Antimicrobial Peptides and Proteins for Inhalation

  • Chapter
  • First Online:
Respiratory Delivery of Biologics, Nucleic Acids, and Vaccines

Part of the book series: AAPS Introductions in the Pharmaceutical Sciences ((AAPSINSTR,volume 8))

  • 207 Accesses

Abstract

Antimicrobial peptides and proteins (APPs) are gaining attraction as powerful agents against multidrug-resistant bacteria. The inhalation delivery of APPs has emerged as a potent tool for treating respiratory infections, given the ability to achieve high local drug concentrations in the lungs and minimizing systemic exposure. This chapter reviews recent in vitro and in vivo research on inhaled APPs, focusing on APP modification and formulation strategies to develop stable and inhalable forms of APPs. These strategies include using d-enantiomers, dendrimers, and prodrugs as APP modification strategies and applying new nebulizers, spray drying, and hydrogel techniques as formulation strategies. Despite the substantial progress in enhancing the biological activity of APPs, the biological stability of these novel molecules when aerosolized is yet to be further explored. Similarly, the formulation and production of inhalable liquid and powder formulations of APPs remain relatively unexplored. These domains are, however, critical for successful clinical translation and hence deserve further research efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brunet J, Eichner C, Male R. The FTZ-F1 gene encodes two functionally distinct nuclear receptor isoforms in the ectoparasitic copepod salmon louse (Lepeophtheirus salmonis). PLoS One. 2021;16:e0251575. https://doi.org/10.1371/journal.pone.0251575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016a;44:D1087–93. https://doi.org/10.1093/nar/gkv1278.

    Article  CAS  PubMed  Google Scholar 

  3. Patrulea V, Borchard G, Jordan O. An update on antimicrobial peptides (AMPs) and their delivery strategies for wound infections. Pharmaceutics. 2020;12:840. https://doi.org/10.3390/pharmaceutics12090840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Daniels LM, Juliano J, Marx A, Weber DJ. Inhaled antibiotics for hospital-acquired and ventilator-associated pneumonia. Clin Infect Dis. 2017;64:386–7. https://doi.org/10.1093/cid/ciw726.

    Article  PubMed  Google Scholar 

  5. Zhou QT, Leung SS, Tang P, Parumasivam T, Loh ZH, Chan HK. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev. 2015;85:83–99. https://doi.org/10.1016/j.addr.2014.10.022.

    Article  CAS  PubMed  Google Scholar 

  6. Mortensen NP, Hickey AJ. Targeting inhaled therapy beyond the lungs. Respiration. 2014;88:353–4. https://doi.org/10.1159/000367852.

    Article  CAS  PubMed  Google Scholar 

  7. Hertel SP, Winter G, Friess W. Protein stability in pulmonary drug delivery via nebulization. Adv Drug Deliv Rev. 2015;93:79–94. https://doi.org/10.1016/j.addr.2014.10.003.

    Article  CAS  PubMed  Google Scholar 

  8. Cipolla D, Clark A, Chan H-K, Gonda I, Shire S. Assessment of aerosol delivery systems for recombinant human deoxyribonuclease. STP Pharm Sci. 1994;4:50–62.

    Google Scholar 

  9. Cortez-Jugo C, Masoumi S, Chan PPY, Friend J, Yeo L. Nebulization of siRNA for inhalation therapy based on a microfluidic surface acoustic wave platform. Ultrason Sonochem. 2022;88:106088. https://doi.org/10.1016/j.ultsonch.2022.106088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dosunmu EF, Chaudhari AA, Bawage S, Bakeer MK, Owen DR, Singh SR, et al. Novel cationic peptide TP359 down-regulates the expression of outer membrane biogenesis genes in Pseudomonas aeruginosa: a potential TP359 anti-microbial mechanism. BMC Microbiol. 2016;16:192. https://doi.org/10.1186/s12866-016-0808-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dosunmu EF, Emeh RO, Dixit S, Bakeer MK, Coats MT, Owen DR, et al. The anti-microbial peptide TP359 attenuates inflammation in human lung cells infected with Pseudomonas aeruginosa via TLR5 and MAPK pathways. PLoS One. 2017;12:e0176640. https://doi.org/10.1371/journal.pone.0176640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Srinivas N, Jetter P, Ueberbacher BJ, Werneburg M, Zerbe K, Steinmann J, et al. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science. 2010;327:1010–3. https://doi.org/10.1126/science.1182749.

