Fractal Resonance: Can Fractal Geometry Be Used to Optimize the Connectivity of Neurons to Artificial Implants?

  • Chapter
  • First Online:
The Fractal Geometry of the Brain

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 36))

  • 366 Accesses

Abstract

In parallel to medical applications, exploring how neurons interact with the artificial interface of implants in the human body can be used to learn about their fundamental behavior. For both fundamental and applied research, it is important to determine the conditions that encourage neurons to maintain their natural behavior during these interactions. Whereas previous biocompatibility studies have focused on the material properties of the neuron–implant interface, here we discuss the concept of fractal resonance – the possibility that favorable connectivity properties might emerge by matching the fractal geometry of the implant surface to that of the neurons.

To investigate fractal resonance, we first determine the degree to which neurons are fractal and the impact of this fractality on their functionality. By analyzing three-dimensional images of rat hippocampal neurons, we find that the way their dendrites fork and weave through space is important for generating their fractal-like behavior. By modeling variations in neuron connectivity along with the associated energetic and material costs, we highlight how the neurons’ fractal dimension optimizes these constraints. To simulate neuron interactions with implant interfaces, we distort the neuron models away from their natural form by modifying the dendrites’ fork and weaving patterns. We find that small deviations can induce large changes in fractal dimension, causing the balance between connectivity and cost to deteriorate rapidly. We propose that implant surfaces should be patterned to match the fractal dimension of the neurons, allowing them to maintain their natural functionality as they interact with the implant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moslehi S, Rowland C, Smith JH, Watterson WJ, Miller D, Niell CM, et al. Controlled assembly of retinal cells on fractal and Euclidean electrodes. PLoS One. 2022;17(4):e0265685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Watterson WJ, Moslehi S, Rowland C, Zappitelli KM, Smith JH, Miller D, et al. The roles of an aluminum underlayer in the biocompatibility and mechanical integrity of vertically aligned carbon nanotubes for interfacing with retinal neurons. Micromachines (Basel). 2020;11(6):546.

    Article  PubMed  Google Scholar 

  3. Hu H, Ni Y, Montana V, Haddon RC, Parpura V. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett. 2004;4(3):507–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tonelli FMP, Santos AK, Gomes KN, Lorençon E, Guatimosim S, Ladeira LO, et al. Carbon nanotube interaction with extracellular matrix proteins producing scaffolds for tissue engineering. Int J Nanomedicine. 2012;7:4511–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nick C, Yadav S, Joshi R, Thielemann C, Schneider JJ. Growth and structural discrimination of cortical neurons on randomly oriented and vertically aligned dense carbon nanotube networks. Beilstein J Nanotechnol. 2014;5:1575–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, et al. Müller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25(4):397–424.

    Article  CAS  PubMed  Google Scholar 

  7. Verkhratsky A, Butt A. Morphology of glial cells. In: Glial neurobiology. John Wiley & Sons, Ltd; 2007. p. 21–8.

    Chapter  Google Scholar 

  8. Rowland C, Moslehi S, Smith JH, Harland B, Dalrymple-Alford J, Taylor RP. Fractal resonance: can fractal geometry be used to optimize the connectivity of neurons to human implants? In: Di Ieva A, editor. The fractal geometry of the brain. 2nd ed. New York: Springer; 2023.

    Google Scholar 

  9. Simitzi C, Ranella A, Stratakis E. Controlling the morphology and outgrowth of nerve and neuroglial cells: the effect of surface topography. Acta Biomater. 2017;51:21–52.

    Article  CAS  PubMed  Google Scholar 

  10. Smeal RM, Rabbitt R, Biran R, Tresco PA. Substrate curvature influences the direction of nerve outgrowth. Ann Biomed Eng. 2005;33(3):376–82.

    Article  PubMed  Google Scholar 

  11. Smeal RM, Tresco PA. The influence of substrate curvature on neurite outgrowth is cell type dependent. Exp Neurol. 2008;213(2):281–92.

