Social and Environmental Impact of Natural Dyeing

  • Chapter
  • First Online:
Natural Dyes and Sustainability

Abstract

Textile production is the prime reason for effluent creation, and excessive research is being done for efficient effluent management systems all over the world. Though regulations and standards have been devised by countries across the world, problems still exist as the sources of them have not been addressed. Synthetic materials and auxiliaries are being used extensively for textile production which has a bearing on the health of the industry personnel as well as the environment. Synthetic dyes are manufactured with a high degree of colour fastness for long-lasting effects. Even small quantities of leftover dyes contribute to the colour of the wastewater. Colour and toxicity removal require special processes after textile processing is completed. The consciousness of sustainable textile manufacturing has created the need for the selection of more safe alternatives. One such process is natural dyeing which provides innumerable opportunities for new colour combinations, safe throwaways for agricultural use, using ingredients of natural origin and affording a non-hazardous subtle feel to human skin. This chapter studies the social and ecological impacts of natural dyeing giving rise to sustainable results. An analysis of a few case studies will help to prove that natural dyes taken from renewable resources will be the trend in the fashion industry for many years in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. GVR Inc. (2023). Textile market size, share & trends analysis report by raw material (cotton, wool, silk, chemical), by product (natural fibers, nylon), by application (technical, fashion), by region, and segment forecasts, 2022 – 2030. https://www.grandviewresearch.com/industry-analysis/textile-market#:~:text=The%20global%20textile%20market%20size,4.0%25%20from%202022%20to%202030. Accessed 4 Dec 2022.

  2. Bai, R., Yu, Y., Wang, Q., Yuan, J., & Fan, X. (2016). Effect of laccase on dyeing properties of polyphenol-based natural dye for wool fabric. Fibers and Polymers, 17, 1613–1620.

    Article  CAS  Google Scholar 

  3. Setiadi, T., Andriani, Y., & Erlania, M. (2006). Treatment of textile wastewater by a combination of anaerobic and aerobic pro-cesses: A denim processing plant case. In S. Ohgaki, K. Fukushi, H. Katayama, S. Takizawa, & C. Polprasert (Eds.), Southeast AsianWater environment 1 (pp. 159–166). IWA Publishing, Bangkok, Thailand.

    Google Scholar 

  4. Setiadi, T., Andriani, Y., & Erlania, M. (2006). Treatment of textile wastewater by a combination of anaerobic and aerobic processes: A denim processing plant case. In S. Ohgaki, K. Fukushi, H. Katayama, S. Takizawa, & C. Polprasert (Eds.), Southeast Asian Water environment 1: Selected papers from the first International symposium on Southeast Asian Water environment (biodiversity and water environment), Bangkok, Thailand, October 2003 (pp. 159–166). IWA Publishing.

    Google Scholar 

  5. Berradi, M., Hsissou, R., Khudhair, M., Assouag, M., Cherkaoui, O., El Bachiri, A., & El Harfi, A. (2019). Textile finishing dyes and their impact on aquatic environs. Heliyon, 5(11), e02711.

    Article  Google Scholar 

  6. Sharma, B., Dangi, A. K., & Shukla, P. (2018). Contemporary enzyme based technologies for bioremediation: A review. Journal of Environmental Management, 210, 10–22.

    Article  CAS  Google Scholar 

  7. Khan, S., & Malik, A. (2018). Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environmental Science and Pollution Research - International, 25(5), 4446–4458.

    Article  CAS  Google Scholar 

  8. Nikfar, S., & Jaberidoost, M. (2014). Dyes and colorants. Reference module in biomedical sciences. In Encyclopedia of toxicology (Third ed., pp. 252–261). Elsevier.

