Lipids in Pollen

  • Chapter
  • First Online:
Pollen Chemistry & Biotechnology

Abstract

Lipids are one of the three main components of pollen grains. A wide spectrum of these compounds is located in both the outer zones (pollenkitt, sporopollenin, exine) and the inner part of the grain. However, differences in lipid profiles have been observed depending on the pollen zone. While the pollenkitt layer contains a mixture of different neutral lipids, the inner zone mostly contains polar lipids, especially phospholipids, as part of the cell membrane structure. Among the lipophilic substances in the pollenkitt zone, there are volatile compounds responsible for plant-pollinator interactions, as well as repulsing agents against herbivores. In some cases, the volatile profile of pollen can be used to differentiate not only plant genera but even species belonging to one genus. Similarly, fatty acids (FAs), identified in different pollen samples, can be used as possible chemotaxonomic markers. In that sense, a great diversity of FAs (both saturated and unsaturated) was observed and confirmed in pollen samples (both floral and bee-collected). According to the available literature, 20 saturated, 12 monounsaturated, and 18 polyunsaturated fatty acids were identified and quantified in the pollen samples with different botanical and geographical origin. It is possible that some of the identified FAs originated from the microbiological activity of the bees’ gut microbiota or from the microbial activity during storage and/or processing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thakur M, Nanda V (2020) Composition and functionality of bee pollen: a review. Trends Food Sci Technol 98:82–106. https://doi.org/10.1016/j.tifs.2020.02.001

    Article  CAS  Google Scholar 

  2. Campos MGR, Bogdanov S, de Almeida-Muradian LB et al (2008) Pollen composition and standardisation of analytical methods. J Apic Res 47:154–161. https://doi.org/10.1080/00218839.2008.11101443

    Article  CAS  Google Scholar 

  3. Ischebeck T (2016) Lipids in pollen — they are different. Biochim Biophys Acta (BBA) - Mol Cell Biol Lipid 1861:1315–1328. https://doi.org/10.1016/j.bbalip.2016.03.023

    Article  CAS  Google Scholar 

  4. Wiermann R, Gubatz S (1992) Pollen Wall and Sporopollenin. Int Rev Citol 140:35–72. https://doi.org/10.1016/S0074-7696(08)61093-1

    Article  CAS  Google Scholar 

  5. Yaacob SFFS, Jamil RZR, Suah FBM (2022) Sporopollenin based materials as a versatile choice for the detoxification of environmental pollutants — a review. Int J Biol Macromol 207:990–1004. https://doi.org/10.1016/j.ijbiomac.2022.03.206

    Article  CAS  PubMed  Google Scholar 

  6. Mackenzie G, Boa AN, Diego-Taboada A et al (2015) Sporopollenin, the least known yet toughest natural biopolymer. Front Mater 2:66. https://doi.org/10.3389/fmats.2015.00066

    Article  Google Scholar 

  7. Ageitos JM, Robla S, Valverde-Fraga L et al (2021) Purification of hollow Sporopollenin microcapsules from sunflower and chamomile pollen grains. Polymers (Basel) 13:2094. https://doi.org/10.3390/polym13132094

    Article  CAS  PubMed  Google Scholar 

  8. Schouten PJ, Soto-Aguilar D, Aldalbahi A et al (2022) Design of sporopollenin-based functional ingredients for gastrointestinal tract targeted delivery. Curr Opin Food Sci 44:100809. https://doi.org/10.1016/j.cofs.2022.100809

    Article  CAS  Google Scholar 

  9. Pacini E, Hesse M (2005) Pollenkitt – its composition, forms and functions. Flora – Morphol, Distribut, Funct Ecol Plant 200:399–415. https://doi.org/10.1016/j.flora.2005.02.006

    Article  Google Scholar 

  10. Dobson HEM (1988) Survey of pollen and Pollenkitt lipids – chemical cues to flower visitors? Am J Bot 75:170. https://doi.org/10.2307/2443884

    Article  CAS  Google Scholar 

  11. Zhang H, Zhu X, Huang Q et al (2023) Antioxidant and anti-inflammatory activities of rape bee pollen after fermentation and their correlation with chemical components by ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry-based untargeted metabolomics. Food Chem 409:135342. https://doi.org/10.1016/j.foodchem.2022.135342

    Article  CAS  PubMed  Google Scholar 

  12. Dobson HEM, Bergström G (2000) The ecology and evolution of pollen odors. Plant Syst Evol 222:63–87. https://doi.org/10.1007/BF00984096

    Article  CAS  Google Scholar 

  13. Piskorski R, Kroder S, Dorn S (2011) Can pollen headspace volatiles and pollenkitt lipids serve as reliable chemical cues for bee pollinators? Chem Biodivers 8:577–586. https://doi.org/10.1002/cbdv.201100014

