Reproductive Biology and Novel Cultivar Development of the Eucheumatoid Kappaphycus alvarezii

  • Chapter
  • First Online:
Tropical Phyconomy Coalition Development

Abstract

Kappaphycus species are globally cultivated in tropical waters as a major source of k-carrageenan. Since the early 1970s, Kappaphycus farming, through clonal propagation, has been confined to a few good-quality commercial strains of unknown ploidy and/or life history phase. After five decades of successful cultivation, the productivity of Kappaphycus spp. has continually declined. This has been attributed to low genetic variability, making the >50-year-old cultivars more susceptible to environmental stressors, pests, and diseases. Hence, the establishment of new cultivars with unique genetic makeup and corresponding desirable traits can provide alternative seedstocks from the currently cultivated strains. Cultivar development includes the collection of wild individuals, both vegetative and reproductive materials, for culture collection and biobanking, spore release and cultivation, selection, and breeding. Moreover, the distinction of specific life history phases, sex, and ploidy among the established cultivars can be tested for specific traits, such as vigor and fitness, productivity, and biochemistry. This initiative can avoid repeated crop failure associated with old and fatigued strains and conduct targeted farming of specific cultivars with corresponding known traits. Understanding their ecological tolerance to different abiotic factors can also mitigate risks in seaweed farming in relation to climate change. Continuous cultivar development is necessary for future crop domestication and improvement programs to sustain the livelihoods of thousands of small-scale farmers and the multi-million-dollar seaweed industry.

Author Contributions

MY Roleda: Funding acquisition, Project administration, Supervision, Conceptualization, Methodology, Investigation, Validation, Resources, Writing-Original draft.

LAR Hinaloc: Methodology, Investigation, Data Curation, Validation, Visualization, Writing-Review and Editing.

IT Capacio: Methodology, Investigation, Data Curation, Validation, Visualization, Writing-Review and Editing.

MCB Jao: Methodology, Investigation, Data Curation, Validation, Visualization.

BA Crisostomo: Methodology, Investigation, Data Curation, Validation, Visualization, Writing-Review and Editing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 189.89
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu MH, Pereira R, Sousa-Pinto I, Yarish C (2011) Ecophysiological studies of the non-indigenous species Gracilaria vermiculophylla (Rhodophyta) and its abundance patterns in Ria de Aveiro lagoon, Portugal. Eur J Phycol 46:453–464. https://doi.org/10.1080/09670262.2011.633174

    Article  Google Scholar 

  • Agardh JG (1847) Nya alger från Mexico. Öfversigt af Kongl. Vetenskaps-Adademiens Förhandlingar, Stockholm 4:5–17

    Google Scholar 

  • Ahmad R, Liow P-S, Spencer DF, Jasieniuk M (2008) Molecular evidence for a single genetic clone of invasive Arundo donax in the United States. Aquat Bot 88:113–120. https://doi.org/10.1016/j.aquabot.2007.08.015

    Article  CAS  Google Scholar 

  • Azanza RV, Aliaza TT (1999) In vitro carpospore release and germination in Kappaphycus alvarezii (Doty) Doty from Tawi-Tawi, Philippines. Bot Mar 42:281–284. https://doi.org/10.1515/BOT.1999.031

    Article  CAS  Google Scholar 

  • Azanza-Corrales R (1990) The farmed Eucheuma species in Danajon reef, Philippines: vegetative and reproductive structures. J Appl Phycol 2:57–62. https://doi.org/10.1007/BF02179769

    Article  Google Scholar 

  • Azanza-Corrales R, Mamauag SS, Alfiler E, Orolfo MJ (1992) Reproduction in Eucheuma denticulatum (Burman) Collins and Hervey and Kappaphycus alvarezii (Doty) Doty farmed in Danajon reef, Philippines. Aquaculture 103:29–34. https://doi.org/10.1016/0044-8486(92)90275-P