    Chapter  Google Scholar 

  9. Ajmal, A., Majeed, I., Malik, R. N., Idriss, H., & Nadeem, M. A. (2014). Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts : A comparative overview. RSC Advances, 4, 37003–37026. https://doi.org/10.1039/c4ra06658h. https://www.academia.edu/10156547/Principles_and_mechanisms_of_photocatalytic_dye_degradation_on_TiO2_based_photocatalysts_a_comparative_overview

    Article  CAS  Google Scholar 

  10. Shamey, R., & Zhao, X. (2014). Modelling, simulation and control of the dyeing process. Elsevier.

    Google Scholar 

  11. Wardman, R. H. (2017). An introduction to textile coloration: Principles and practice. Wiley.

    Book  Google Scholar 

  12. Hassan, M. M., & Carr, C. M. (2018). A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere, 209(1), 201–219. https://doi.org/10.1016/j.chemosphere.2018.06.043

    Article  CAS  Google Scholar 

  13. Leena, R., & Selva, R. D. (2008). Bio-decolourization of textile effluent containing reactive black-B by effluent-adapted and non-adapted bacteria. African Journal of Biotechnology, 7(18), 3309–3313.

    Google Scholar 

  14. Siddiqui, S. I., Fatima, B., Tara, N., Rathi, G., & Chaudhry, S. A. (2019). Recent advances in remediation of synthetic dyes from wastewaters using sustainable and low-cost adsorbents (pp. 471–507). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102491-1.00015-0

    Book  Google Scholar 

  15. Brock, T., Groteklaes, M., & Mischke, P. (2000). European coatings handbook. Vincentz Network GmbH & Co KG.

    Google Scholar 

  16. Christie, R. M. (2001). Colour chemistry. Royal Society of Chemistry.

    Book  Google Scholar 

  17. Rehman, K., Shahzad, T., Sahar, A., Hussain, S., Mahmood, F., & Siddique, M. H. (2018). Effect of Reactive Black 5 azo dye on soil processes related to C and N cycling. PeerJ, 6, e4802.

    Article  Google Scholar 

  18. Imran, M., Crowley, D. E., Khalid, A., Hussain, S., Mumtaz, M. W., & Arshad, M. (2015). Microbial biotechnology for decolorization of textile wastewaters. Reviews in Environmental Science and Biotechnology, 14(1), 73–92.

    Article  CAS  Google Scholar 

  19. Rawat, D., Mishra, V., & Sharma, R. S. (2016). Detoxification of azo dyes in the context of environmental processes. Chemosphere, 155, 591–605.

    Article  CAS  Google Scholar 

  20. Copaciu, F., Opriş, O., Coman, V., Ristoiu, D., Niinemets, Ü., & Copolovici, L. (2013). Diffuse water pollution by anthraquinone and azo dyes in environment importantly alters foliage volatiles, carotenoids and physiology in wheat (Triticum aestivum). Water, Air, and Soil Pollution, 224(3), 1478.

    Article  Google Scholar 

  21. Vargas, A. M. M., Paulino, A. T., & Nozaki, J. (2009). Effects of daily nickel intake on the bio-accumulation, body weight and length in tilapia (Oreochromis niloticus). Toxicological and Environmental Chemistry, 91(4), 751–759.

    Article  CAS  Google Scholar 

  22. Aquino, J. M., Rocha-Filho, R. C., Ruotolo, L. A., Bocchi, N., & Biaggio, S. R. (2014). Electrochemical degradation of a real textile wastewater using β-PbO2 and DSA® anodes. Chemical Engineering Journal, 251(2014), 138–145.

    Article  CAS  Google Scholar 

  23. Sandhya, S. (2010). Biodegradation of azo dyes under anaerobic condition: Role of azoreductase. In H. A. Erkurt (Ed.), Biodegradation of azo dyes. The handbook of environmental chemistry (Vol. 9, pp. 39–57). Springer.

    Chapter  Google Scholar 

  24. Newman, M. C. (2015). Fundamentals of ecotoxicology: The science of pollution. CRC Press.

    Google Scholar 

  25. Vikrant, K., Giri, B. S., Raza, N., Roy, K., Kim, K. H., Rai, B. N., et al. (2018). Recent advancements in bioremediation of dye: Current status and challenges. Bioresource Technology, 253(2018), 355–367.

