Pollen Morphology and Anatomy with Botanical Preferences Made by Bees: An Introduction Data

  • Chapter
  • First Online:
Pollen Chemistry & Biotechnology

Abstract

Pollen is a microspore containing vegetative and generative cells prepared for pollination in seed plants. Because pollen grains show highly variable characteristics, these structures are used to evaluate kinship relationships and similarity levels in plants. However, plant sources of honey, which is consumed as an important food source and functional food, can also be determined by identifying the pollen grains included in the honey by bees. In this study, the characteristic parameters used for the identification of pollen grains in plants and the plant sources frequently visited by bees were mentioned. As a result, variables such as size, polarity and symmetry, shape, exine sculpturing, intine properties and apertures are the main characteristics used to describe pollen grains. Considering these variables, it can contribute to the identification of plant taxa. In addition, the plants that honey bees visit to collect nectar and the botanical origin/source of honey (monofloral-multifloral) can also be determined by identifying the pollen grains included in the honey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khalifa SA, Elshafiey EH, Shetaia AA, El-Wahed AAA, Algethami AF, Musharraf SG et al (2021) Overview of bee pollination and its economic value for crop production. Insects 12(8):688. https://doi.org/10.3390/insects12080688

    Article  PubMed  PubMed Central  Google Scholar 

  2. Silici S, Özkök D (2009) Bal Arısı Biyolojisi ve Yetiştiriciliği. Silici S, Yayınevi E (eds)

    Google Scholar 

  3. Reyes ES, Sanchéz JS (2017) Botanical classification. In: Bee products – chemical and biological properties. Springer, pp 3–19. https://doi.org/10.1007/978-3-319-59689-1_1

    Chapter  Google Scholar 

  4. Scott RJ, Spielman M, Dickinson H (2004) Stamen structure and function. Plant Cell Online 16:46–60. https://doi.org/10.1105/tpc.017012

    Article  Google Scholar 

  5. Hafidh S, Fíla J, Honys D (2016) Male gametophyte development and function in angiosperms: a general concept. Plant Rep 29:31–51. https://doi.org/10.1007/s00497-015-0272-4

    Article  Google Scholar 

  6. Halbritter H, Ulrich S, Grímsson F, Weber M, Zetter R, Hesse M, Buchner R, Svojtka M, Frosch-Radivo A (2018) Illustrated pollen terminology. Springer. https://doi.org/10.1007/978-3-319-71365-6_7

    Book  Google Scholar 

  7. Keijzer CJ, Willemse MTM (1988) Tissue interactions in the develo** locule of Gasteria verrucosa during microgametogenesis. Acta Botanica Neerlandica 4:475–491. https://doi.org/10.1111/j.1438-8677.1988.tb02155.x

    Article  Google Scholar 

  8. Gómez JF, Talle B, Wilson ZA (2015) Anther and pollen development: a conserved developmental pathway. J Integr Plant Biol 11:876–891. https://doi.org/10.1111/jipb.12425

    Article  Google Scholar 

  9. Furness CA, Rudall PJ (2001) Pollen and anther characters in monocot systematics. Grana 1–2:17–25. https://doi.org/10.1080/00173130152591840

    Article  Google Scholar 

  10. Eady C, Lindsey K, Twell D (1995) The significance of microspore division and division symmetry for vegetative cell-specific transcription and generative cell differentiation. Plant Cell 1:65–74. https://doi.org/10.1105/tpc.7.1.65

    Article  Google Scholar 

  11. Simpson MG (2010) Palynology. In: Plant systematics. Elsevier, pp 561–571. https://doi.org/10.1016/b978-0-12-374380-0.50012-9

    Chapter  Google Scholar 

  12. Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spore terminology. Rev Palaeobot Palynol. https://doi.org/10.1016/j.revpalbo.2006.06.008

  13. Erdtman G (1963) Palynology. In: Advances in Botanical Research, vol 1. Academic, pp 149–208. https://doi.org/10.1016/s0065-2296(08)60181-0

    Chapter  Google Scholar 

  14. Pacini E, Hesse M (2002) Types of pollen dispersal units in orchids, and their consequences for germination and fertilization. Ann Bot 6:653–664. https://doi.org/10.1093/aob/mcf138

    Article  Google Scholar 

  15. Dahl O (1970) How to know pollen and spores. Ronald O. Kapp. Q Rev Biol 45(4):406. https://doi.org/10.1086/406697

    Article  Google Scholar 

  16. De Cock AWAM (1980) Flowering, pollination and fruiting in Zostera marina L. Aquat Bot 9:201–220. https://doi.org/10.1016/0304-3770(80)90023-6