    Article  Google Scholar 

  • Bessis R (2007) Evolution of the grapevine (Vitis vinifera L.) imprinted by natural and human factors. Canadian J Bot 85:679–690. https://doi.org/10.1139/b07-060

    Article  CAS  Google Scholar 

  • Boedeltje G, Ozinga WA, Prinzing A (2007) The trade-off between vegetative and generative reproduction among angiosperms influences regional hydrochorous propagule pressure. Glob Ecol Biogeogr 17:50–58. https://doi.org/10.1111/j.1466-8238.2007.00365.x

    Article  Google Scholar 

  • Bulboa C, de Paula EJ, Chow FY (2007) Laboratory germination and sea out-planting of tetraspore progeny from Kappaphycus striatum (Rhodophyta) in subtropical waters of Brazil. J Appl Phycol 19:357–363. https://doi.org/10.1007/s10811-006-9142-7

    Article  Google Scholar 

  • Bulboa C, de Paula EJ, Chow FY (2008) Germination and survival of tetraspores of Kappaphycus alvarezii var. alvarezii (Solieriaceae, Rhodophyta) introduced in subtropical waters of Brazil. Phycol Res 56:39–45. https://doi.org/10.1111/j.1440-1835.2008.00483.x

    Article  Google Scholar 

  • Castro S, Castro M, Ferrero V, Costa J, Tavares D, Navarro L, Loureiro J (2016) Invasion fosters change: independent evolutionary shifts in reproductive traits after Oxalis pes-caprae L. introduction. Front Plant Sci 7:874. https://doi.org/10.3389/fpls.2016.00874

    Article  PubMed  PubMed Central  Google Scholar 

  • Chichiriccò G (1984) Karyotype and meiotic behaviour of the triploid Crocus sativus L. Caryologia 37:233–239. https://doi.org/10.1080/00087114.1984.10797702

  • Datta A, Schweiger O, Kühn I (2019) Niche expansion of the invasive plant species Ageratina adenophora despite evolutionary constraints. J Biogeogr 46:1306–1315. https://doi.org/10.1111/jbi.13579

    Article  Google Scholar 

  • de Paula EJ, Pereira RTL, Ohno M (1999) Strain selection in Kappaphycus alvarezii var. alvarezii (Solieriaceae, Rhodophyta) using tetraspore progeny. J Appl Phycol 11:111–121. https://doi.org/10.1023/A:1008085614360

    Article  Google Scholar 

  • De Wreede RE, Klinger T (1988) Reproductive strategies in algae. In: Plant reproductive biology. Oxford University Press, pp 267–284

    Google Scholar 

  • Dixon PS (1973) The biology of the Rhodophyta. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Doty MS (1988) Podromus ad systematica Eucheumatoideorum: a tribe of commercial seaweeds related to Eucheuma (Solieriaceae, Gigartinales). In: Abbott IA (ed) Taxonomy of economic seaweeds with reference to some Pacific and Caribbean species, vol 2. California Sea Grant College Program, La Jolla, pp 159–207 [Report T-CSGCP-018]

    Google Scholar 

  • Dumilag RV, Zuccarello GC (2022) Phylogeny and genetic diversity of the Philippine euchematoid genus Mimica (Solieriaceae, Rhodophyta), and the proposal for Kappaphycopsis gen. nov. to include the anomalous species of Kappaphycus, K. cottonii. Phycologia 61:496–503

    Google Scholar 

  • Dumilag RV, Aguinaldo Z-ZA, Crisostomo BA, Hinaloc LAR, Liao LM, Roa-Quiaoit HA, Galon-Dangan F, Zuccarello GC, Guillemin M-L, Brodie J, Cottier-Cook EJ, Roleda MY (2023) Eucheumatoid seaweed cultivar diversity in The Philippines. Rev Fish Sci Aquacult 31:47–65. https://doi.org/10.1080/23308249.2022.2060038

    Article  Google Scholar 

  • Ganzon-Fortes ET (2016) Sea out-planting and seedstock production of laboratory generated carrageenophyte cultivars. Technical report submitted to the Philippine Council for Agricultural and Aquatic Resources Research and Development, PCAARRD. The Marine Science Institute, College of Science, University of the Philippines Diliman, 7 pp

