Hydrogen-Terminated Diamond MOS Capacitors, MOSFETs, and MOSFET Logic Circuits

  • Chapter
  • First Online:
Novel Aspects of Diamond II

Part of the book series: Topics in Applied Physics ((TAP,volume 149))

  • 175 Accesses

Abstract

Wide-bandgap semiconductor diamond has been studied to develop high-power, high-frequency, and high-temperature electronic devices. However, their development has been limited by the low free carrier density that occurs in diamond at room temperature because of the high activation energies of p-type boron and n-type phosphorus dopants. Fortunately, hydrogen-terminated diamond (H-diamond) can accumulate two-dimensional hole gases on its surface with a high free carrier density. In this chapter, we review our recent progress in the fabrication of H-diamond metal–oxide–semiconductor (MOS) capacitors, MOS field-effect transistors (MOSFETs), and MOSFET logic circuits. Specifically, the leakage current densities for different oxide insulators on H-diamond and the capacitance–voltage properties for the Al2O3/H-diamond MOS capacitors are discussed. Planar-type, T-type, and triple-gate fin-type H-diamond MOSFETs are reviewed, and the fabrication and performance of depletion- and enhancement-mode H-diamond MOSFETs and logic circuits are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 129.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.J.H. Wort, R.S. Balmer, Diamond as an electronic material. Mater. Today 11(1–2), 22–28 (2008)

    Article  Google Scholar 

  2. B.J. Baliga, Power semiconductor device figure of merit for high-frequency applications. IEEE Electron Dev. Lett. 10(10), 455–457 (1989)

    Article  ADS  Google Scholar 

  3. J. Walker, Optical absorption and luminescence in diamond. Rep. Prog. Phys. 42(10), 1605–1659 (1979)

    Article  ADS  Google Scholar 

  4. H. Sato, M. Kasu, Maximum hole concentration for hydrogen-terminated diamond surfaces with various surface orientations obtained by exposure to highly concentrated NO2. Diam. Relat. Mater. 31, 47–49 (2013)

    Article  ADS  Google Scholar 

  5. M. Imura, K. Nakajima, M. Liao, Y. Koide, H. Amano, Growth mechanism of c-axis-oriented AlN on (1 1 1) diamond substrates by metal-organic vapor phase epitaxy. J. Crystal Growth 312(8), 1325–1328 (2010)

    Article  ADS  Google Scholar 

  6. J. Liu, M. Liao, M. Imura, H. Oosato, E. Watanabe, A. Tanaka, H. Iwai, Y. Koide, Interfacial band configuration and electrical properties of LaAlO3/Al2O3/hydrogenated-diamond metal-oxide-semiconductor field effect transistors. J. Appl. Phys. 114(8), 084108 (2013)

    Article  ADS  Google Scholar 

  7. J. Liu, M. Liao, M. Imura, H. Oosato, E. Watanabe, Y. Koide, Electrical characteristics of hydrogen-terminated diamond metal-oxide-semiconductor with atomic layer deposited HfO2 as gate dielectric. Appl. Phys. Lett. 102(11), 112910 (2013)

    Article  ADS  Google Scholar 

  8. J. Liu, M. Liao, M. Imura, R.G. Banal, Y. Koide, Deposition of TiO2/Al2O3 bilayer on hydrogenated diamond for electronic devices: capacitors, field-effect transistors, and logic inverters. J. Appl. Phys. 121(22), 224502 (2017)

    Article  ADS  Google Scholar 

  9. J. Liu, H. Ohsato, B. Da, Y. Koide, Fixed charges investigation in Al2O3/hydrogenated-diamond metal-oxide-semiconductor capacitors. Appl. Phys. Lett. 117(16), 163502 (2020)

    Article  ADS  Google Scholar 

  10. K. Hirama, H. Sato, Y. Harada, H. Yamamoto, M. Kasu, Diamond field-effect transistors with 1.3 A/mm drain current density by Al2O3 passivation layer. Jpn. J. Appl. Phys. 51(9R), 090112 (2012)

    Google Scholar 

  11. S. Imanishi, K. Horikawa, N. Oi, S. Okubo, T. Kageura, A. Hiraiwa, H. Kawarada, 3.8 W/mm RF power density for ALD Al2O3-based two-dimensional hole gas diamond MOSFET operating at saturation velocity. IEEE Electron Dev. Lett. 40(2), 279–282 (2019)

