Coulomb Stress Change of the 2012 Indian Ocean Doublet Earthquake

  • Chapter
  • First Online:
Recent Developments in Earthquake Seismology

Abstract

The 2012 Sumatra (Mw 8.6) earthquake, which falls into the largest and rarest group of the great intraplate earthquakes, continues to awe many brilliant minds. An enormous aftershock (Mw 8.2) was felt two hours after the Indian Ocean earthquake along the triple intersection of the Indian, Australian, and Sunda plates in the northwest. Over the past 20 years, there have been numerous earthquakes in the Sumatran subduction zone, including the 2004 earthquake (Mw 9.2) of Sumatra-Andaman, the 2005 earthquake (Mw 8.6) of Nias-Simeulue, the 2007 earthquake (Mw 8.4) of Bengkulu, the 2010 earthquake (Mw 7.8) of Mentawai tsunami, and a large number of other minor to moderate-sized events. It often takes a few seconds to a few minutes for the stress brought on by an earthquake to dissipate. This massive discharge disrupts the lithosphere and asthenosphere, which causes more earthquakes to occur nearby. A comprehensive comprehension of stress variations along a fault and its neighboring faults is essential for effectively predicting and mitigating seismic risks. Drawing inspiration from the earthquake finite fault model pioneered by Guangfu Shao, **angyu Li, and Chen Ji from UCSB, we have formulated Coulomb stress models tailored to the Sumatran subduction zone and the Sumatran fault. It was discovered that the primary shock’s related coulomb stress change exceeded the stress-triggering threshold. The aftershock struck a place where there was a lot of stress from the mainshock. Therefore, the Coulomb failure stress change brought on by the mainshock is likely what caused the Sumatra aftershock to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aki, K., & Richards, P. G. (1980). Quantitative seismology, theory and methods. W.H. Freeman.

    Google Scholar 

  • Andrade, V., & Rajendran, K. (2011). Intraplate response to the Great (2004) Sumatra–Andaman earthquake: A study from the Andaman segment. Bulletin of the Seismological Society of America, 101(2), 506–514.

    Article  Google Scholar 

  • Bock, Y., McCaffrey, R., Rais, J., Puntodewo, S. S. O., & Murata, I. (1990). Geodetic studies of oblique plate convergence in Sumatra. EOS Transactions American Geophysical Union, 71(857), I990.

    Google Scholar 

  • Bock, Y. E. H. U. D. A., Prawirodirdjo, L., Genrich, J. F., Stevens, C. W., McCaffrey, R., Subarya, C., Puntodewo, S. S. O., & Calais, E. (2003). Crustal motion in Indonesia from global positioning system measurements. Journal of Geophysical Research: Solid Earth, 108(B8), 2367.

    Article  Google Scholar 

  • Byerlee, J. (1978). Friction of rocks. In Rock friction and earthquake prediction (pp. 615–626).

    Chapter  Google Scholar 

  • Cattin, R., Chamot-Rooke, N., Pubellier, M., Rabaute, A., Delescluse, M., Vigny, C., Fleitout, L., & Dubernet, P. (2009). Stress change and effective friction coefficient along the Sumatra-Andaman-Sagaing fault system after the 26 December 2004 (Mw= 9.2) and the 28 March 2005 (Mw= 8.7) earthquakes. Geochemistry, Geophysics, Geosystems, 10(3), 1–21.

    Google Scholar 

  • Chinnery, M. A. (1963). The stress changes that accompany strike-slip faulting. Bulletin of the Seismological Society of America, 53(5), 921–932.

    Article  Google Scholar 

  • Curray, J. R. (2005). Tectonics and history of the Andaman Sea region. Journal of Asian Earth Sciences, 25(1), 187–232.

    Article  Google Scholar 

  • Curray, J. R., Moore, D. G., Lawver, L. A., Emmel, F. J., Raitt, R. W., Henry, M., & Kieckhefer, R. (1979). Tectonics of the Andaman Sea and Burma: Convergent margins.

    Google Scholar 

  • Das, S., & Scholz, C. H. (1981). Off-fault aftershock clusters caused by shear stress increase? Bulletin of the Seismological Society of America, 71(5), 1669–1675.

    Article  Google Scholar 

  • DeDontney, N., Rice, J. R., & Dmowska, R. (2012). Finite element modeling of branched ruptures including off-fault plasticity. Bulletin of the Seismological Society of America, 102(2), 541–562.

    Google Scholar 

  • Delescluse, M., Chamot-Rooke, N., Cattin, R., Fleitout, L., Trubienko, O., & Vigny, C. (2012). April 2012 intra-oceanic seismicity off Sumatra boosted by the Banda-Aceh megathrust. Nature, 490(7419), 240–244.

    Article  CAS  Google Scholar 

  • Hamilton, W. B. (1979). Tectonics of the Indonesian region (Vol. 1078). US Government Printing Office.

    Google Scholar 

  • Helmstetter, A., & Sornette, D. (2003). Båth’s law derived from the Gutenberg-Richter law and from aftershock properties. Geophysical Research Letters, 30(20).

    Google Scholar 

  • Igarashi, T., Matsuzawa, T., & Hasegawa, A. (2003). Repeating earthquakes and interplate aseismic slip in the northeastern Japan subduction zone. Journal of Geophysical Research: Solid Earth, 108(B5).

    Google Scholar 

  • Kagan, Y. Y., & Jackson, D. D. (1999). Worldwide doublets of large shallow earthquakes. Bulletin of the Seismological Society of America, 89(5), 1147–1155.