    Article  CAS  PubMed  Google Scholar 

  13. Cigana C, Bernardini F, Facchini M, Alcala-Franco B, Riva C, De Fino I, et al. Efficacy of the novel antibiotic POL7001 in preclinical models of Pseudomonas aeruginosa pneumonia. Antimicrob Agents Chemother. 2016;60:4991–5000. https://doi.org/10.1128/AAC.00390-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martin-Loeches I, Dale GE, Torres A. Murepavadin: a new antibiotic class in the pipeline. Expert Rev Anti-Infect Ther. 2018;16:259–68. https://doi.org/10.1080/14787210.2018.1441024.

    Article  CAS  PubMed  Google Scholar 

  15. Bernardini F, Dale G, Wach A, Obrecht D. WS01-4 pharmacokinetics and pharmacodynamics of murepavadin (POL7080) in neutropenic lung infection models when evaluated by aerosol administration. J Cyst Fibros. 2019;18:S2.

    Article  Google Scholar 

  16. Pompilio A, Scocchi M, Pomponio S, Guida F, Di Primio A, Fiscarelli E, et al. Antibacterial and anti-biofilm effects of cathelicidin peptides against pathogens isolated from cystic fibrosis patients. Peptides. 2011;32:1807–14. https://doi.org/10.1016/j.peptides.2011.08.002.

    Article  CAS  PubMed  Google Scholar 

  17. Beaumont PE, Mchugh B, Gwyer Findlay E, Mackellar A, Mackenzie KJ, Gallo RL, et al. Cathelicidin host defence peptide augments clearance of pulmonary Pseudomonas aeruginosa infection by its influence on neutrophil function in vivo. PLoS One. 2014;9:e99029. https://doi.org/10.1371/journal.pone.0099029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Awasthi S, Rahman N, Rui B, Kumar G, Awasthi V, Breshears M, et al. Lung and general health effects of toll-like receptor-4 (TLR4)-interacting SPA4 peptide. BMC Pulm Med. 2020;20:179. https://doi.org/10.1186/s12890-020-01187-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Awasthi S, Singh B, Ramani V, **e J, Kosanke S. TLR4-interacting SPA4 peptide improves host defense and alleviates tissue injury in a mouse model of Pseudomonas aeruginosa lung infection. PLoS One. 2019;14:e0210979. https://doi.org/10.1371/journal.pone.0210979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Upadhyay R, Sanchez-Hidalgo A, Wilusz CJ, Lenaerts AJ, Arab J, Yeh J, et al. Host directed therapy for chronic tuberculosis via intrapulmonary delivery of aerosolized peptide inhibitors targeting the IL-10-STAT3 pathway. Sci Rep. 2018;8:16610. https://doi.org/10.1038/s41598-018-35023-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Redford PS, Murray PJ, O'garra A. The role of IL-10 in immune regulation during M. Tuberculosis infection. Mucosal Immunol. 2011;4:261–70. https://doi.org/10.1038/mi.2011.7.

    Article  CAS  PubMed  Google Scholar 

  22. Mccaughey LC, Josts I, Grinter R, White P, Byron O, Tucker NP, et al. Discovery, characterization and in vivo activity of pyocin SD2, a protein antibiotic from Pseudomonas aeruginosa. Biochem J. 2016;473:2345–58. https://doi.org/10.1042/BCJ20160470.

    Article  CAS  PubMed  Google Scholar 

  23. Michel-Briand Y, Baysse C. The pyocins of Pseudomonas aeruginosa. Biochimie. 2002;84:499–510. https://doi.org/10.1016/s0300-9084(02)01422-0.

    Article  CAS  PubMed  Google Scholar 

  24. Ghequire MG, De Mot R. Ribosomally encoded antibacterial proteins and peptides from pseudomonas. FEMS Microbiol Rev. 2014;38:523–68. https://doi.org/10.1111/1574-6976.12079.

    Article  CAS  PubMed  Google Scholar 

  25. Doehn JM, Fischer K, Reppe K, Gutbier B, Tschernig T, Hocke AC, et al. Delivery of the endolysin Cpl-1 by inhalation rescues mice with fatal pneumococcal pneumonia. J Antimicrob Chemother. 2013;68:2111–7. https://doi.org/10.1093/jac/dkt131.