    Article  CAS  PubMed  Google Scholar 

  14. Konzmann S, Neunkirchen M, Voigt D et al (2023) Pollenkitt is associated with the collectability of Malvoideae pollen for corbiculate bees. J Pollinat Ecol 32:128–138. https://doi.org/10.26786/1920-7603(2023)754

    Article  Google Scholar 

  15. Dobson HEM, Bergström J, Bergström G, Groth I (1987) Pollen and flower volatiles in two Rosa species. Phytochemistry 26:3171–3173. https://doi.org/10.1016/S0031-9422(00)82464-4

    Article  CAS  Google Scholar 

  16. Flamini G, Tebano M, Cioni PL (2007) Volatiles emission patterns of different plant organs and pollen of Citrus limon. Anal Chim Acta 589:120–124. https://doi.org/10.1016/j.aca.2007.02.053

    Article  CAS  PubMed  Google Scholar 

  17. de Sousa LNJ, Lopes JAD, Moita Neto JM et al (2017) Volatile compounds and palynological analysis from pollen pots of stingless bees from the mid-north region of Brazil. Braz J Pharm Sci 53(2). https://doi.org/10.1590/s2175-97902017000214093

  18. Starowicz M, Hanus P, Lamparski G, Sawicki T (2021) Characterizing the volatile and sensory profiles, and sugar content of beeswax, beebread, bee pollen, and honey. Molecules 26:3410. https://doi.org/10.3390/molecules26113410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ni J-B, Bi Y-X, Vidyarthi SK et al (2023) Non-thermal electrohydrodynamic (EHD) drying improved the volatile organic compounds of lotus bee pollen via HS-GC-IMS and HS-SPME-GC-MS. LWT-Food Sci Technol 176:114480. https://doi.org/10.1016/j.lwt.2023.114480

    Article  CAS  Google Scholar 

  20. Aylanc V, Larbi S, Calhelha R et al (2023) Evaluation of antioxidant and anticancer activity of mono- and polyfloral Moroccan bee pollen by characterizing phenolic and volatile compounds. Molecules 28:835. https://doi.org/10.3390/molecules28020835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Almeida-Muradian LB, Pamplona LC, Coimbra S, Barth OM (2005) Chemical composition and botanical evaluation of dried bee pollen pellets. J Food Compos Anal 18:105–111. https://doi.org/10.1016/j.jfca.2003.10.008

    Article  CAS  Google Scholar 

  22. de Arruda VAS, Pereira AAS, de Freitas AS et al (2013) Dried bee pollen: B complex vitamins, physicochemical and botanical composition. J Food Compos Anal 29:100–105. https://doi.org/10.1016/j.jfca.2012.11.004

    Article  CAS  Google Scholar 

  23. Kostić AŽ, Barać MB, Stanojević SP et al (2015) Physicochemical composition and techno-functional properties of bee pollen collected in Serbia. LWT – Food Sci Technol 62:301–309. https://doi.org/10.1016/j.lwt.2015.01.031

    Article  CAS  Google Scholar 

  24. Kostić AŽ, Milinčić DD, Trifunović BDŠ et al (2020) Nutritional and techno-functional properties of monofloral bee-collected sunflower (Helianthus annuus L.) pollen. Emir J Food Agric 32(11):768–777. https://doi.org/10.9755/ejfa.2020.v32.i11.2188

    Article  Google Scholar 

  25. Sagona S, Pozzo L, Peiretti PG et al (2017) Palynological origin, chemical composition, lipid peroxidation and fatty acid profile of organic Tuscanian bee-pollen. J Apic Res 56:136–143. https://doi.org/10.1080/00218839.2017.1287995

    Article  Google Scholar 

  26. Mohamadi Sani A, Hemmati Kakhki A, Moradi E (2013) Chemical composition and nutritional value of saffron’s pollen (Crocus sativus L.). Nutr Food Sci 43:490–495. https://doi.org/10.1108/NFS-04-2012-0040

    Article  Google Scholar 

  27. Chehraghi M, Jafarizadeh-Malmiri H, Javadi A, Anarjan N (2023) Effects of planetary ball milling and ultrasonication on the nutrients and physico–chemical and biological properties of the honey bee pollen. J Food Measur Character 17(4):1–10. https://doi.org/10.1007/s11694-023-01913-9

    Article  Google Scholar 

  28. Manning R (2001) Fatty acids in pollen: a review of their importance for honey bees. Bee World 82:60–75. https://doi.org/10.1080/0005772X.2001.11099504

    Article  Google Scholar 

  29. Loper GM, Standifer LN, Thompson MJ, Gilliam M (1980) Biochemistry and microbiology of bee-collected almond (Prunus dulcis) pollen and bee bread. I- Fatty acids, sterols, vitamins and minerals. Apidologie 11:63–73. https://doi.org/10.1051/apido:19800108