    Article  Google Scholar 

  17. Meudt HM (2016) Pollen morphology and its taxonomic utility in the Southern Hemisphere bracteate-prostrate forget-me-nots (Myosotis, Boraginaceae). N Z J Bot 4:475–497. https://doi.org/10.1080/0028825x.2016.1229343

    Article  Google Scholar 

  18. Reitsma T (1969) Size modification of recent pollen grains under different treatments. Rev Palaeobot Palynol 3:175–202. https://doi.org/10.1016/0034-6667(69)90003-7

    Article  Google Scholar 

  19. Ricciardelli d’Albore G (1997) Textbook of melissopalynology. Apimondia, Bucharest

    Google Scholar 

  20. Erdtman G (1943) An introduction to pollen analysis. The Ronald Press Co, New York

    Google Scholar 

  21. Erdtman G (1986) Pollen morphology and plant taxonomy: angiosperms. Brill Archive, Leiden

    Book  Google Scholar 

  22. Erdtman G (Gunnar) (1969) Handbook of palynology- an introduction to the study of pollen grains and spores. Hafner, Copenhague

    Google Scholar 

  23. Li FS, Phyo P, Jacobowitz J, Hong M, Weng JK (2018) The molecular structure of plant sporopollenin. Nat Plant 5:41–46. https://doi.org/10.1038/s41477-018-0330-7

    Article  CAS  Google Scholar 

  24. Wiermann R, Gubatz S (1992) Pollen Wall and Sporopollenin. Int Rev Cytol C:35–72. https://doi.org/10.1016/s0074-7696(08)61093-1

  25. Steemans P, Lepot K, Marshall CP, Le Hérissé A, Javaux EJ (2010) FTIR characterisation of the chemical composition of Silurian miospores (cryptospores and trilete spores) from Gotland, Sweden. Rev Palaeobot Palynol 162(4):577–590. https://doi.org/10.1016/j.revpalbo.2010.07.006

    Article  Google Scholar 

  26. Faegri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley

    Google Scholar 

  27. Fellenberg C, Vogt T (2015) Evolutionarily conserved phenylpropanoid pattern on angiosperm pollen. Trends Plant Sci 20(4):212–218. https://doi.org/10.1016/j.tplants.2015.01.011

    Article  CAS  PubMed  Google Scholar 

  28. Erdtman G (1953) Pollen morphology and plant taxonomy. Soil Sci 75(3):248. https://doi.org/10.1097/00010694-195303000-00016

    Article  Google Scholar 

  29. Wodehouse RP (1935) Pollen grains. Their structure, identification and significance in science and medicine. Mc Graw-Hill Publishing Co. Ltd., London

    Google Scholar 

  30. Savaş T (2007) Arıcılık, çeviri: Meltem Leyla Kuş,; Özgün adı: Bienen Halten, Franz Lampeitl, Bilge Kültür Sanat Yayınevi, İstanbul

    Google Scholar 

  31. Špánik I, Pažitná A, Šiška P, Szolcsányi P (2014) The determination of botanical origin of honeys based on enantiomer distribution of chiral volatile organic compounds. Food Chem:497–503. https://doi.org/10.1016/j.foodchem.2014.02.129

  32. Von Der Ohe W, Oddo LP, Piana ML, Morlot M, Martin P (2004) Harmonized methods of melissopalynology. Apidologie 35:18–25. https://doi.org/10.1051/apido:2004050

    Article  Google Scholar 

  33. Molan PC (1998) The limitations of the methods of identifying the floral source of honeys. Bee World 2:59–68. https://doi.org/10.1080/0005772x.1998.11099381

    Article  Google Scholar 

  34. da Luz CFP, de Miranda Chaves SA, Cano CB (2020) Botanical and geographical origins of honey samples from Pantanal (Mato Grosso and Mato Grosso do Sul states, Brazil) certificated by melissopalynology. Grana 1:1–28. https://doi.org/10.1080/00173134.2020.1815831

    Article  Google Scholar 

  35. Maurizio A (1975) Microscopy of honey. In: Crane E (ed) Honey: a comprehensive survey. Heinemann, London, pp 240–257

    Google Scholar 

  36. Louveaux J, Maurizio A, Vorwohl G (1978) Methods of Melissopalynology. Bee World 4:139–157. https://doi.org/10.1080/0005772x.1978.11097714