    Article  CAS  PubMed  Google Scholar 

  12. Clark P, Connolly P, Curtis AS, Dow JA, Wilkinson CD. Topographical control of cell behaviour: II. Multiple grooved substrata. Development. 1990;108(4):635–44.

    Article  CAS  PubMed  Google Scholar 

  13. Rajnicek A, Britland S, McCaig C. Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type. J Cell Sci. 1997;110(23):2905–13.

    Article  PubMed  Google Scholar 

  14. Goldner JS, Bruder JM, Li G, Gazzola D, Hoffman-Kim D. Neurite bridging across micropatterned grooves. Biomaterials. 2006;27(3):460–72.

    Article  CAS  PubMed  Google Scholar 

  15. Johansson F, Carlberg P, Danielsen N, Montelius L, Kanje M. Axonal outgrowth on nano-imprinted patterns. Biomaterials. 2006;27(8):1251–8.

    Article  CAS  PubMed  Google Scholar 

  16. Li W, Tang QY, Jadhav AD, Narang A, Qian WX, Shi P, et al. Large-scale topographical screen for investigation of physical neural-guidance cues. Sci Rep. 2015;5:8644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee JW, Lee KS, Cho N, Ju BK, Lee KB, Lee SH. Topographical guidance of mouse neuronal cell on SiO2 microtracks. Sensors Actuators B Chem. 2007;128(1):252–7.

    Article  CAS  Google Scholar 

  18. Moslehi S, Watterson WJ, Rowland C, Smith JH, Taylor RP, Perez MT. Physical guidance of cultured retinal neurons using zig-zag surface patterns. Am J Biomed Sci Res. 2020;11(3):3.

    Google Scholar 

  19. Gomez N, Lu Y, Chen S, Schmidt CE. Immobilized nerve growth factor and microtopography have distinct effects on polarization versus axon elongation in hippocampal cells in culture. Biomaterials. 2007;28(2):271–84.

    Article  CAS  PubMed  Google Scholar 

  20. Moslehi S, Rowland C, Smith JH, Griffiths W, Watterson WJ, Niell CM, et al. Comparison of fractal and grid electrodes for studying the effects of spatial confinement on dissociated retinal neuronal and glial behavior. Sci Rep. 2022;12(1):17513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morigiwa K, Tauchi M, Fukuda Y. Fractal analysis of ganglion cell dendritic branching patterns of the rat and cat retinae. Neurosci Res Suppl. 1989;10:S131–9.

    Article  CAS  PubMed  Google Scholar 

  22. Takeda T, Ishikawa A, Ohtomo K, Kobayashi Y, Matsuoka T. Fractal dimension of dendritic tree of cerebellar Purkinje cell during onto- and phylogenetic development. Neurosci Res. 1992;13(1):19–31.

    Article  CAS  PubMed  Google Scholar 

  23. Bassingthwaighte JB, Liebovitch LS, West BJ. Fractal physiology. American Physiological Society; 1994.

    Book  Google Scholar 

  24. Caserta F, Eldred WD, Fernandez E, Hausman RE, Stanford LR, Bulderev SV, et al. Determination of fractal dimension of physiologically characterized neurons in two and three dimensions. J Neurosci Methods. 1995;56(2):133–44.

    Article  CAS  PubMed  Google Scholar 

  25. Iannaccone PM, Khokha M. Fractal geometry in biological systems: an analytical approach. 1st ed. Boca Raton, FL: CRC Press; 1996.

    Google Scholar 

  26. Smith TG Jr, Lange GD, Marks WB. Fractal methods and results in cellular morphology — dimensions, lacunarity and multifractals. J Neurosci Methods. 1996;69(2):123–36.

    Article  PubMed  Google Scholar 

  27. Alves SG, Martins ML, Fernandes PA, Pittella JEH. Fractal patterns for dendrites and axon terminals. Physica A Stat Mech Appl. 1996;232(1):51–60.

    Article  Google Scholar 

  28. Isaeva VV, Pushchina EV, Karetin YA. The quasi-fractal structure of fish brain neurons. Russ J Mar Biol. 2004;30(2):127–34.