    Article  CAS  PubMed  Google Scholar 

  26. Raz A, Serrano A, Hernandez A, Euler CW, Fischetti VA. Isolation of phage Lysins that effectively kill Pseudomonas aeruginosa in mouse models of lung and skin infection. Antimicrob Agents Chemother. 2019;63:e00024–19. https://doi.org/10.1128/AAC.00024-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bae JY, Jun KI, Kang CK, Song KH, Choe PG, Bang JH, et al. Efficacy of intranasal administration of the recombinant Endolysin SAL200 in a lethal murine Staphylococcus aureus pneumonia model. Antimicrob Agents Chemother. 2019;63:e02009–18. https://doi.org/10.1128/AAC.02009-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Khanal D, Chang RYK, Shang X, Yang H, Britton WJ, et al. Can bacteriophage endolysins be nebulised for inhalation delivery against Streptococcus pneumoniae? Int J Pharm. 2020;591:119982. https://doi.org/10.1016/j.ijpharm.2020.119982.

    Article  CAS  PubMed  Google Scholar 

  29. Thawer S, Auret J, Schnoeller C, Chetty A, Smith K, Darby M, et al. Surfactant protein-D is essential for immunity to helminth infection. PLoS Pathog. 2016;12:e1005461. https://doi.org/10.1371/journal.ppat.1005461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Singh N, Yadav P, Gaur P, Gaur M, Yadav AB. Protein stability and functional activity during nebulization: a comparative study of three nebulizer! bioRxiv; 2020. https://doi.org/10.1101/2020.05.09.085720.

    Book  Google Scholar 

  31. Allen MJ, Harbeck R, Smith B, Voelker DR, Mason RJ. Binding of rat and human surfactant proteins a and D to aspergillus fumigatus conidia. Infect Immun. 1999;67:4563–9. https://doi.org/10.1128/IAI.67.9.4563-4569.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu FS, Cornicelli MD, Kovach MA, Newstead MW, Zeng X, Kumar A, et al. Flagellin stimulates protective lung mucosal immunity: role of cathelicidin-related antimicrobial peptide. J Immunol. 2010;185:1142–9. https://doi.org/10.4049/jimmunol.1000509.

    Article  CAS  PubMed  Google Scholar 

  33. Trapnell BC, Whitsett JA. Gm-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. Annu Rev Physiol. 2002;64:775–802. https://doi.org/10.1146/annurev.physiol.64.090601.113847.

    Article  CAS  PubMed  Google Scholar 

  34. Steinwede K, Tempelhof O, Bolte K, Maus R, Bohling J, Ueberberg B, et al. Local delivery of GM-CSF protects mice from lethal pneumococcal pneumonia. J Immunol. 2011;187:5346–56. https://doi.org/10.4049/jimmunol.1101413.

    Article  CAS  PubMed  Google Scholar 

  35. Promixin 1 million International Units (IU) Powder for Nebuliser Solution. https://www.medicines.org.uk/emc/product/4/smpc (2020). Accessed 28 Feb 2023.

  36. Quon BS, Goss CH, Ramsey BW. Inhaled antibiotics for lower airway infections. Ann Am Thorac Soc. 2014;11:425–34. https://doi.org/10.1513/AnnalsATS.201311-395FR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaplan S, Patino O, Rainville C, Madison T. Assessment of colistimethate sodium (COLOBREATHE) risk minimization measures implemented in the European Union: a cross-sectional study. Pharmacoepidemiol Drug Saf. 2020;29:219–23. https://doi.org/10.1002/pds.4940.

    Article  PubMed  Google Scholar 

  38. Westerman EM, De Boer AH, Le Brun PP, Touw DJ, Roldaan AC, Frijlink HW, et al. Dry powder inhalation of colistin in cystic fibrosis patients: a single dose pilot study. J Cyst Fibros. 2007;6:284–92. https://doi.org/10.1016/j.jcf.2006.10.010.

    Article  CAS  PubMed  Google Scholar 

  39. Baldrick P, Bamford DG. A toxicological review of lactose to support clinical administration by inhalation. Food Chem Toxicol. 1997;35:719–33. https://doi.org/10.1016/s0278-6915(97)00041-0.