    Google Scholar 

  • Ganzon-Fortes E, Saco J, Albaladejo M, Projimo V (2013) Monthly variation in the occurrences of the reproductive populations of Kappaphycus alvarezii (Doty) Doty ex P.C. Silva (Rhodophyta: Gigartinales) in Nabalikad Reef, Guiuan, Samar. Poster presented at the Philippines Association of Marine Science (PAMS) 12th National Symposium, University of the Philippines Visayas, Tacloban College, Tacloban City, p 106

    Google Scholar 

  • Gelli VC, Plastino EM, Yokoya NS (2023) Cultivation and domestication of Kappaphycus alvarezii strains at Ubatuba Bay, São Paulo state, southeastern Brazil. In: Hurtado AQ, Critchley AT, Neish I (eds) Tropical seaweed cultivation - phyconomy - proceedings of tropical phyconomy coalition development, TPCD #1, UNHAS Univ., Makassar, Indonesia, July 7–8, 2021

    Google Scholar 

  • Grace JB (1993) The adaptive significance of clonal reproduction in angiosperms: an aquatic perspective. Aquat Bot 44:159–180. https://doi.org/10.1016/0304-3770(93)90070-d

    Article  Google Scholar 

  • Guillemin ML, Valenzuela P, Gaitán-Espitia JD, Destombe C (2014) Evidence of reproductive cost in the triphasic life history of the red alga Gracilaria chilensis (Gracilariales, Rhodophyta). J Appl Phycol 26:569–575. https://doi.org/10.1007/s10811-013-0072-x

    Article  CAS  Google Scholar 

  • He H-M, Liu L-N, Munir S, Bashir NH, Wang Y, Yang J, Li C-Y (2019) Crop diversity and pest management in sustainable agriculture. J Integr Agr 18:1945–1952. https://doi.org/10.1016/s2095-3119(19)62689-4

    Article  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2007) Domestication, genomics and the future for banana. Ann Bot-London 100:1073–1084. https://doi.org/10.1093/aob/mcm191

    Article  CAS  Google Scholar 

  • Hinaloc LAR (2017) In vitro carpospore recruitment and germling growth in Kappaphycus alvarezii (Doty) Doty ex P.C. Silva (Rhodophyta: Gigartinales). M.Sc. thesis. University of the Philippines, Diliman, 73 pp

    Google Scholar 

  • Hinaloc LAR, Roleda MY (2021) Phenotypic diversity, growth and sexual differentiation in the progeny of wild Kappaphycus alvarezii (Gigartinales, Florideophyceae). Phycologia 60:547–557. https://doi.org/10.1080/00318884.2021.1946307

    Article  CAS  Google Scholar 

  • Hollingsworth ML, Bailey JP (2000) Evidence for massive clonal growth in the invasive weed Fallopia japonica (Japanese Knotweed). Bot J Linn Soc 133:463–472. https://doi.org/10.1111/j.1095-8339.2000.tb01589.x

  • Hughes JS, Otto SP (1999) Ecology and the evolution of biphasic life cycles. Am Nat 154:306–320

    Article  PubMed  Google Scholar 

  • Hurtado AQ, Critchley AT, Trespoey A, Lhonneur GB (2006) Occurrence of Polysiphonia epiphytes in Kappaphycus farms in Calaguas Is., Camarines Norte, Philippines. J Appl Phycol 18:301–306

    Article  Google Scholar 

  • Johnson AJ, Orth RJ, Moore KA (2020) The role of sexual reproduction in the maintenance of established Zostera marina meadows. J Ecol 108:945–957. https://doi.org/10.1111/1365-2745.13362

    Article  Google Scholar 

  • Kain JM, Destombe C (1995) A review of the life history, reproduction, and phenology of Gracilaria. J Appl Phycol 7:269–281

