Effects of Mulching and Irrigation on Antioxidant Activity and Antimicrobial Properties of Basil (Ocimum basilicum L.)

  • Conference paper
  • First Online:
32nd Scientific-Expert Conference of Agriculture and Food Industry (Agriconference 2022)

Abstract

Basil (Ocimum basilicum L.) is an annual herb from the mint family. It is used as a fresh and dry spice, and in the form of essential oil. The antioxidant activity and antimicrobial properties of basil depend on genetic properties, environmental conditions, and growing technology. Therefore, the aim of this research was to determine the effects of mulching and irrigation on the antioxidant activity and antimicrobial properties of basil. The field experiment was conducted at Butmir, Bosnia and Herzegovina. The treatments used consisted of a combination of different mulches (wheat straw mulch, black mulch film, and control) and irrigation (irrigated and non-irrigated). Total phenolics, flavonoids, antioxidant activity, and essential oil antimicrobial activity were tested. Experimental results suggested that growing technology impacts the researched traits. The high content of total phenolic (69.94 mg GAE g−1), flavonoids (35.77 mg CAE g−1), and antioxidant activity (45.13 µM Fe2+ g−1) were recorded in the treatment with black mulch film. The research showed that the essential oil has a growth inhibition zone diameter of 10.88 mm for Salmonella spp. and 8.72 mm for E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 295.39
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gavrić, T., Marković, S., Čengić, L.: Factibility of growing basil as an alternative crop for adaptation to climate change in Bosnia and Herzegovina. Chil. J. Agric. Res. 83(1), 43–51 (2023). https://doi.org/10.4067/S0718-58392023000100043

    Article  Google Scholar 

  2. Ciriello, M., et al.: Genotype and successive harvests interaction affects phenolic acids and aroma profile of Genovese basil for pesto sauce production. Foods 10, 278 (2021). https://doi.org/10.3390/foods10020278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Corrado, G., Chiaiese, P., Lucini, L., Miras-Moreno, B., Colla, G., Rouphael, Y.: Successive harvests affect yield, quality and metabolic profile of sweet basil (Ocimum basilicum L.). Agronomy 10(6), 830 (2020). https://doi.org/10.3390/agronomy10060830

    Article  CAS  Google Scholar 

  4. Zagoto, M.: Biological activities of basil essential oil: a review of the current evidence. Res. Soc. Dev. 10, e363101220409 (2021)

    Article  Google Scholar 

  5. Sarrou, E., Chatzopoulou, P., Koutsos, T.V., Katsiotis, S.T.: Herbagernyield and essential oil composition of sweet basil (Ocimum basilicum L.) under the influence of differentrnmulching materials and fertilizers. J. Med. Plants Stud. 4, 111–117 (2016)

    Google Scholar 

  6. Gavrić, T., et al.: Yield and contents of some bioactive components of basil (Ocimum basilicum L.) depending on time of cutting. Studia Universitatis Vasile Goldis Arad, Seria Stiintele Vieti 28, 192-197 (2018)

    Google Scholar 

  7. Zareen, A., Ahmed Gardezi, D., Naeemullah, M., Shahid Masood, M., Tahira, R.: Screening of antibacterial potential of siam queen, holy basil and italian basil essential oils. J. Med. Plants Stud. 2, 63–68 (2014)

    Google Scholar 

  8. Kaya, I., Yigit, N., Benli, M.: Antimicrobial activity of various extracts of Ocimum basilicum L. and observation of the inhibition effect on bacterial cells by use of scanning electron microscopy. Afr. J. Trad. Compl. Alt. Med. 5, 363–369 (2008)

    Article  Google Scholar 

  9. Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., De Feo, V.: Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel) 6, 1451–1474 (2013)

    Article  PubMed  Google Scholar 

  10. Albergaria, E.T., Oliveira, A.F.M., Albuquerque, U.P.: The effect of water deficit stress on the composition of phenolic compounds in medicinal plants. South African J. Bot. 131, 12–17 (2020)