    Article  CAS  Google Scholar 

  30. Shawer MB, Ali SM, Abdellatif MA, El-Refai AA (1987) Biochemical studies of bee-collected pollen in Egypt 2. Fatty acids and non-saponifiables. J Apic Res 26:133–136. https://doi.org/10.1080/00218839.1987.11100749

    Article  CAS  Google Scholar 

  31. Serra Bonvehí J, Escolà Jordà R (1997) Nutrient composition and microbiological quality of honeybee-collected pollen in Spain. J Agric Food Chem 45:725–732. https://doi.org/10.1021/jf960265q

    Article  Google Scholar 

  32. Saa-Otero MP, Díaz-Losada E, Fernández-Gómez E (2000) Analysis of fatty acids, proteins and ethereal extract in honeybee pollen – considerations of their floral origin. Grana 39:175–181. https://doi.org/10.1080/00173130051084287

    Article  Google Scholar 

  33. Estevinho LM, Rodrigues S, Pereira AP, Feás X (2012) Portuguese bee pollen: palynological study, nutritional and microbiological evaluation. Int J Food Sci Technol 47:429–435. https://doi.org/10.1111/j.1365-2621.2011.02859.x

    Article  CAS  Google Scholar 

  34. Yang K, Wu D, Ye X et al (2013) Characterization of chemical composition of bee pollen in China. J Agric Food Chem 61:708–718. https://doi.org/10.1021/jf304056b

    Article  CAS  PubMed  Google Scholar 

  35. Markowicz Bastos DH, Monika Barth O, Isabel Rocha C et al (2004) Fatty acid composition and palynological analysis of bee (Apis) pollen loads in the states of São Paulo and Minas Gerais, Brazil. J Apic Res 43:35–39. https://doi.org/10.1080/00218839.2004.11101107

    Article  Google Scholar 

  36. Stránský K, Valterová I, Fiedler P (2001) Nonsaponifiable lipid components of the pollen of elder (Sambucus nigra L.). J Chromatogr A 936:173–181. https://doi.org/10.1016/S0021-9673(01)01313-9

    Article  PubMed  Google Scholar 

  37. Human H, Nicolson SW (2006) Nutritional content of fresh, bee-collected and stored pollen of Aloe greatheadii var. davyana (Asphodelaceae). Phytochemistry 67:1486–1492. https://doi.org/10.1016/j.phytochem.2006.05.023

    Article  CAS  PubMed  Google Scholar 

  38. Nicolson SW, Human H (2013) Chemical composition of the ‘low quality’ pollen of sunflower (Helianthus annuus, Asteraceae). Apidologie 44:144–152. https://doi.org/10.1007/s13592-012-0166-5

    Article  CAS  Google Scholar 

  39. Kostić AŽ, Milinčić DD, Nedić N et al (2021) Phytochemical profile and antioxidant properties of bee-collected artichoke (Cynara scolymus) pollen. Antioxidants 10:1091. https://doi.org/10.3390/antiox10071091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kostić AŽ, Pešić MB, Trbović D et al (2017) The fatty acid profile of Serbian bee-collected pollen–a chemotaxonomic and nutritional approach. J Apic Res 56:533–542. https://doi.org/10.1080/00218839.2017.1356206

    Article  Google Scholar 

  41. Kostić AŽ, Mačukanović-Jocić MP, Špirović Trifunović BD et al (2017) Fatty acids of maize pollen – quantification, nutritional and morphological evaluation. J Cereal Sci 77:180–185. https://doi.org/10.1016/j.jcs.2017.08.004

    Article  CAS  Google Scholar 

  42. Conte G, Benelli G, Serra A et al (2017) Lipid characterization of chestnut and willow honeybee-collected pollen: impact of freeze-drying and microwave-assisted drying. J Food Compos Anal 55:12–19. https://doi.org/10.1016/j.jfca.2016.11.001

    Article  CAS  Google Scholar 

  43. Mayda N, Özkök A, Ecem Bayram N et al (2020) Bee bread and bee pollen of different plant sources: determination of phenolic content, antioxidant activity, fatty acid and element profiles. J Food Measur Character 14:1795–1809. https://doi.org/10.1007/s11694-020-00427-y

    Article  Google Scholar 

  44. Mărgăoan R, Mărghitaş LAI, Dezmirean DS et al (2014) Predominant and secondary pollen botanical origins influence the carotenoid and fatty acid profile in fresh honeybee-collected pollen. J Agric Food Chem 62:6306–6316. https://doi.org/10.1021/jf5020318

    Article  CAS  PubMed  Google Scholar 

  45. Primorac L, Bilić Rajs B, Gal K et al (2023) The specificity of monofloral bee pollen fatty acid composition from Croatia and its nutritional value. J Central Eur Agric 24:104–114. https://doi.org/10.5513/JCEA01/24.1.3784