    Article  Google Scholar 

  29. Wearne SL, Rodriguez A, Ehlenberger DB, Rocher AB, Henderson SC, Hof PR. New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience. 2005;136(3):661–80.

    Article  CAS  PubMed  Google Scholar 

  30. Milošević NT, Ristanović D. Fractality of dendritic arborization of spinal cord neurons. Neurosci Lett. 2006;396(3):172–6.

    Article  PubMed  Google Scholar 

  31. The Petilla Interneuron Nomenclature Group (PING). Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci. 2008;9(7):557–68.

    Article  Google Scholar 

  32. Werner G. Fractals in the nervous system: conceptual implications for theoretical neuroscience. Front Physiol. 2010;6:1.

    Google Scholar 

  33. Kim J, Kwon N, Chang S, Kim KT, Lee D, Kim S, et al. Altered branching patterns of Purkinje cells in mouse model for cortical development disorder. Sci Rep. 2011;1(1):122.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Di Ieva A, Grizzi F, Jelinek H, Pellionisz AJ, Losa GA. Fractals in the neurosciences, part I: general principles and basic neurosciences. Neuroscientist. 2014;20(4):403–17.

    Article  PubMed  Google Scholar 

  35. Ferrari G, Grisan E, Scarpa F, Fazio R, Comola M, Quattrini A, et al. Corneal confocal microscopy reveals trigeminal small sensory fiber neuropathy in amyotrophic lateral sclerosis. Front Aging Neurosci. 2014;6:278.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J. The hippocampus book. 1st ed. Oxford/New York: Oxford University Press; 2006.

    Book  Google Scholar 

  37. Schröter M, Paulsen O, Bullmore ET. Micro-connectomics: probing the organization of neuronal networks at the cellular scale. Nat Rev Neurosci. 2017;18(3):131–46.

    Article  PubMed  Google Scholar 

  38. Chen BL, Hall DH, Chklovskii DB. Wiring optimization can relate neuronal structure and function. PNAS. 2006;103(12):4723–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wen Q, Stepanyants A, Elston GN, Grosberg AY, Chklovskii DB. Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors. Proc Natl Acad Sci. 2009;106(30):12536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cajal SR. Texture of the nervous system of man and the vertebrates. Vienna: Springer; 1999.

    Book  Google Scholar 

  41. Laughlin SB, de Ruyter van Steveninck RR, Anderson JC. The metabolic cost of neural information. Nat Neurosci. 1998;1(1):36–41.

    Article  CAS  PubMed  Google Scholar 

  42. Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21(10):1133–45.

    Article  CAS  PubMed  Google Scholar 

  43. Mitchison G, Barlow HB. Neuronal branching patterns and the economy of cortical wiring. Proc R Soc Lond Ser B Biol Sci. 1991;245(1313):151–8.

    Article  CAS  Google Scholar 

  44. Cherniak C. Local optimization of neuron arbors. Biol Cybern. 1992;66(6):503–10.

    Article  CAS  PubMed  Google Scholar 

  45. Chklovskii DB. Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron. 2004;43(5):609–17.

    CAS  PubMed  Google Scholar 

  46. Rushton WAH. A theory of the effects of fibre size in medullated nerve. J Physiol. 1951;115(1):101–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rall W, Burke RE, Holmes WR, Jack JJ, Redman SJ, Segev I. Matching dendritic neuron models to experimental data. Physiol Rev. 1992;72(suppl_4):S159–86.

    Article  CAS  PubMed  Google Scholar 

  48. Wen Q, Chklovskii DB. Segregation of the brain into gray and White matter: a design minimizing conduction delays. PLoS Comput Biol. 2005;1(7):e78.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mandelbrot B, Pignoni R. The fractal geometry of nature, vol. 173. New York: WH freeman; 1983.

    Google Scholar 

  50. Oppenheimer PE. Real time design and animation of fractal plants and trees. ACM SiGGRAPH Comput Graph. 1986;20(4):55–64.