    Article  CAS  PubMed  Google Scholar 

  40. Yapa SWS, Li J, Porter CJ, Nation RL, Patel K, Mcintosh MP. Population pharmacokinetics of colistin methanesulfonate in rats: achieving sustained lung concentrations of colistin for targeting respiratory infections. Antimicrob Agents Chemother. 2013;57:5087–95. https://doi.org/10.1128/AAC.01127-13.

    Article  CAS  PubMed  Google Scholar 

  41. Marchand S, Bouchene S, De Monte M, Guilleminault L, Montharu J, Cabrera M, et al. Pharmacokinetics of Colistin Methansulphonate (CMS) and Colistin after CMS Nebulisation in Baboon Monkeys. Pharm Res. 2015;32:3403–14. https://doi.org/10.1007/s11095-015-1716-0.

    Article  CAS  PubMed  Google Scholar 

  42. Landersdorfer CB, Nguyen TH, Lieu LT, Nguyen G, Bischof RJ, Meeusen EN, et al. Substantial targeting advantage achieved by pulmonary administration of colistin methanesulfonate in a large-animal model. Antimicrob Agents Chemother. 2017;61:e01934–16. https://doi.org/10.1128/AAC.01934-16.

    Article  CAS  PubMed  Google Scholar 

  43. Lu Q, Girardi C, Zhang M, Bouhemad B, Louchahi K, Petitjean O, et al. Nebulized and intravenous colistin in experimental pneumonia caused by Pseudomonas aeruginosa. Intensive Care Med. 2010;36:1147–55. https://doi.org/10.1007/s00134-010-1879-4.

    Article  CAS  PubMed  Google Scholar 

  44. Marchand S, Gobin P, Brillault J, Baptista S, Adier C, Olivier JC, et al. Aerosol therapy with colistin methanesulfonate: a biopharmaceutical issue illustrated in rats. Antimicrob Agents Chemother. 2010;54:3702–7. https://doi.org/10.1128/AAC.00411-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin YW, Zhou QT, Cheah SE, Zhao J, Chen K, Wang J, et al. Pharmacokinetics/pharmacodynamics of pulmonary delivery of Colistin against Pseudomonas aeruginosa in a mouse lung infection model. Antimicrob Agents Chemother. 2017a;61:e02025–16. https://doi.org/10.1128/AAC.02025-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tewes F, Brillault J, Gregoire N, Olivier JC, Lamarche I, Adier C, et al. Comparison between colistin sulfate dry powder and solution for pulmonary delivery. Pharmaceutics. 2020;12:557. https://doi.org/10.3390/pharmaceutics12060557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin YW, Zhou QT, Hu Y, Onufrak NJ, Sun S, Wang J, et al. Pulmonary pharmacokinetics of Colistin following Administration of dry Powder Aerosols in rats. Antimicrob Agents Chemother. 2017b;61:e00973–17. https://doi.org/10.1128/AAC.00973-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Park CW, Li X, Vogt FG, Hayes D Jr, Zwischenberger JB, Park ES, et al. Advanced spray-dried design, physicochemical characterization, and aerosol dispersion performance of vancomycin and clarithromycin multifunctional controlled release particles for targeted respiratory delivery as dry powder inhalation aerosols. Int J Pharm. 2013;455:374–92. https://doi.org/10.1016/j.ijpharm.2013.06.047.

    Article  CAS  PubMed  Google Scholar 

  49. Waterer G, Lord J, Hofmann T, Jouhikainen T. Phase I, dose-escalating study of the safety and pharmacokinetics of inhaled dry-powder vancomycin (AeroVanc) in volunteers and patients with cystic fibrosis: a new approach to therapy for methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2020;64:e01776–19. https://doi.org/10.1128/AAC.01776-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hayes D Jr, Murphy BS, Mullett TW, Feola DJ. Aerosolized vancomycin for the treatment of MRSA after lung transplantation. Respirology. 2010;15:184–6. https://doi.org/10.1111/j.1440-1843.2009.01647.x.

    Article  PubMed  Google Scholar 

  51. Dezube R, Jennings MT, Rykiel M, Diener-West M, Boyle MP, Chmiel JF, et al. Eradication of persistent methicillin-resistant Staphylococcus aureus infection in cystic fibrosis. J Cyst Fibros. 2019;18:357–63. https://doi.org/10.1016/j.jcf.2018.07.005.