    Article  Google Scholar 

  37. Pfister R (1895) Den Versuch einer Mikroskopie des Honigs. Z Anal Chem 34(1):479. https://doi.org/10.1007/bf01595875

    Article  Google Scholar 

  38. Bodor Z, Kovacs Z, Benedek C, Hitka G, Behling H (2021) Origin identification of hungarian honey using melissopalynology, physicochemical analysis, and near infrared spectroscopy. Molecules 26(23):7274. https://doi.org/10.3390/molecules26237274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bahloul R, Zerrouk S, Chaibi R (2022) Pollen analysis of honey from Laghouat region (Algeria). Grana 61(6):1–10. https://doi.org/10.1080/00173134.2022.2126726

    Article  Google Scholar 

  40. Piroux M, Lambert O, Puyo S, Farrera I, Thorin C, L’Hostis M et al (2014) Correlating the pollens gathered by Apis mellifera with the landscape features in western France. Appl Ecol Environ Res 12(2):423–439. https://doi.org/10.15666/aeer/1202_423439

    Article  Google Scholar 

  41. Mureșan CI, Cornea-Cipcigan M, Suharoschi R, Erler S, Mărgăoan R (2022) Honey botanical origin and honey-specific protein pattern: characterization of some European honeys. LWT 154:112883. https://doi.org/10.1016/j.lwt.2021.112883

    Article  CAS  Google Scholar 

  42. Küçükaydın S, Tel-Çayan G, Çayan F, Taş-Küçükaydın M, Eroğlu B, Duru ME, Öztürk M (2023) Characterization of Turkish Astragalus honeys according to their phenolic profiles and biological activities with a chemometric approach. Food Biosci 53:102507. https://doi.org/10.1016/j.fbio.2023.102507

    Article  CAS  Google Scholar 

  43. Bayram N, Yüzer MO, Bayram S (2019) Melissopalynology analysis, physicochemical properties, multi-element content and antimicrobial activity of honey samples collected from Bayburt, Turkey. Uludağ Arıcılık Dergisi 19(2):161–176

    Article  Google Scholar 

  44. Bruni I, Galimberti A, Caridi L, Scaccabarozzi D, De Mattia F, Casiraghi M, Labra M (2015) A DNA barcoding approach to identify plant species in multiflower honey. Food Chem 170:308–315. https://doi.org/10.1016/j.foodchem.2014.08.060

    Article  CAS  PubMed  Google Scholar 

  45. Saravanan M, Mohanapriya G, Laha R, Sathishkumar R (2019) DNA barcoding detects floral origin of Indian honey samples. Genome 62(5):341–348. https://doi.org/10.1139/gen-2018-0058

    Article  CAS  PubMed  Google Scholar 

  46. Özkök A, Bilgiç HA, Kosukcu C, Arık G, Canlı D, Yet İ, Karaaslan C (2023) Comparing the melissopalynological and next generation sequencing (NGS) methods for the determining of botanical origin of honey. Food Control 148:109630. https://doi.org/10.1016/j.foodcont.2023.109630

    Article  CAS  Google Scholar 

  47. Qiao J, Feng Z, Zhang Y, **ao X, Dong J, Haubruge E, Zhang H (2023) Phenolamide and flavonoid glycoside profiles of 20 types of monofloral bee pollen. Food Chem 405:134800. https://doi.org/10.1016/j.foodchem.2022.134800

    Article  CAS  PubMed  Google Scholar 

  48. Casiraghi M, Labra M, Ferri E, Galimberti A, De Mattia F (2010) DNA barcoding: a six-question tour to improve users’ awareness about the method. Brief Bioinform 11(4):440–453. https://doi.org/10.1093/bib/bbq003

    Article  CAS  PubMed  Google Scholar 

  49. Valentini A, Miquel C, Taberlet P (2010) DNA barcoding for honey biodiversity. Diversity 2(4):610–617. https://doi.org/10.3390/d2040610

    Article  CAS  Google Scholar 

  50. Laha RC, Mandal S, Ralte L, Ralte L, Kumar NS, Gurusubramanian G, Satishkumar R, Mugasimangalam R, Kuravadi NA (2017) Meta-barcoding in combination with palynological inference is a potent diagnostic marker for honey floral composition. AMB Express 7(1):132. https://doi.org/10.1186/s13568-017-0429-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sorkun K (2008) Türkiye’nin Nektarlı Bitkileri, Polenleri ve Balları. Palme Yayıncılık, Ankara

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Canlı, D., Ecem Bayram, N. (2023). Pollen Morphology and Anatomy with Botanical Preferences Made by Bees: An Introduction Data. In: Ecem Bayram, N., Ž. Kostic, A., Can Gercek, Y. (eds) Pollen Chemistry & Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-031-47563-4_1

Download citation

Publish with us

Policies and ethics

Navigation