org/10.1109/CommNet56067.2022.9993862

  25. Wang, C., Peng, Z.: Design and implementation of an object detection system using faster R-CNN. In: 2019 International Conference on Robots & Intelligent System (ICRIS), pp. 204–206, Haikou, China (2019). https://doi.org/10.1109/ICRIS.2019.00060

  26. Gavrilescu, R., et al.: Faster R-CNN: an approach to real-time object detection. In: 2018 International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania (2018)

    Google Scholar 

  27. Liu, C., Wang, Z., Wang, S., Tang, T., Tao, Y., Yang, C., Li, H., Liu, X., Fan, X.: A new dataset, Poisson GAN and AquaNet for underwater object grabbing. IEEE Trans. Circuits Syst. Video Technol. 32(5), 2831–2844 (2021). https://doi.org/10.48550/ar**v.2003.01446

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samiappan Dhanalakshmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Srivastava, U., Balaji, A., Yogesh, S., Kalyaan, C.K., Narayanamoorthi, R., Dhanalakshmi, S. (2024). Detection of Echinoderms Underwater Using Deep Learning Network. In: Gopi, E.S., Maheswaran, P. (eds) Proceedings of the International Conference on Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication. MDCWC 2023. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-47942-7_32

Download citation

Publish with us

Policies and ethics

Navigation