    Article  Google Scholar 

  • Kugrens P, West JA (1972) Ultrastructure of tetrasporogenesis in the parasitic red alga Levringiella gardneri (Setchell) Kylin. J Phycol 8:370–383

    Article  Google Scholar 

  • Largo DB, Fukami K, Nishijima T, Ohno M (1995a) Laboratory-induced development of the ice-ice disease of the farmed red algae Kappaphycus alvarezii and Eucheuma denticulatum (Soliriaceae, Gigartinales, Rhodophyta). J Appl Phycol 7:539–543

    Article  Google Scholar 

  • Largo DB, Fukami K, Nishijima T (1995b) Occasional pathogenic bacteria promoting ice-ice disease in the carrageenan-producing red algae Kappaphycus alvarezii and Eucheuma denticulatum (Soliriaceae, Gigartinales, Rhodophyta). J Appl Phycol 7:545–554

    Article  Google Scholar 

  • Lei SA (2010) Benefits and costs of vegetative and sexual reproduction in perennial plants: a review of literature. J Ariz Nev Acad Sci 42:9–14. https://doi.org/10.2181/036.042.0103

    Article  Google Scholar 

  • Li W (2014) Environmental opportunities and constraints in the reproduction and dispersal of aquatic plants. Aquat Bot 118:62–70. https://doi.org/10.1016/j.aquabot.2014.07.008

    Article  Google Scholar 

  • Liu J, Dong M, Miao SL, Li ZY, Song MH, Wang RQ (2006) Invasive alien plants in China: role of clonality and geographical origin. Biol Invasions 8:1461–1470. https://doi.org/10.1007/s10530-005-5838-x

    Article  Google Scholar 

  • Liu X, Bogaert K, Engelen A, Leliaert F, Roleda MY, de Clerck O (2017) Seaweed reproductive biology: environmental and genetic controls. Bot Mar 60:89–108. https://doi.org/10.1515/bot-2016-0091

    Article  Google Scholar 

  • Maron JL, Marler M, Klironomos JN, Cleveland CC (2011) Soil fungal pathogens and the relationship between plant diversity and productivity: soil pathogens, productivity and invasibility. Ecol Lett 14:36–41. https://doi.org/10.1111/j.1461-0248.2010.01547.x

    Article  PubMed  Google Scholar 

  • Meyer RS, DuVal AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48. https://doi.org/10.1111/j.1469-8137.2012.04253.x

    Article  PubMed  Google Scholar 

  • Monagail MM, Cornish L, Morrison L, Araújo R, Critchley AT (2017) Sustainable harvesting of wild seaweed resources. Eur J Phycol 52:371–390. https://doi.org/10.1080/09670262.2017.1365273

    Article  Google Scholar 

  • Narvarte BCV, Hinaloc LAR, Genovia TGT, Gonzaga SMC, Tabonda-Nabor AM, Roleda MY (2022) Physiological and biochemical characterization of new wild strains of Kappaphycus alvarezii (Gigartinales, Rhodophyta) cultivated under land-based hatchery conditions. Aquat Bot 183:103567. https://doi.org/10.1016/j.aquabot.2022.103567

    Article  Google Scholar 

  • Norris JN (2014) Marine algae of the northern Gulf of California, II: Rhodophyta. Smithsonian contributions to botany, no 96, pp [i]-xvi, [1]-555. Smithsonian Institution Scholarly Press, Washington, DC

    Google Scholar 

  • Núnez-Resendiz M, Dreckmann KM, Sentíes A, Wynne MJ, León-Tejera HP (2019) Eucheumatopsis isiformis gen & comb. nov. (Solieriaceae, Rhodophyta) from the Yukatan Peninsula, to accommodate Eucheuma isiforme. Phycologia 58:51–62

    Article  Google Scholar 

  • Ollitrault P, Navarro L (2012) Citrus. In: Badenes M, Byrne D (eds) Fruit breeding. Handbook of plant breeding, vol 8. Springer, Boston, MA, pp 622–662. https://doi.org/10.1007/978-1-4419-0763-9_16