    Article  CAS  PubMed  Google Scholar 

  52. Dose Escalation Study of ALX-009 in Healthy Men and Cystic Fibrosis (CF) and Non-CF Bronchiectasis Patients. https://ClinicalTrials.gov/show/NCT02598999 (2022). Accessed 28 Feb 2023.

  53. Tunney MM, Payne JE, Mcgrath SJ, Einarsson GG, Ingram RJ, Gilpin DF, et al. Activity of hypothiocyanite and lactoferrin (ALX-009) against respiratory cystic fibrosis pathogens in sputum. J Antimicrob Chemother. 2018;73:3391–7. https://doi.org/10.1093/jac/dky357.

    Article  CAS  PubMed  Google Scholar 

  54. Cutone A, Lepanto MS, Rosa L, Scotti MJ, Rossi A, Ranucci S, et al. Aerosolized bovine Lactoferrin counteracts infection, inflammation and iron dysbalance in a cystic fibrosis mouse model of pseudomonas aeruginosa chronic lung infection. Int J Mol Sci. 2019;20:2128. https://doi.org/10.3390/ijms20092128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hazlett HF, Hampton TH, Aridgides DS, Armstrong DA, Dessaint JA, Mellinger DL, et al. Altered iron metabolism in cystic fibrosis macrophages: the impact of CFTR modulators and implications for Pseudomonas aeruginosa survival. Sci Rep. 2020;10:10935. https://doi.org/10.1038/s41598-020-67729-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Di YP, Lin Q, Chen C, Montelaro RC, Doi Y, Deslouches B. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. Sci Adv. 2020;6:eaay6817. https://doi.org/10.1126/sciadv.aay6817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bracci L, Falciani C, Lelli B, Lozzi L, Runci Y, Pini A, et al. Synthetic peptides in the form of dendrimers become resistant to protease activity. J Biol Chem. 2003;278:46590–5. https://doi.org/10.1074/jbc.M308615200.

    Article  CAS  PubMed  Google Scholar 

  58. Quercini L, Brunetti J, Riolo G, Bindi S, Scali S, Lampronti I, et al. An antimicrobial molecule mitigates signs of sepsis in vivo and eradicates infections from lung tissue. FASEB J. 2020;34:192–207. https://doi.org/10.1096/fj.201901896RR.

    Article  CAS  PubMed  Google Scholar 

  59. Pini A, Falciani C, Mantengoli E, Bindi S, Brunetti J, Iozzi S, et al. A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysaccharide and prevents septic shock in vivo. FASEB J. 2010;24:1015–22. https://doi.org/10.1096/fj.09-145474.

    Article  CAS  PubMed  Google Scholar 

  60. Falciani C, Lozzi L, Pini A, Corti F, Fabbrini M, Bernini A, et al. Molecular basis of branched peptides resistance to enzyme proteolysis. Chem Biol Drug Des. 2007;69:216–21. https://doi.org/10.1111/j.1747-0285.2007.00487.x.

    Article  CAS  PubMed  Google Scholar 

  61. Sommer P, Fluxa VS, Darbre T, Reymond JL. Proteolysis of peptide dendrimers. Chembiochem. 2009;10:1527–36. https://doi.org/10.1002/cbic.200900060.

    Article  CAS  PubMed  Google Scholar 

  62. Forde E, Schutte A, Reeves E, Greene C, Humphreys H, Mall M, et al. Differential in vitro and in vivo toxicities of antimicrobial peptide prodrugs for potential use in cystic fibrosis. Antimicrob Agents Chemother. 2016;60:2813–21. https://doi.org/10.1128/AAC.00157-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Forde E, Kelly G, Sweeney L, Fitzgerald-Hughes D, Macloughlin R, Devocelle M. Vibrating mesh nebulisation of pro-antimicrobial peptides for use in cystic fibrosis. Pharmaceutics. 2019;11:239. https://doi.org/10.3390/pharmaceutics11050239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Forde E, Humphreys H, Greene CM, Fitzgerald-Hughes D, Devocelle M. Potential of host defense peptide prodrugs as neutrophil elastase-dependent anti-infective agents for cystic fibrosis. Antimicrob Agents Chemother. 2014;58:978–85. https://doi.org/10.1128/AAC.01167-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Walton WG, Ahmad S, Little MS, Kim CS, Tyrrell J, Lin Q, et al. Structural features essential to the antimicrobial functions of human SPLUNC1. Biochemistry. 2016;55:2979–91. https://doi.org/10.1021/acs.biochem.6b00271.