    Article  CAS  Google Scholar 

  11. Lebedev, V.G., Lebedeva, T.N., Vidyagina, E.O., Sorokopudov, V.N., Popova, A.A., Shestibratov, K.A.: Relationship between phenolic compounds and antioxidant activity in berries and leaves of raspberry genotypes and their genoty** by SSR markers. Antioxidants 11, 1961 (2022). https://doi.org/10.3390/antiox11101961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Šamec, D., Karalija, E., Šola, I., Vujčić Bok, V., Salopek-Sondi, B.: The role of polyphenols in abiotic stress response: the influence of molecular structure. Plants 10, 118 (2021). https://doi.org/10.3390/plants10010118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ahmed, U., et al.: Expression profiling of flavonoid biosynthesis genes and secondary metabolites accumulation in populus under drought stress. Molecules 26, 5546 (2021). https://doi.org/10.3390/molecules26185546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Del Valle, J.C., Buide, M.L., Whittall, J.B., Valladares, F., Narbona, E.: UV radiation increases phenolic compound protection but decreases reproduction in Silene littorea. PLoS ONE 15, e0231611 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., Zheng, B.: Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24, 2452 (2019). https://doi.org/10.3390/molecules24132452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de la Portilla, N., et al.: Soil Amendment with biosolids and inorganic fertilizers: effects on biochemical properties and oxidative stress in Basil (Ocimum basilicum L.). Agronomy 10(8), 1117 (2020). https://doi.org/10.3390/agronomy10081117

    Article  CAS  Google Scholar 

  17. Gavrić, T., et al.: Influence of meteorological parameters on the yield and chemical composition of common buckwheat (Fagopyrum esculentum Moench). J. Agric. For. 64, 113–120 (2018). https://doi.org/10.17707/agricultforest.64.4.13

    Article  Google Scholar 

  18. Svecova, E., Neugebauerová, J.: A study of 34 cultivars of basil (Ocimum L.) and their morphological, economic and biochemical characteristics, using standardized descriptors. Acta Univ. Sapientiae, Aliment 3, 118–135 (2010)

    Google Scholar 

  19. Rakic, Z., Johnson, C.B.: Influence of environmental factors (including UV-B radiation) on the composition of the essential oil of Ocimum basilicum–sweet basil. J. Herbs Spices Med. Plants 9, 157–162 (2008). https://doi.org/10.1300/J044v09n02_22

    Article  Google Scholar 

  20. Al-Huqail, A., et al.: Effects of climate temperature and water stress on plant growth and accumulation of antioxidant compounds in sweet basil (Ocimum basilicum L.) leafy vegetable. Scientifica 2020, 1–12 (2020). https://doi.org/10.1155/2020/3808909

    Article  CAS  Google Scholar 

  21. Gavrić, T., Čengić, L., Marković, S.: Effects of cultivars on the yield and contents of some bioactive components of basil. Work Fac. Agric. Food Sci. 72, 20–27 (2022)

    Google Scholar 

  22. Iqbal, R., et al.: Potential agricultural and environmental benefits of mulches—a review. Bull Natl Res Cent 44, 75 (2020)

    Article  Google Scholar 

  23. El-Beltagi, H.S., et al.: Mulching as a sustainable water and soil saving practice in agriculture: a review. Agronomy 12, 1881 (2022). https://doi.org/10.3390/agronomy12081881

    Article  CAS  Google Scholar 

  24. Kashi, A., Hosseinzadeh, S., Babalar, M., Lessani, H.: Effect of black polyethylene mulch and calcium nitrate application on growth, yield, and blossom-end rot of watermelon, cv. charleston gray TT – (Blossom end rot) . JSTNAR 7, 1–10 (2004)

    Google Scholar 

  25. Teame, G., Tsegay, A., Abrha, B.: Effect of organic mulching on soil moisture, yield, and yield contributing components of sesame (Sesamum indicum L.). Int. J. Agronomy 2017, 4767509 (2017). https://doi.org/10.1155/2017/4767509

    Article  CAS  Google Scholar 

  26. Clevenger, J.F.: Apparatus for the determination of volatile oil. J. Am. Pharm. Assoc. 17, 345–349 (1928). https://doi.org/10.1002/jps.3080170407

    Article  Google Scholar 

  27. Zhishen, J., Mengcheng, T., Jianming, W.: The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555–559 (1999)

    Article  CAS  Google Scholar 

  28. Benzie, I.F.F., Strain, J.J.: The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: the FRAP assay. Anal. Biochem. 239(1), 70–76 (1996). https://doi.org/10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