    Chapter  Google Scholar 

  • Orr HA, Otto SP (1994) Does diploidy increase the rate of adaptation? Genetics 136:1475–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otto SP, Marks JC (1996) Mating systems and the evolutionary transition between haploidy and diploidy. Biol J Linn Soc 57:197–218

    Article  Google Scholar 

  • Raper JR, Flexer AS (1970) The road to diploidy with emphasis on a detour. Symp Soc General Microbiol 20:401–432

    Google Scholar 

  • Reddy CRK, Yokoya NS, Yong WTL, Luhan MRJ, Hurtado AQ (2017) Micropropagation of Kappaphycus and Eucheuma: trends and prospects. In: Hurtado A, Critchley A, Neish I (eds) Tropical seaweed farming trends, problems and opportunities. Developments in applied phycology, vol 9. Springer, Cham, pp 91–110. https://doi.org/10.1007/978-3-319-63498-2_5

    Chapter  Google Scholar 

  • Rice WR (1983) Parent-offspring pathogen transmission: a selective agent promoting sexual reproduction. Am Nat 121:187–203. https://doi.org/10.1086/284050

    Article  Google Scholar 

  • Rodrigora LD (2017) Laboratory tetraspore recruitment and early development in wild Kappaphycus alvarezii (Rhodophyta: Gigartinales) for farming. M.Sc. thesis. University of the Philippines, Diliman, 72 pp

    Google Scholar 

  • Roleda MY, van de Poll WH, Hanelt D, Wiencke C (2004) PAR and UVBR effects on photosynthesis, viability, growth and DNA in different life stages of two coexisting Gigartinales: implications on recruitment and zonation pattern. Mar Ecol Prog Ser 281:37–50

    Article  Google Scholar 

  • Roleda MY, Zacher K, Wulff A, Hanelt D, Wiencke C (2008) Susceptibility of spores of different ploidy levels from Antarctic Gigartina skottsbergii (Gigartina, Rhodophyta) to ultraviolet radiation. Phycologia 47:361–370

    Article  CAS  Google Scholar 

  • Roleda MY, Rodrigora-Calala LD, Hinaloc LAR, Ganzon-Fortes ET (2017) Red, blue, and green, and shades in between: diversity and plasticity in color expression in the life history of Kappaphycus. Phycologia 56:161

    Google Scholar 

  • Roleda MY, Aguinaldo ZZA, Crisostomo BA, Hinaloc LAR, Projimo VZ, Dumilag RV, Lluisma AO (2021) Discovery of novel haplotypes from wild populations of Kappaphycus (Gigartinales, Rhodophyta) in The Philippines. Algae 36:1–12. https://doi.org/10.4490/algae.2021.36.2.18

    Article  CAS  Google Scholar 

  • Sambhwani K, Modi J, Singhala A, Bramhabatt H, Mishra A, Mantri VA (2020) Analysis of functional traits in female gametophytic and tetrasporophytic life phases of industrially important red alga Gracilaria dura (Rhodophyta: gracilariacae). J Appl Phycol 32:1961–1969. https://doi.org/10.1007/s10811-020-02116-1

    Article  CAS  Google Scholar 

  • Santiañez WJE, Wynne MJ (2020) Establishment of Mimica gen. nov. to accommodate the anaxiferous species of the economically important red seaweed Eucheuma (Solieriaceae, Rhodophyta). Phytotaxa 439:167–170. https://doi.org/10.11646/phytotaxa.439.2.8

    Article  Google Scholar 

  • Scarcelli N, Tostain S, Vigouroux Y, Agbangla C, Daïnou O, Pham J-L (2006) Farmers’ use of wild relative and sexual reproduction in a vegetatively propagated crop. The case of yam in Benin. Mol Ecol 15:2421–2431. https://doi.org/10.1111/j.1365-294X.2006.02958.x

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer SA, Klironomos JN, Hillerislambers J, Kinkel LL, Reich PB, **ao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011) Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92:296–303. https://doi.org/10.1890/10-0773.1