    Article  CAS  PubMed  Google Scholar 

  66. Jiang S, Deslouches B, Chen C, Di ME, Di YP. Antibacterial properties and efficacy of a novel SPLUNC1-derived antimicrobial peptide, alpha4-short, in a murine model of respiratory infection. MBio. 2019;10:e00226–19. https://doi.org/10.1128/mBio.00226-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hartl D, Tirouvanziam R, Laval J, Greene CM, Habiel D, Sharma L, et al. Innate immunity of the lung: from basic mechanisms to translational medicine. J Innate Immun. 2018;10:487–501. https://doi.org/10.1159/000487057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nijnik A, Madera L, Ma S, Waldbrook M, Elliott MR, Easton DM, et al. Synthetic cationic peptide IDR-1002 provides protection against bacterial infections through chemokine induction and enhanced leukocyte recruitment. J Immunol. 2010;184:2539–50. https://doi.org/10.4049/jimmunol.0901813.

    Article  CAS  PubMed  Google Scholar 

  69. Rivas-Santiago B, Castaneda-Delgado JE, Rivas Santiago CE, Waldbrook M, Gonzalez-Curiel I, Leon-Contreras JC, et al. Ability of innate defence regulator peptides IDR-1002, IDR-HH2 and IDR-1018 to protect against Mycobacterium tuberculosis infections in animal models. PLoS One. 2013;8:e59119. https://doi.org/10.1371/journal.pone.0059119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Singh M, Madan T, Waters P, Sonar S, Singh SK, Kamran MF, et al. Therapeutic effects of recombinant forms of full-length and truncated human surfactant protein D in a murine model of invasive pulmonary aspergillosis. Mol Immunol. 2009;46:2363–9. https://doi.org/10.1016/j.molimm.2009.03.019.

    Article  CAS  PubMed  Google Scholar 

  71. Moreau-Marquis S, Coutermarsh B, Stanton BA. Combination of hypothiocyanite and lactoferrin (ALX-109) enhances the ability of tobramycin and aztreonam to eliminate Pseudomonas aeruginosa biofilms growing on cystic fibrosis airway epithelial cells. J Antimicrob Chemother. 2015;70:160–6. https://doi.org/10.1093/jac/dku357.

    Article  CAS  PubMed  Google Scholar 

  72. Marshall LJ, Oguejiofor W, Price R, Shur J. Investigation of the enhanced antimicrobial activity of combination dry powder inhaler formulations of lactoferrin. Int J Pharm. 2016;514:399–406. https://doi.org/10.1016/j.ijpharm.2016.09.034.

    Article  CAS  PubMed  Google Scholar 

  73. Bhavsar T, Liu M, Liu X, Cantor J. Aerosolized recombinant human lysozyme enhances the bactericidal effect of tobramycin in a hamster model of Pseudomonas aeruginosa-induced pneumonia. Exp Lung Res. 2011;37:536–41. https://doi.org/10.3109/01902148.2011.609578.

    Article  CAS  PubMed  Google Scholar 

  74. Gupta PV, Nirwane AM, Nagarsenker MS. Inhalable levofloxacin liposomes complemented with lysozyme for treatment of pulmonary infection in rats: effective antimicrobial and Antibiofilm strategy. AAPS PharmSciTech. 2018;19:1454–67. https://doi.org/10.1208/s12249-017-0945-4.

    Article  CAS  PubMed  Google Scholar 

  75. Matarazzo L, Casilag F, Porte R, Wallet F, Cayet D, Faveeuw C, et al. Therapeutic synergy between antibiotics and pulmonary toll-like receptor 5 stimulation in antibiotic-sensitive or -resistant pneumonia. Front Immunol. 2019;10:723. https://doi.org/10.3389/fimmu.2019.00723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Qi A, Friend JR, Yeo LY, Morton DA, Mcintosh MP, Spiccia L. Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization. Lab Chip. 2009;9:2184–93. https://doi.org/10.1039/b903575c.