  29. Imamović, B., Komlen, V., Gavrić, T., Sunulahpašić, A., Lalević, B., Hamidović, S.: Antimicrobial activity of ginger (Zingiber officinale) and rosemary (Rosmarinus officinalis) essential oils. Agric. For. 67, 231–238 (2021)

    Google Scholar 

  30. Lim, J.H., Park, K.J., Kim, B.K., Jeong, J.W., Kim, H.J.: Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem. 135, 1065–1070 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. Gavrić, T., et al.: Chemical composition and total phenols content of tartary buckwheat (Fagopyrum tataricum gaertn) grown in different vegetation seasons. In: Brka, M., Omanović-Mikličanin, E., Karić, L., Falan, V., Toroman, A. (eds.) 30th Scientific-Experts Conference of Agriculture and Food Industry: Answers for Forthcoming Challenges in Modern Agriculture, pp. 59–68. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-40049-1_7

    Chapter  Google Scholar 

  32. Talbi, S., et al.: Effect of drought on growth, photosynthesis and total antioxidant capacity of the saharan plant Oudeneya africana. Environ. Exp. Bot. 176, 104099 (2020)

    Article  CAS  Google Scholar 

  33. Chiappero, J., Cappellari, L.D.R., Palermo, T.B., Giordano, W., Banchio, E.: A simple method to determine antioxidant status in aromatic plants subjected to drought stress. Biochem. Mol. Biol. Educ. 49, 483–491 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. Gharibi, S., Tabatabaei, B.E.S., Saeidi, G., Goli, S.A.H.: Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of achillea species. Appl. Biochem. Biotechnol. 178, 796–809 (2016)

    Article  CAS  PubMed  Google Scholar 

  35. Caliskan, O, et al.: The effects of salt and drought stress on phenolic accumulation in greenhouse-grown Hypericum pruinatum. Ital. J. Agron. 12(3) (2017). https://doi.org/10.4081/ija.2017.918

  36. Carvalho, M., et al.: Drought stress effect on polyphenolic content and antioxidant capacity of cowpea pods and seeds. J. Agron. Crop Sci. 207, 197–207 (2021)

    Article  CAS  Google Scholar 

  37. Dzida, K., Michałojć, Z., Jarosz, Z., Pitura, K., Skubij, N.: Effect of potassium fertilization on yield, growth and chemical composition of Basil herb. Acta Sci. Pol. Hortorum Cultus 17, 135–145 (2018)

    Article  Google Scholar 

  38. Mulugeta, S.M., Radácsi, P.: Influence of drought stress on growth and essential oil yield of ocimum species. Horticulturae 8, 175 (2022). https://doi.org/10.3390/horticulturae8020175

    Article  Google Scholar 

  39. Copolovici, L., Lupitu, A., Moisa, C., Taschina, M., Copolovici, D.M.: The effect of antagonist abiotic stress on bioactive compounds from basil (Ocimum basilicum). Appl. Sci. 11, 9282 (2021). https://doi.org/10.3390/app11199282

    Article  CAS  Google Scholar 

  40. Ghasemi, K., Ghasemi, Y., Ebrahimzadeh, M.A.: Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak. J. Pharm. Sci. 22(3), 277–281 (2009)

    CAS  PubMed  Google Scholar 

  41. Swamy, M.K., Akhtar, M.S., Sinniah, U.R.: Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid. Based Complement Alternat. Med. 2016, 3012462 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dzaferovic, A., et al.: Antimicrobial activity of three essential oils against several human pathogens. J. Environ. Treat. Tech. 7, 501–505 (2019)

    Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Ministarstvo za nauku, visoko obrazovanje i mlade Kantona Sarajevo, B&H (Project name: Mogućnost uzgoja bosiljka kao alternativne culture u svrhu adaptacije klimatskim promjenama).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teofil Gavrić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Šakonjić, A., Matijević, A., Hamidović, S., Čengić, L., Gavrić, T. (2023). Effects of Mulching and Irrigation on Antioxidant Activity and Antimicrobial Properties of Basil (Ocimum basilicum L.). In: Brka, M., et al. 32nd Scientific-Expert Conference of Agriculture and Food Industry. Agriconference 2022. Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-031-47467-5_6

Download citation

Publish with us

Policies and ethics

Navigation