    Article  CAS  Google Scholar 

  26. Ito, T., Adachi, Y., Yamanashi, Y., & Shimada, Y. (2016). Long–term natural remediation process in textile dye–polluted river sediment driven by bacterial community changes. Water Research, 100, 458–465.

    Article  CAS  Google Scholar 

  27. Christie, R. M. (2007). Environmental aspects of textile dyeing. Elsevier.

    Book  Google Scholar 

  28. Clark, M. (Ed.). (2011). Handbook of textile and industrial dyeing: Principles, processes and types of dyes. Elsevier.

    Google Scholar 

  29. Hunger, K. (2003). Industrial dyes: Chemistry, properties and applications. Willey-VCH.

    Google Scholar 

  30. Thakur, I. S. (2006). Environmental biotechnology: Basic concepts and applications. I. K. International Pvt.

    Google Scholar 

  31. Tiwari, S., Tripathi, A., & Gaur, R. (2016). Bioremediation of plant refuges and xenobiotics. In R. L. Singh (Ed.), Principles and applications of environmental biotechnology for a sustainable future (pp. 85–142). Springer Science.

    Google Scholar 

  32. Li, H., Zhang, R., Tang, L., Zhang, J., & Mao, Z. (2014). Evaluation of Bacillus sp. MZS10 for decolorizing Azure B dye and its decolorization mechanism. Journal of the. Environmental Sciences, 26(5), 1125–1134.

    CAS  Google Scholar 

  33. Petzer, B. H., Harvey, G., & Wegener, J. P. P. (2012). Azure B, a metabolite of methylene blue, is a high-potency, reversible inhibitor of monoamine oxidase. Toxicology and Applied Pharmacology, 258(3), 403–409.

    Article  CAS  Google Scholar 

  34. Couto, N., Wood, J., & Barber, J. (2016). The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radical Biology & Medicine, 95, 27–42.

    Article  CAS  Google Scholar 

  35. Cyprus, J. (2020). What makes a product sustainable? https://earth911.com/business-policy/what-makes-a-product-sustainable/. Accessed 15 Dec 2022.

  36. Team H. (2022). What is a sustainable product? The Complete Guide. https://hivebrands.com/blogs/news/what-is-a-sustainable-product. Accessed 15 Dec 2022.

  37. Gauntlett, E. (2021). What makes a product sustainable? https://bowercollective.com/blogs/news/what-makes-a-product-sustainable. Accessed 15 Dec 2022.

  38. Molinare, J. C., Korre, A., & Durucan, S. (2014). 24th European symposium on computer aided process engineering. Computer Aided Chemical Engineering, 33(2014), 1861–1866.

    Google Scholar 

  39. Gulzar, T., Farooq, T., Kiran, S., Ahmad, I., & Hameed. (2019). Green chemistry in the wet processing of textiles (pp. 1–20). Woodhead Publishing. The Impact and Prospects of Green Chemistry for Textile Technology.

    Google Scholar 

  40. Iclisoy, J. (2012). Green chemistry in textile. https://textilevaluechain.in/in-depth-analysis/articles/textile-articles/green-chemistry-in-textile/. Accessed 18 Dec 2022.

  41. Kiron, M. I. (2022). Sustainability in textile processing. https://textilelearner.net/sustainability-in-textile-processing/. Accessed 29 Jan 2023.

  42. Preša, P., & Tavčer, P. F. (2009). Low water and energy saving process for cotton pretreatment. Textile Research Journal, 79(1), 76, 13p–88.

    Article  Google Scholar 

  43. Lange, N. K. (2000). Biopreparation in action. International Dyer, 185(2), 18–22.

    Google Scholar 

  44. Pawar, S. B., Shah, H. D., & Andhorika, G. R. (2002). Man-made text India, 45(4), 133.

    Google Scholar 

  45. Sundar, P. S., Bhatoye, S. K., Karthikeyan, N., & Prabhu, K. H. (2007). Enzyme applications in textiles. Indian Text Journal, 117(8), 25–31.

    Google Scholar 

  46. Karmakar, S. R. (1998). Application of biotechnology in the pre-treatment process of textiles. Colourage Annual, 45, 75–86.