    Article  Google Scholar 

  • King, G. C., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935–953.

    Google Scholar 

  • Liu, J., Sieh, K., & Hauksson, E. (2003). A structural interpretation of the aftershock “cloud” of the 1992 M w 7.3 landers earthquake. Bulletin of the Seismological Society of America, 93(3), 1333–1344.

    Article  Google Scholar 

  • Matsuzawa, T., Takeo, M., Ide, S., Iio, Y., Ito, H., Imanishi, K., & Horiuchi, S. (2004). S-wave energy estimation of small-earthquakes in the western Nagano region, Japan. Geophysical Research Letters, 31(3).

    Google Scholar 

  • Maurya, S. P. (2019). Estimating elastic impedance from seismic inversion method. Current Science, 116(4), 628–635.

    Article  Google Scholar 

  • Maurya, S. P., & Singh, N. P. (2018). Application of LP and ML sparse spike inversion with probabilistic neural network to classify reservoir facies distribution-a case study from the Blackfoot field, Canada. Journal of Applied Geophysics, 159, 511–521.

    Article  Google Scholar 

  • Maurya, S. P., & Singh, K. H. (2019a). Predicting porosity by multivariate regression and probabilistic neural network using model-based and coloured inversion as external attributes: A quantitative comparison. Journal of the Geological Society of India, 93(2), 207–212.

    Article  Google Scholar 

  • Maurya, S. P., & Singh, N. P. (2019b). Characterising sand channel from seismic data using linear programming (l1-norm) sparse spike inversion technique: A case study from offshore, Canada. Exploration Geophysics, 50(4), 449–460.

    Article  Google Scholar 

  • McCloskey, J., Nalbant, S. S., & Steacy, S. (2005). Earthquake risk from co-seismic stress. Nature, 434(7031), 291–291.

    Google Scholar 

  • Miyazawa, M. (2011). Propagation of an earthquake triggering front from the 2011 Tohoku-Oki earthquake. Geophysical Research Letters, 38(23).

    Google Scholar 

  • Prawirodirdjo, L., Bocl, Y., McCaffrey, R., Genrich, J., Calais, E., Stevens, C., Puntodewo, S. S. O., Subarya, C., Rais, J., Zwick, P., & Fauzi, R. M. (1997). Geodetic observations of interseismic strain segmentation at the Sumatra subduction zone. Geophysical Research Letters, 24(21), 2601–2604.

    Article  Google Scholar 

  • Prejean, S. G., Hill, D. P., Brodsky, E. E., Hough, S. E., Johnston, M. J. S., Malone, S. D., Oppenheimer, D. H., Pitt, A. M., & Richards-Dinger, K. B. (2004). Remotely triggered seismicity on the United States west coast following the M w 7.9 Denali fault earthquake. Bulletin of the Seismological Society of America, 94(6B), S348–S359.

    Article  Google Scholar 

  • Qiu, Q., Feng, L., Hermawan, I., & Hill, E. M. (2019). Coseismic and postseismic slip of the 2005 Mw 8.6 Nias-Simeulue earthquake: Spatial overlap and localized viscoelastic flow. Journal of Geophysical Research: Solid Earth, 124(7), 7445–7460.

    Google Scholar 

  • Reddy, C. D., Sunil, P. S., Bürgmann, R., Chandrasekhar, D. V., & Kato, T. (2013). Postseismic relaxation due to Bhuj earthquake on January 26, 2001: Possible mechanisms and processes. Natural Hazards, 65, 1119–1134.

    Article  Google Scholar 

  • Savage, J. C. (1987). Effect of crustal layering upon dislocation modeling. Journal of Geophysical Research: Solid Earth, 92(B10), 10595–10600.

    Article  Google Scholar 

  • Srivastava, H. N., Bansal, B. K., & Verma, M. (2013). Largest earthquake in Himalaya: An appraisal. Journal of the Geological Society of India, 82, 15–22.

    Google Scholar 

  • Stein, R. S., & Lisowski, M. (1983). The 1979 Homestead Valley earthquake sequence, California: Control of aftershocks and postseismic deformation. Journal of Geophysical Research: Solid Earth, 88(B8), 6477–6490.

    Article  Google Scholar 

  • Stein, R. S., Dieterich, J. H., & Barka, A. A. (1996). Role of stress triggering in earthquake migration on the north Anatolian fault. Physics and Chemistry of the Earth, 21(4), 225–230.

    Article  Google Scholar 

  • Subarya, C., Chlieh, M., Prawirodirdjo, L., Avouac, J. P., Bock, Y., Sieh, K., Meltzner, A. J., Natawidjaja, D. H., & McCaffrey, R. (2006). Plate-boundary deformation associated with the great Sumatra–Andaman earthquake. Nature, 440(7080), 46–51.

    Google Scholar 

  • Tiwari, A. K., Maurya, S. P., and Singh, N. P. (2018). TEM response of a large loop source over the multilayer earth models. International Journal of Geophysics.

    Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.

    Google Scholar 

  • Wiseman, K., & Bürgmann, R. (2012). Stress triggering of the great Indian Ocean strike-slip earthquakes in a diffuse plate boundary zone. Geophysical Research Letters, 39(22).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Maurya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakur, P. et al. (2024). Coulomb Stress Change of the 2012 Indian Ocean Doublet Earthquake. In: Kumar, R., Singh, R., Kanhaiya, S., Maurya, S.P. (eds) Recent Developments in Earthquake Seismology. Springer, Cham. https://doi.org/10.1007/978-3-031-47538-2_7

Download citation

Publish with us

Policies and ethics

Navigation