    Article  Google Scholar 

  51. Vormberg A, Effenberger F, Muellerleile J, Cuntz H. Universal features of dendrites through centripetal branch ordering. PLoS Comput Biol. 2017;13(7):e1005615.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Smith TG, Marks WB, Lange GD, Sheriff WH, Neale EA. A fractal analysis of cell images. J Neurosci Methods. 1989;27(2):173–80.

    Article  PubMed  Google Scholar 

  53. Fernández E, Bolea JA, Ortega G, Louis E. Are neurons multifractals? J Neurosci Methods. 1999;89(2):151–7.

    Article  PubMed  Google Scholar 

  54. Milosević NT, Ristanović D, Stanković JB. Fractal analysis of the laminar organization of spinal cord neurons. J Neurosci Methods. 2005;146(2):198–204.

    Article  PubMed  Google Scholar 

  55. Jelinek HF, Cornforth DJ, Roberts AJ, Landini G, Bourke P, Iorio A. Image processing of finite size rat retinal ganglion cells using multifractal and local connected fractal analysis. In: Webb GI, Yu X, editors. AI 2004: advances in artificial intelligence. Berlin, Heidelberg: Springer; 2005. p. 961–6.

    Google Scholar 

  56. Cuntz H, Mathy A, Häusser M. A scaling law derived from optimal dendritic wiring. Proc Natl Acad Sci U S A. 2012;109(27):11014–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Richardson LF. The problem of contiguity: an appendix to statistics of deadly quarrels. In: General systems yearbook, vol. 6; 1961. p. 139.

    Google Scholar 

  58. Wen Q, Chklovskii DB. A cost-benefit analysis of neuronal morphology. J Neurophysiol. 2008;99(5):2320–8.

    Article  PubMed  Google Scholar 

  59. Ledderose J, Sención L, Salgado H, Arias-Carrión O, Treviño M. A software tool for the analysis of neuronal morphology data. Int Arch Med. 2014;7:6.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mandelbrot B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science. 1967;156(3775):636–8.

    Article  CAS  PubMed  Google Scholar 

  61. Smith JH, Rowland C, Harland B, Moslehi S, Montgomery RD, Schobert K, et al. How neurons exploit fractal geometry to optimize their network connectivity. Sci Rep. 2021;11(1):2332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hart WE, Goldbaum M, Côté B, Kube P, Nelson MR. Measurement and classification of retinal vascular tortuosity. Int J Med Inform. 1999;53(2):239–52.

    Article  CAS  PubMed  Google Scholar 

  63. Bullitt E, Gerig G, Pizer SM, Lin W, Aylward SR. Measuring tortuosity of the intracerebral vasculature from MRA images. IEEE Trans Med Imaging. 2003;22(9):1163–71.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lorthois S, Lauwers F, Cassot F. Tortuosity and other vessel attributes for arterioles and venules of the human cerebral cortex. Microvasc Res. 2014;91:99–109.

    Article  PubMed  Google Scholar 

  65. Barbará-Morales E, Pérez-González J, Rojas-Saavedra KC, Medina-Bañuelos V. Evaluation of brain tortuosity measurement for the automatic multimodal classification of subjects with Alzheimer’s disease. Comput Intell Neurosci. 2020;2020:e4041832.

    Article  Google Scholar 

  66. Rowland C, Smith J, Moslehi S, Harland B, Dalrymple-Alford J, Taylor R. Neuron Arbor geometry is sensitive to the fractal properties of their dendrites. Front Netw Physiol. 2023;3:1072815.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rowland C, Harland B, Smith JH, Moslehi S, Dalrymple-Alford J, Taylor RP. Investigating fractal analysis as a diagnostic tool that probes the connectivity of hippocampal neurons. Front Physiol. 2022;13:932598.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jelinek HF, Milošević NT, Karperien A, Krstonošić B. Box-counting and multifractal analysis in neuronal and glial classification. In: Dumitrache L, editor. Advances in intelligent control systems and computer science. Berlin, Heidelberg: Springer; 2013. p. 177–89.