    Google Scholar 

  47. Zia, M. A., Sheikh, M. A., & Khan, I. A. (2010). Chemically treated strain improvement of Aspergillus niger for enhanced production of glucose oxidase. International Journal of Agriculture and Biology, 12(6), 964–966.

    CAS  Google Scholar 

  48. Du, L. N., Wang, S., Li, G., Wang, B., Jia, X. M., Zhao, Y. H., & Chen, Y. L. (2011). Biodegradation of malachite green by Pseudomonas sp. strain DY1 under aerobic condition: Characteristics, degradation products, enzyme analysis and phytotoxicity. Ecotoxicology, 20, 438–446.

    Article  CAS  Google Scholar 

  49. Galante, Y. M., & Formantici, C. (2003). Enzyme applications in detergency and in manufacturing industries. Current Organic Chemistry, 7(13), 1399–1422.

    Article  CAS  Google Scholar 

  50. Barreca, A. M., Fabbrini, M., Galli, C., Gentili, P., & Ljunggren, S. (2003). Laccase/mediated oxidation of a lignin model for improved delignifi cation procedures. Journal of Molecular Catalysis B: Enzymatic, 26, 105–110.

    Article  CAS  Google Scholar 

  51. Riva, S. (2006). Laccases: Blue enzymes for green chemistry. Trends in Biotechnology, 24(5), 219–226.

    Article  CAS  Google Scholar 

  52. Dictionary.com. (2022). Mordant. https://www.dictionary.com/browse/mordant. Accessed 2 Feb 2023.

  53. Roy Choudhury, A. K. (2014). Sustainable textile wet processing: Applications of enzymes, roadmap to sustainable textiles and clothing. In S. S. Muthu (Ed.), Textile science and clothing technology series (pp. 203–238). Springer Science+ Business Media Singapore. https://doi.org/10.1007/978-981-287-065-0_7

    Chapter  Google Scholar 

  54. Boiral, O., & Roy, M. J. (2007). ISO 9000: Integration rationales and organizational impacts. International Journal of Operations & Production Management, 27(2), 226–247.

    Article  Google Scholar 

  55. Saxena, S., & Raja, A. S. M. (2014). Natural dyes: Sources, chemistry, application and sustainability issues. In Roadmap to sustainable textiles and clothing: Eco-friendly raw materials, technologies, and processing methods (pp. 37–80).

    Chapter  Google Scholar 

  56. Burkinshaw, S. M., & Kumar, N. (2009). The mordant dyeing of wool using tannic acid and FeSO4, Part 1: Initial findings. Dyes and Pigments, 80(1), 53–6.

    Google Scholar 

  57. Yusuf, M., Ahmad, A., Shahid, M., Khan, M. I., Khan, S. A., Manzoor, N., & Mohammad, F. (2012). Assessment of colorimetric, antibacterial and antifungal properties of woollen yarn dyed with the extract of the leaves of henna (Lawsonia inermis). Journal of cleaner production, 27, 42–50.

    Google Scholar 

  58. Zheng, G. H., Fu, H. B., & Liu, G. P. (2011). Application of rare earth as mordant for the dyeing of ramie fabrics with natural dyes. Korean Journal of Chemical Engineering, 28(11), 2148–2155.

    Google Scholar 

  59. Li, Y. V., Malensek, N., Sarkar, A. K., & **ang, C. (2016). Clothing and Textiles Research Journal. https://doi.org/10.1177/0887302X16647124

  60. Shahid-ul-Islam, Shahid, M., & Mohammad, F. (2013). Perspectives for natural product based agents derived from industrial plants in textile applications – A review. Journal of Cleaner Production, 57, 2–18.

    Article  Google Scholar 

  61. Prabhu, K. H., & Teli, M. D. (2011). Eco-dyeing using Tamarindus indica L. seed coat tannin as a natural mordant for textiles with antibacterial activity. Journal of Saudi Chemical Society, 1, 1. https://doi.org/10.1016/j.jscs.2011.10.014

    Article  Google Scholar 

  62. Rane, S., Hate, M., Hande, P., Ajitkumar, B. S., & Datar, A. (2017). Dyeing of cotton with Tectona grandis leaves and Terminalia arjuna bark extracts. International Journal of Textile Science, 6(2), 72–77.