    Google Scholar 

  12. X. Yu, J. Zhou, C. Qi, Z. Cao, Y. Kong, T. Chen, A high frequency hydrogen-terminated diamond MISFET with fT/fmax of 70/80 GHz. IEEE Electron Dev. Lett. 39(9), 1373–1376 (2019)

    Article  ADS  Google Scholar 

  13. J. Liu, H. Oosato, B. Da, T. Teraji, A. Kobayashi, H. Fujioka, Y. Koide, Operations of hydrogenated diamond metal–oxide–semiconductor field-effect transistors after annealing at 500 °C. J. Phys. D Appl. Phys. 52(31), 315104 (2019)

    Article  Google Scholar 

  14. N. Saha, S. Kim, T. Oishi, M. Kasu, 3326-V modulation-doped diamond MOSFETs. IEEE Electron Dev. Lett. 43(8), 1303–1306 (2022)

    Article  ADS  Google Scholar 

  15. Z. Ren, J. Zhang, J. Zhang, C. Zhang, S. Xu, Y. Li, Y. Hao, Diamond field effect transistors with MoO3 gate dielectric. IEEE Electron Dev. Lett. 34(6), 786–789 (2017)

    Article  ADS  Google Scholar 

  16. W. Wang, Y. Wang, M. Zhang, R. Wang, G. Chen, X. Chang, F. Lin, F. Wen, K. Jia, H. Wang, An enhancement-mode hydrogen-terminated diamond field-effect transistor with lanthanum hexaboride gate material. IEEE Electron Dev. Lett. 41(4), 585–588 (2020)

    Article  ADS  Google Scholar 

  17. Z. Yin, M. Tordjman, A. Vardi, R. Kalish, J.A. Alamo, A diamond:H/WO3 metal–oxide–semiconductor field-effect transistor. IEEE Electron Dev. Lett. 39(4), 540–543 (2018)

    Article  ADS  Google Scholar 

  18. J. Liu, H. Ohsato, B. Da, Y. Koide, Investigation of Ohmic contact resistance, surface resistance, and channel resistance for hydrogen-terminated diamond MOSFETs. IEEE Trans. Electron Dev. 69(3), 1181–1185 (2022)

    Article  ADS  Google Scholar 

  19. J. Liu, H. Ohsato, X. Wang, M. Liao, Y. Koide, Design and fabrication of high-performance diamond triple-gate field-effect transistors. Sci. Rep. 6, 34757 (2016)

    Article  ADS  Google Scholar 

  20. J. Liu, H. Ohsato, M. Liao, Y. Koide, Enhancement-mode hydrogenated diamond metal-oxide-semiconductor field-effect transistors with Y2O3 oxide insulator grown by electron beam evaporator. Appl. Phys. Lett. 110(20), 203502 (2017)

    Article  ADS  Google Scholar 

  21. J. Liu, M. Liao, M. Imura, E. Watanabe, H. Oosato, Y. Koide, Diamond logic inverter with enhancement-mode metal-insulator-semiconductor field effect transistor. Appl. Phys. Lett. 105(8), 082110 (2014)

    Article  ADS  Google Scholar 

  22. J. Liu, H. Oosato, M. Liao, M. Imura, E. Watanabe, Y. Koide, Logic circuits with hydrogenated diamond field-effect transistors. IEEE Electron Dev. Lett. 38(7), 922–925 (2017)

    Article  ADS  Google Scholar 

  23. J. Liu, H. Oosato, M. Liao, M. Imura, E. Watanabe, Y. Koide, Annealing effects on hydrogenated diamond NOR logic circuits. Appl. Phys. Lett. 112(15), 153501 (2018)

    Article  ADS  Google Scholar 

  24. N. Oi, M. Inaba, S. Okubo, I. Tsuyuzaki, T. Kageura, S. Onoda, A. Hiraiwa, H. Kawarada, Vertical-type two-dimensional hole gas diamond metal oxide semiconductor field-effect transistors. Sci. Rep. 8, 10660 (2018)

    Article  ADS  Google Scholar 

  25. T. Matsumoto, H. Kato, K. Oyama, T. Makino, M. Ogura, D. Takeuchi, T. Inokuma, N. Tokuda, S. Yamasaki, Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics. Sci. Rep. 6, 31585 (2016)

    Article  ADS  Google Scholar 

  26. X. Zhang, T. Matsumoto, Y. Nakano, H. Noguchi, H. Kato, T. Makino, D. Takeuchi, M. Ogura, S. Yamasaki, C.E. Nebel, T. Inokuma, N. Tokuda, Inversion channel MOSFET on heteroepitaxially grown free-standing diamond. Carbon 175, 615–619 (2021)