    Article  Google Scholar 

  46. Melo BKC de, Silva JA da, Gomes RD da S, et al (2023) Physicochemical composition and functional properties of bee pollen produced in different locations. Braz J Food Technol 26:e2022006. doi:https://doi.org/10.1590/1981-6723.00622

  47. Hsu P-S, Wu T-H, Huang M-Y et al (2021) Nutritive value of 11 bee pollen samples from major floral sources in Taiwan. Foods 10:2229. https://doi.org/10.3390/foods10092229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Araújo J, Chambó E, Costa M et al (2017) Chemical composition and biological activities of mono- and heterofloral bee pollen of different geographical origins. Int J Mol Sci 18:921. https://doi.org/10.3390/ijms18050921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thakur M, Nanda V (2018) Assessment of physico-chemical properties, fatty acid, amino acid and mineral profile of bee pollen from India with a multivariate perspective. J Food Nutr Res 57:328–340

    CAS  Google Scholar 

  50. Fuenmayor BC, Zuluaga DC, Díaz MC et al (2014) Evaluation of the physicochemical and functional properties of Colombian bee pollen. Rev MVZ Cordoba 19:4003–4014. https://doi.org/10.21897/rmvz.120

    Article  Google Scholar 

  51. Erdyneeva SA, Shiretorova VG, Tykheev ZA, Radnaeva LD (2021) Fatty acid composition of pollen from Pinus sylvestris, P. sibirica, and P. pumila. Chem Nat Compd 57:741–742. https://doi.org/10.1007/s10600-021-03462-3

    Article  CAS  Google Scholar 

  52. Aitzetmüller K (1993) Capillary GLC fatty acid fingerprints of seed lipids—a tool in plant chemotaxonomy? J High Resolut Chromatogr 16:488–490. https://doi.org/10.1002/jhrc.1240160809

    Article  Google Scholar 

  53. Bağci E, Bruehl L, Aitzetmuller K, Altan Y (2003) Chemotaxonomic approach to the fatty acid and tocochromanol content of Cannabis sativa L. (Cannabaceae). Turk J Botan 27:7. https://journals.tubitak.gov.tr/botany/vol27/iss2/7

    Google Scholar 

  54. Tsydendambaev VD, Christie WW, Brechany EY, Vereshchagin AG (2004) Identification of unusual fatty acids of four alpine plant species from the Pamirs. Phytochemistry 65:2695–2703. https://doi.org/10.1016/j.phytochem.2004.08.021

    Article  CAS  PubMed  Google Scholar 

  55. Mongrand S, Bessoule J-J, Cabantous F, Cassagne C (1998) The C16:3\C18:3 fatty acid balance in photosynthetic tissues from 468 plant species. Phytochemistry 49:1049–1064. https://doi.org/10.1016/S0031-9422(98)00243-X

    Article  CAS  Google Scholar 

  56. Alonso DL, Maroto FG (2000) Plants as ‘chemical factories’ for the production of polyunsaturated fatty acids. Biotechnol Adv 18:481–497. https://doi.org/10.1016/S0734-9750(00)00048-3

    Article  CAS  PubMed  Google Scholar 

  57. Gill I, Valivety R (1997) Polyunsaturated fatty acids, part 1: occurrence, biological activities and applications. Trends Biotechnol 15:401–409. https://doi.org/10.1016/S0167-7799(97)01076-7

    Article  CAS  PubMed  Google Scholar 

  58. Řezanka T, Sigler K (2009) Odd-numbered very-long-chain fatty acids from the microbial, animal and plant kingdoms. Prog Lipid Res 48:206–238. https://doi.org/10.1016/j.plipres.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  59. Jenkins B, West J, Koulman A (2015) A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15:0) and heptadecanoic acid (c17:0) in health and disease. Molecules 20:2425–2444. https://doi.org/10.3390/molecules20022425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vlaeminck B, Fievez V, Cabrita ARJ et al (2006) Factors affecting odd- and branched-chain fatty acids in milk: a review. Anim Feed Sci Technol 131:389–417. https://doi.org/10.1016/j.anifeedsci.2006.06.017

    Article  CAS  Google Scholar 

  61. Qin N, Li L, Wang Z, Shi S (2023) Microbial production of odd-chain fatty acids. Biotechnol Bioeng 120:917–931. https://doi.org/10.1002/bit.28308

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar Ž. Kostić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kostić, A.Ž., Kilibarda, S. (2023). Lipids in Pollen. In: Ecem Bayram, N., Ž. Kostic, A., Can Gercek, Y. (eds) Pollen Chemistry & Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-031-47563-4_4

Download citation

Publish with us

Policies and ethics

Navigation