    Google Scholar 

  63. Haji, A. (2019). Natural dyeing of wool with henna and yarrow enhanced by plasma treatment and optimized with response surface methodology. Journal of the Textile Institute, 1–9.

    Google Scholar 

  64. Reeves, R. D. (2003). Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant and Soil, 249, 57–65.

    Article  CAS  Google Scholar 

  65. van der Ent, A., Erskine, P. D., & Sumail, S. (2015). Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology, 25, 243–259.

    Article  Google Scholar 

  66. Cunningham, A. B., et al. (2011). Hanging by a thread: Natural metallic mordant processes in traditional Indonesian textiles. Economic Botany, 65, 241–259. https://doi.org/10.1007/s12231-011-9161-4

    Article  Google Scholar 

  67. Oda, H. (2012). Improvement of light fastness of natural dye: effect of ultraviolet absorbers containing benzotriazolyl moiety on the photofading of red carthamin. Coloration Technology, 128(2), 108–113.

    Google Scholar 

  68. Mansour, H. F., & Heffernan, S. (2011). Environmental aspects on dyeing silk fabric with sticta coronata lichen using ultrasonic energy and mild mordants. Clean Technologies and Environmental Policy, 13, 207–213.

    Google Scholar 

  69. Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 156(1), 2–10.

    Google Scholar 

  70. Mansour, H. F., & Heffernan, S. (2011). Environmental aspects on dyeing silk fabric with Sticta coronate lichen using ultrasonic energy and mild mordants. Clean Technologies and Environmental Policy, 13, 207–213.

    Article  CAS  Google Scholar 

  71. Adeel, S., Amin, N., Fazal-ur-Rehman, T. A., Batool, F., & Hassan, A. (2020). Sustainable isolation of natural dyes from plant wastes for textiles. Chapter June 2020. https://doi.org/10.1002/9781119620532.ch17

    Book  Google Scholar 

  72. Adeel, S., Naseer, K., Javed, S., Mahmmod, S., Tang, R. C., Amin, N., & Naz, S. (2020). Microwave-assisted improvement in dyeing behavior of chemical and bio-mordanted silk fabric using safflower (Carthamus tinctorius L) extract. Journal of Natural Fibers, 17(1), 55–65.

    Article  CAS  Google Scholar 

  73. Adeel, S., Rehman, F. U., Hameed, A., Habib, N., Kiran, S., Zia, K. M., & Zuber, M. (2018). Sustainable extraction and dyeing of microwave-treated silk fabric using arjun bark colorant. Journal of Natural Fibers, 17, 1–14.

    Article  Google Scholar 

  74. Adeel, S., Zia, K. M., Abdullah, M., Rehman, F. U., Salman, M., & Zuber, M. (2018). Ultrasonic assisted improved extraction and dyeing of mordanted silk fabric using neem bark as source of natural colourant. Natural Product Research, 33(14), 2060–2072.

    Article  Google Scholar 

  75. Dawson, T. L. (2009). Biosynthesis and synthesis of natural colours. Coloration Technology, 125, 61–73.

    Article  CAS  Google Scholar 

  76. Kim, D. H., Kim, J. H., Bae, S. E., Seo, J. H., Oh, T. K., & Lee, C. H. (2005). Enhancement of natural pigment extraction using Bacillus species xylanase. Journal of Agricultural and Food Chemistry, 53, 2541–2545.

    Article  CAS  Google Scholar 

  77. Cho, Y. J., Kim, S. Y., Kim, J., Choe, E. K., Kim, S. I., & Shin, H. J. (2006). One-step enzymatic synthesis of blue pigments from geniposide for fabric dyeing. Biotechnology and Bioprocess Engineering, 11, 230.