    Article  CAS  PubMed  Google Scholar 

  77. Wang Y, Rezk AR, Khara JS, Yeo LY, Ee PL. Stability and efficacy of synthetic cationic antimicrobial peptides nebulized using high frequency acoustic waves. Biomicrofluidics. 2016b;10:034115. https://doi.org/10.1063/1.4953548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yu S, Wang S, Zou P, Chai G, Lin YW, Velkov T, et al. Inhalable liposomal powder formulations for co-delivery of synergistic ciprofloxacin and colistin against multi-drug resistant gram-negative lung infections. Int J Pharm. 2020;575:118915. https://doi.org/10.1016/j.ijpharm.2019.118915.

    Article  CAS  PubMed  Google Scholar 

  79. Brunaugh AD, Wu T, Kanapuram SR, Smyth HDC. Effect of particle formation process on characteristics and aerosol performance of Respirable protein powders. Mol Pharm. 2019;16:4165–80. https://doi.org/10.1021/acs.molpharmaceut.9b00496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ji S, Thulstrup PW, Mu H, Hansen SH, Van De Weert M, Rantanen J, et al. Investigation of factors affecting the stability of lysozyme spray dried from ethanol-water solutions. Int J Pharm. 2017;534:263–71. https://doi.org/10.1016/j.ijpharm.2017.10.021.

    Article  CAS  PubMed  Google Scholar 

  81. Ferrati S, Wu T, Fuentes O, Brunaugh AD, Kanapuram SR, Smyth HDC. Influence of formulation factors on the aerosol performance and stability of lysozyme powders: a systematic approach. AAPS PharmSciTech. 2018;19:2755–66. https://doi.org/10.1208/s12249-018-0980-9.

    Article  CAS  PubMed  Google Scholar 

  82. Graf M, Ziegler CE, Gregoritza M, Goepferich AM. Hydrogel microspheres evading alveolar macrophages for sustained pulmonary protein delivery. Int J Pharm. 2019;566:652–61. https://doi.org/10.1016/j.ijpharm.2019.06.019.

    Article  CAS  PubMed  Google Scholar 

  83. Wallace SJ, Li J, Nation RL, Prankerd RJ, Boyd BJ. Interaction of colistin and colistin methanesulfonate with liposomes: colloidal aspects and implications for formulation. J Pharm Sci. 2012;101:3347–59. https://doi.org/10.1002/jps.23203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Falciani C, Zevolini F, Brunetti J, Riolo G, Gracia R, Marradi M, et al. Antimicrobial peptide-loaded nanoparticles as inhalation therapy for Pseudomonas aeruginosa infections. Int J Nanomedicine. 2020;15:1117–28. https://doi.org/10.2147/IJN.S218966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nieto-Orellana A, Coghlan D, Rothery M, Falcone FH, Bosquillon C, Childerhouse N, et al. Dry-powder formulations of non-covalent protein complexes with linear or miktoarm copolymers for pulmonary delivery. Int J Pharm. 2018;540:78–88. https://doi.org/10.1016/j.ijpharm.2018.02.008.

    Article  CAS  PubMed  Google Scholar 

  86. Tenland E, Pochert A, Krishnan N, Umashankar Rao K, Kalsum S, Braun K, et al. Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLoS One. 2019;14:e0212858. https://doi.org/10.1371/journal.pone.0212858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Garcia-Fernandez A, Sancenon F, Martinez-Manez R. Mesoporous silica nanoparticles for pulmonary drug delivery. Adv Drug Deliv Rev. 2021;177:113953. https://doi.org/10.1016/j.addr.2021.113953.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the Australian National Health and Medical Research Council to H.-K. C. (APP1140617) and W. J. B. (APP1153493) and from the National Institutes of Health to H.-K. C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Kim Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y., Chang, R.Y.K., Britton, W.J., Chan, HK. (2023). Antimicrobial Peptides and Proteins for Inhalation. In: Lam, J., Kwok, P.C.L. (eds) Respiratory Delivery of Biologics, Nucleic Acids, and Vaccines. AAPS Introductions in the Pharmaceutical Sciences, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-031-47567-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47567-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47566-5

  • Online ISBN: 978-3-031-47567-2

  • eBook Packages: MedicineBiomedical and Life Sciences (R0)

Publish with us

Policies and ethics

Navigation