    Article  Google Scholar 

  27. T.T. Pham, M. Gutiérrez, C. Masante, N. Rouger, D. Eon, E. Gheeraert, D. Araùjo, J. Pernot, High quality Al2O3/(100) oxygen-terminated diamond interface for MOSFETs fabrication. Appl. Phys. Lett. 112(10), 102103 (2018)

    Article  ADS  Google Scholar 

  28. J. Liu, T. Teraji, B. Da, Y. Koide, Boron-doped diamond MOSFETs with high output current and extrinsic transconductance. IEEE Tran. Electron Dev. 68(8), 3963–3967 (2021)

    Article  ADS  Google Scholar 

  29. X. Yuan, J. Liu, S. Shao, J. Liu, J. Wei, B. Da, C. Li, Y. Koide, Thermal stability investigation for Ohmic contact properties of Pt, Au, and Pd electrodes on the same hydrogen-terminated diamond. AIP Adv. 10(5), 055114 (2020)

    Article  ADS  Google Scholar 

  30. J. Liu, M. Liao, M. Imura, T. Matsumoto, N. Shibata, Y. Ikuhara, Y. Koide, Control of normally on/off characteristics in hydrogenated diamond metal-insulator-semiconductor field-effect transistors. J. Appl. Phys. 118(11), 115704 (2015)

    Article  ADS  Google Scholar 

  31. B.E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon. IEEE Tran. Electron Dev. 17(3), 606 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  32. B.C. Lai, N. Kung, J.Y. Lee, A study on the capacitance–voltage characteristics of metal-Ta2O5-silicon capacitors for very large scale integration metal-oxide-semiconductor gate oxide applications. J. Appl. Phys. 85(8), 4087 (1999)

    Article  ADS  Google Scholar 

  33. E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  34. K. Hayashi, S. Yamanaka, H. Watanabe, T. Sekiguchi, H. Okushi, K. Kajimura, Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond films. J. Appl. Phys. 81(2), 744 (1997)

    Article  ADS  Google Scholar 

  35. B. Rezek, C. Sauerer, C.E. Nebel, M. Stutzmann, J. Ristein, L. Ley, E. Snidero, P. Bergonzo, Fermi level on hydrogen terminated diamond surfaces. Appl. Phys. Lett. 82(14), 2266 (2003)

    Article  ADS  Google Scholar 

  36. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

  37. C. Pietzka, J. Scharpf, M. Fikry, D. Heinz, K. Forghani, T. Meisch, T. Diemant, R.J. Behm, J. Bernhard, J. Biskupek, U. Kaiser, F. Scholz, E. Kohn, Analysis of diamond surface channel field-effect transistors with AlN passivation layers. J. Appl. Phys. 114(11), 114503 (2013)

    Article  ADS  Google Scholar 

  38. F. Maier, M. Riedel, B. Mantel, J. Ristein, L. Ley, Origin of surface conductivity in diamond. Phys. Rev. Lett. 85, 3472 (2000)

    Article  ADS  Google Scholar 

  39. K. Hirama, K. Tsuge, S. Sato, T. Tsuno, Y. **gu, S. Yamauchi, H. Kawarada, High-performance p-channel diamond metal-oxide-semiconductor field-effect transistors on H-terminated (111) surface. Appl. Phys. Express. 3(4), 044001 (2010)

    Google Scholar 

  40. J. Liu, M. Liao, M. Imura, E. Watanabe, H. Oosato, Y. Koide, Diamond field effect transistors with a high-dielectric constant Ta2O5 as gate material. J. Phys. D Appl. Phys. 47, 245102 (2014)

    Article  ADS  Google Scholar 

  41. J. Liu, M. Liao, M. Imura, A. Tanaka, H. Iwai, Y. Koide, Low on-resistance diamond field effect transistor with high-k ZrO2 as dielectric. Sci. Rep. 4, 6395 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was in part supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grants JP23K03966 and JP20H00313, and in part by the Nanotechnology Platform Program, the Ministry of Education, Culture, Sports, and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangwei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Koide, Y. (2024). Hydrogen-Terminated Diamond MOS Capacitors, MOSFETs, and MOSFET Logic Circuits. In: Mandal, S., Yang, N. (eds) Novel Aspects of Diamond II. Topics in Applied Physics, vol 149. Springer, Cham. https://doi.org/10.1007/978-3-031-47556-6_13

Download citation

Publish with us

Policies and ethics

Navigation