    Article  CAS  Google Scholar 

  78. Lu, Y., Wang, L., Xue, Y., Zhang, C., **ng, X.-H., Lou, K., Zhang, Z., Li, Y., Zhang, G., & Bi, J. (2009). Production of violet pigment by a newly isolated psychrotrophic bacterium from a glacier in **njiang, China. Biochemical Engineering Journal, 43, 135–141.

    Article  CAS  Google Scholar 

  79. Cho, Y. J., Park, J. P., Hwang, H. J., Kim, S. W., Choi, J. W., & Yun, J. W. (2002). Production of red pigment by submerged culture of Paecilomyces sinclairii. Letters in Applied Microbiology, 35, 195–202.

    Article  CAS  Google Scholar 

  80. Punrattanasin, N., et al. (2015). Silk fabric dyeing with natural dye from mangrove bark (Rhizophora apiculata Blume) extract. Industrial Crops and Products, 49, 122–129.

    Article  Google Scholar 

  81. Shabbir, M., Islam, S. U., Bukhari, M. N., Rather, L. J., Khan, M. A., & Mohammad, F. (2017). Application of Terminalia chebula natural dye on wool fiber—evaluation of color and fastness properties. Textiles and Clothing Sustainability, 2, 1–9.

    Google Scholar 

  82. Bechtold, T., Mahmud-Ali, A., & Mussak, R. A. (2007). Reuse of ash-tree (Fraxinus excelsior L.) bark as natural dyes for textile dyeing: Process conditions and process stability. Coloration Technology, 123, 271–279.

    Article  CAS  Google Scholar 

  83. Prusty, A. K., Das, T., Nayak, A., & Das, N. B. (2010). Colourimetric analysis and antimicrobial study of natural dyes and dyed silk. Journal of Cleaner Production, 18, 1750–1756.

    Article  CAS  Google Scholar 

  84. Mongkholrattanasit, R., Krystufek, J., & Wiener, J. (2010). Dyeing and fastness properties of natural dyes extracted from eucalyptus leaves using padding techniques. Polymer Fiber, 11, 346–350.

    Article  CAS  Google Scholar 

  85. Mussak, R. A. M., & Bechtold, T. (2009). Natural colorants in textile dyeing. In T. Bechtold & R. A. M. Mussak (Eds.), Handbook of natural colorants (pp. 315–337). Wiley, Chichester, UK.

    Chapter  Google Scholar 

  86. Sivakumar, V., Anna, J. L., Vijayeeswarri, J., & Swaminathan, G. (2009). Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather. Ultrasonics Sonochemistry, 16, 782–789.

    Article  CAS  Google Scholar 

  87. Kumar, S., Singh, J., Nanoti, S. M., & Garg, M. O. (2012). A comprehensive life cycle assessment (LCA) of Jatropha biodiesel production in India. Bioresource Technology, 110, 723–729.

    Article  CAS  Google Scholar 

  88. Ajayebi, A., Gnansounou, E., & Raman, J. K. (2013). Comparative life cycle assessment of biodiesel from algae and jatropha: A case study of India. Bioresource Technology, 150, 429–437.

    Article  CAS  Google Scholar 

  89. Anandhan, M., & Prabaharan, T. (2018). Environmental impacts of natural dyeing process using pomegranate peel extract as a dye. International Journal of Applied Engineering Research, 13(10), 7765–7771.

    Google Scholar 

  90. Roy Choudhury, A. K. (2014). Environmental impacts of the textile industry and its assessment through life cycle assessment. In S. Muthu (Ed.), Roadmap to sustainable textiles and clothing - environmental and social aspects of textiles and clothing supply chain (pp. 1–39). Springer.

    Google Scholar 

  91. Nieminen, E., Linke, M., Tobler, M., & Vander Beke, B. (2007). EU COST Action 628: Life cycle assessment (LCA) of textile products, ecoefficiency and definition of best available technology (BAT) of textile processing. Journal of Cleaner Production, 15(13–14), 1259–1270.

    Article  Google Scholar 

  92. Vanessa, P., Sandrine, P., Anne, P., & Nemeshwaree, B. (2012). Comparison of methodologies for Lca processes: Application to the dyeing of cotton. In Proc. 2nd LCA Conf., no. November, pp. 6–7.