    Chapter  Google Scholar 

  69. Hill SL, Wang Y, Riachi I, Schürmann F, Markram H. Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits. Proc Natl Acad Sci. 2012;109(42):E2885–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. van Ooyen A, Carnell A, de Ridder S, Tarigan B, Mansvelder HD, Bijma F, et al. Independently outgrowing neurons and geometry-based synapse formation produce networks with realistic synaptic connectivity. PLoS One. 2014;9(1):e85858.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kalisman N, Silberberg G, Markram H. Deriving physical connectivity from neuronal morphology. Biol Cybern. 2003;88(3):210–8.

    Article  PubMed  Google Scholar 

  72. Stepanyants A, Chklovskii D. Neurogeometry and potential synaptic connectivity. Trends Neurosci. 2005;28(7):387–94.

    Article  CAS  PubMed  Google Scholar 

  73. McAssey MP, Bijma F, Tarigan B, van Pelt J, van Ooyen A, de Gunst M. A morpho-density approach to estimating neural connectivity. Sporns O, editor. PLoS One. 2014;9(1):e86526.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wheeler DW, White CM, Rees CL, Komendantov AO, Hamilton DJ, Ascoli GA. Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus. Skinner FK, editor. eLife. 2015;4:e09960.

    Article  PubMed  PubMed Central  Google Scholar 

  75. West GB, Brown JH, Enquist BJ. A general model for the origin of Allometric scaling Laws in biology. Science. 1997;276(5309):122–6.

    Article  CAS  PubMed  Google Scholar 

  76. Banavar JR, Maritan A, Rinaldo A. Size and form in efficient transportation networks. Nature. 1999;399(6732):130–2.

    Article  CAS  PubMed  Google Scholar 

  77. Loduca AL, Zhang C, Zelkha R, Shahidi M. Thickness map** of retinal layers by spectral-domain optical coherence tomography. Am J Ophthalmol. 2010;150(6):849–55.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ascoli GA, Donohue DE, Halavi M. NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci. 2007;27(35):9247–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fairbanks MS, McCarthy DN, Scott SA, Brown SA, Taylor RP. Fractal electronic devices: simulation and implementation. Nanotechnology. 2011;22(36):365304.

    Article  CAS  PubMed  Google Scholar 

  80. Montgomery RD. Fractal electrodes for interfacing neurons to retinal implants [disseration]. Eugene (US): University of Oregon; 2014.

    Google Scholar 

  81. Sorkin R, Greenbaum A, David-Pur M, Anava S, Ayali A, Ben-Jacob E, et al. Process entanglement as a neuronal anchorage mechanism to rough surfaces. Nanotechnology. 2009;20(1):015101.

    Article  PubMed  Google Scholar 

  82. Reinhard K, Li C, Do Q, Burke EG, Heynderickx S, Farrow K. A projection specific logic to sampling visual inputs in mouse superior colliculus. elife. 2019;8:e50697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

R.P. Taylor is a Cottrell Scholar of the Research Council for Science Advancement. This research was supported by the W. M. Keck Foundation, the Living Legacy Foundation, the Ciminelli Foundation, and the University of Oregon. We thank M.-T. Perez (Lund University, Sweden) for useful discussions along with providing training for retinal cultures and immunocytochemistry, M. Pluth (University of Oregon, USA) for providing the opportunity and training for the fluorescence microscopy imaging system, W. Griffiths and C.M. Niell (University of Oregon) for discussions, B. Aleman, D. Miller, and K. Zappitelli (University of Oregon) for their contributions to the development of the VACNT synthesis process, J. Levine (University of Oregon) for stereoscopic imaging of the VACNTs, and S.A. Brown (University of Canterbury, New Zealand) and R.D. Montgomery (University of Oregon) for nanoflower development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rowland, C., Moslehi, S., Smith, J.H., Harland, B., Dalrymple-Alford, J., Taylor, R.P. (2024). Fractal Resonance: Can Fractal Geometry Be Used to Optimize the Connectivity of Neurons to Artificial Implants?. In: Di Ieva, A. (eds) The Fractal Geometry of the Brain. Advances in Neurobiology, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-031-47606-8_44

Download citation

Publish with us

Policies and ethics

Navigation