    Article  PubMed  Google Scholar 

  • Silva PC, Basson PW, Moe RL (1996) Catalogue of the benthic marine algae of the Indian Ocean. Univ Calif Publ Bot 79: [i]-xiv, 1-1259

    Google Scholar 

  • Vairappan CS, Chung CS, Hurtado AQ, Soya FE, Lhonneur GB, Critchley A (2008) Distribution and symptoms of epiphyte infection in major carrageenophyte-producing farms. J Appl Phycol 20:477–483. https://doi.org/10.1007/s10811-007-9299-8

    Article  Google Scholar 

  • Wernberg T, Coleman MA, Bennett S, Thomsen MS, Tuya F, Kelaher BP (2018) Genetic diversity and kelp forest vulnerability to climatic stress. Sci Rep-UK 8:1–8. https://doi.org/10.1038/s41598-018-20009-9

    Article  CAS  Google Scholar 

  • West JA, Zuccarello GC, Kamiya M (2001) Reproductive patterns of Caloglossa species (Delesseriaceae, Rhodophyta) from Australia and New Zealand: multiple origins of asexuality in C. leprieurii. Literature review on apomixis, mixed-phase, bisexuality and sexual compatibility. Phycol Res 49:183–200. https://doi.org/10.1046/j.1440-1835.2001.00239.x. https://onlinelibrary.wiley.com/doi/10.1046/j.1440-1835.2001.00239.x

    Article  Google Scholar 

  • Willson MF (1981) On the evolution of complex life cycles: a review and an ecological perspective. Ann Mo Bot Gard 68:275–300. https://doi.org/10.2307/2398799

    Article  Google Scholar 

  • Yang YY, Kim JG (2016) The optimal balance between sexual and asexual reproduction in variable environments: a systematic review. J Ecol Environ 40:12. https://doi.org/10.1186/s41610-016-0013-0

    Article  Google Scholar 

  • Zhang Y, Zhang D (2007) Asexual and sexual reproductive strategies in clonal plants. Front Biol China 2:256–262. https://doi.org/10.1007/s11515-007-0036-0

    Article  Google Scholar 

  • Zhang H, Mittal N, Leamy LJ, Barazani O, Song BH (2017) Back into the wild: apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl 10:5–24. https://doi.org/10.1111/eva.12434

    Article  PubMed  Google Scholar 

Download references

Declarations

Competing interests. The authors declare no competing interests.

Funding

The primary data presented in this review chapter were results from studies subsidized by the UPMSI inhouse research grant and research funding received from the University of the Philippines-UP System Enhanced Creative Work and Research Grant (ECWRG 2019-09-R) and Balik PhD Program (OVPAA-BPhD-2019-06), UP-Diliman, Office of the Vice Chancellor for Research and Development (OVCRD) Outright Research Grant Project No. 202039 ORG. Co-funding was also received from UKRI GCRF Global-SeaweedSTAR program—Projects Grant no. GSS/RF/015 and GSS/RF/047 and the CHED-LAKAS-funded project “Phytochemical Characterization of Macroalgae for Food and High Value Products (PhycoPRO).” Additional funding was also received from a Safe Seaweed Coalition grant (SecureFuture; n°LS249100) and from Sea6 Energy Private Limited. The eucheumatoid micropropagation initiatives at the National Seaweed Technology Development Center (NSTDC) are funded by the Bureau of Fisheries and Aquatic Resources (BFAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Y. Roleda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roleda, M.Y., Hinaloc, L.A.R., Capacio, I.T., Jao, M.C.B., Crisostomo, B.A. (2024). Reproductive Biology and Novel Cultivar Development of the Eucheumatoid Kappaphycus alvarezii. In: Critchley, A.T., Hurtado, A.Q., Neish, I.C. (eds) Tropical Phyconomy Coalition Development. Developments in Applied Phycology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-031-47806-2_4

Download citation

Publish with us

Policies and ethics

Navigation