    Google Scholar 

  93. Linharesa, T., & Pessoa de Amorima, M. T. (2017). LCA of textile dyeing with Acacia Dealbata tree bark: A case study research. Procedia Engineering, 200(2017), 365–369.

    Article  Google Scholar 

  94. Arena, M., Ciceri, N. D., Terzi, S., Bengo, I., Azzone, G., & Garetti, M. (2009). A state-of-the-art of industrial sustainability: Definitions, tools and metrics. International Journal of Product Lifecycle Management, 4(1–3), 207–251.

    Article  Google Scholar 

  95. Raju, A. P. (2013). A value chain in Natural Dyes. Final Report (India: National Agricultural Innovation Project) Indian Council of Agricultural Research.

    Google Scholar 

  96. Senthilkumar, R. P., Bhuvaneshwari, V., Sathiyavimal, S., Amsaveni, R., Kalaiselvi, M., & Malayaman, V. (2015). Natural colours from dyeing plants for textiles. International Journal of Biosciences and Nanosciences, 2(7), 160–174.

    Google Scholar 

  97. Stegmaier, T., Linke, M., Dinkelmann, A., Von Arnim, V., & Planck, H. (2009). Environmentally friendly plasma technologies for textiles. In Sustainable textiles (pp. 155–178). Woodhead Publishing.

    Chapter  Google Scholar 

  98. Angelis-Dimakis, A., Alexandratou, A., & Balzarini, A. (2016). Value chain upgrading in a textile dyeing industry. Journal of Cleaner Production, 138, 237–247.

    Article  Google Scholar 

  99. Elsahida, K., et al. (2019). Sustainability of the use of natural dyes in the textile industry. IOP Conference Series: Earth and Environmental Science, 399(2019), 012065. https://doi.org/10.1088/1755-1315/399/1/012065. IOP Publishing.

    Article  Google Scholar 

  100. Dikshit, R., & Tallapragada, P. (2013). Comparative study of Monascus sanguineus and Monascus purpureus for red pigment production under stress condition. International Food Research Journal, 20, 1235–1238.

    CAS  Google Scholar 

  101. Vazquez, M., Santos, V., & Parajo, J. C. (1997). Effect of the carbon source on the carotenoid profiles of Phaffia rhodozyma strains. Journal of Industrial Microbiology & Biotechnology, 19, 263–268.

    Article  CAS  Google Scholar 

  102. Chattopadhyay, M. K., Jagannadham, M. V., Vairamani, M., & Shivaji, S. (1997). Carotenoid pigments of an antarctic psychrotrophic bacteriumMicrococcus roseus: Temperature dependent biosynthesis, structure, and interaction with synthetic membranes. Biochemical and Biophysical Research Communications, 239, 85–90.

    Article  CAS  Google Scholar 

  103. Gong, J., Wang, F., Ren, Y., Li, Z., Zhang, J., & Li, Q. (2018). Preparation of biomass pigments and dyeing based on bioconversion. Journal of Cleaner Production, 182. https://doi.org/10.1016/j.jclepro.2018.01.219

  104. http://www.picturequotes.com/i-am-of-the-african-race-and-in-the-colour-which-is-natural-to-them-of-the-deepest-dye-and-it-is-quote-654634 (quotes for conclusion).

  105. https://www.pinterest.com/KinksandChaos/ (quotes for conclusion).

  106. https://www.pinterest.ie/vshirran/inspirational-quotes/ mere colour unspoiled (quotes for conclusion).

  107. Shahid, M., & Mohammad, F. (2013). Recent advancements in natural dye applications: A review. Journal of Cleaner Production, 53, 310–331.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanthi Radhakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radhakrishnan, S., Rajangam, R., Peruran, P. (2023). Social and Environmental Impact of Natural Dyeing. In: Muthu, S.S. (eds) Natural Dyes and Sustainability. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-47471-2_7

Download citation

Publish with us

Policies and ethics

Navigation