Antioxidant Defense: A Key Mechanism of Cadmium Tolerance

  • Chapter
  • First Online:
Cadmium Toxicity Mitigation
  • 157 Accesses

Abstract

Cadmium (Cd) is a persistent soil pollutant, with high toxicity to plants and humans. Its availability to plants is affected by several factors, including pH of the soil, while its accumulation in the plants is related to the plant’s tolerance, genotype, environmental factors, etc. As a response to oxidative stress induced by heavy metals plants activate antioxidant response, which consists out of enzymatic and nonenzymatic components. Enzymatic antioxidant system in plants includes enzymes such as superoxide dismutase, peroxidases, and catalases, while nonenzymatic antioxidant system includes molecules with ability to scavenge radicals. Antioxidant molecules mainly responsible for nonenzymatic antioxidant response in plants are ascorbate, tocopherol, carotenoids, and flavonoids. Effective antioxidant system is related to plants’ tolerance to Cd and numerous research have demonstrated that increased levels of antioxidant enzymes and molecules can alleviate Cd stress and increase Cd accumulation levels in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 168.79
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:613

    Article  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341

    Article  CAS  Google Scholar 

  • Ammar B, Mediouni WC, Tray B, Ghorbel MH, Jemal F (2008) Glutathione and phytochelatin contents in tomato plants exposed to cadmium. Biol Plant 52:314

    Article  Google Scholar 

  • Andrews J, Adams SR, Burton KS, Edmondson RN (2002) Partial purification of tomato fruit peroxidase and its effect on the mechanical properties of tomato fruit skin. J Exp Bot 53(379):2393–2399

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  Google Scholar 

  • Azevedo H, Gomes C, Pinto G, Santos C (2005) Cadmium effects in sunflower: membrane permeability and changes in catalase and peroxidase activity in leaves and calluses. J Plant Nutr 28:2233–2241

    Article  CAS  Google Scholar 

  • Baruah N, Subham CM, Farooq M, Gogoi N (2019) Influence of heavy metals on seed germination and seedling growth of wheat, pea, and tomato. Water Air Soil Pollut 230:273–288

    Article  CAS  Google Scholar 

  • Batish DR, Singh HP, Setia N, Kaur S, Kohli RK (2006) 2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus). Plant Physiol Biochem 44:819–827

    Article  CAS  Google Scholar 

  • Belyaeva EA, Glazunov VV, Korotkov SM (2004) Cd2? Versus Ca2+-produced mitochondrial membrane permeabilization: a proposed direct participation of respiratory complexes I and III. Chem Biol Interact 150:253–270

    Article  CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Biswas T, Parveen O, Pandey VP, Mathur A, Dwivedi UN (2020) Heavy metal accumulation efficiency, growth and centelloside production in the medicinal herb Centella asiatica (L.) urban under different soil concentrations of cadmium and lead. Ind Crop Prod 157:112948

    Article  CAS  Google Scholar 

  • Bordo D, D**ovic K, Bolognesi M (1994) Conserved patterns in the Cu, Zn superoxide dismutase family. J Mol Biol 238(3):366–386

    Article  CAS  Google Scholar 

  • Borisova G, Chukina N, Maleva M, Kumar A, Prasad MNV (2016) Thiols as biomarkers of heavy metal tolerance in the aquatic macrophytes of Middle Urals, Russia. Int J Phytoremediation 18(10):1037–1045

    Article  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones, R.L. (Eds.). (2015) Biochemistry and molecular biology of plants, 2nd edn Wiley-Blackwell

    Google Scholar 

  • Chen L, Guo Y, Yang L, Wang Q (2008) Synergistic defensive mechanism of phytochelatins and antioxidative enzymes in Brassica chinensis L. against Cd stress. Chin Sci Bull 53:1503–1511

    Article  CAS  Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332

    Article  CAS  Google Scholar 

  • Collin VC, Eymery F, Genty B, Rey P, Havaux M (2008) Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant Cell Environ 31:244–257

    Article  CAS  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    Article  CAS  Google Scholar 

  • Dai H, Wei S, Pogrzeba M, Krzyżak J, Rusinowski S, Zhang Q (2021) The cadmium accumulation differences of two Bidens pilosa L. ecotypes from clean farmlands and the changes of some physiology and biochemistry indices. Ecotoxicol Environ Saf 209:111847

    Article  CAS  Google Scholar 

  • Dai H, Wei S, Twardowska I, Hou N, Zhang Q (2022) Cosmopolitan cadmium hyperaccumulator Solanum nigrum: exploring cadmium uptake, transport and physiological mechanisms of accumulation in different ecotypes as a way of enhancing its hyperaccumulative capacity. J Environ Manag 320:115878

    Article  CAS  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:663–667

    Article  CAS  Google Scholar 

  • Dobrikova AG, Apostolova EL, Hanć A, Yotsova E, Borisova P, Sperdouli I, Adamakis IS, Moustakas M (2021) Cadmium toxicity in Salvia sclarea L.: an integrative response of element uptake, oxidative stress markers, leaf structure and photosynthesis. Ecotoxicol Environ Saf 209(11851):111851

    Article  CAS  Google Scholar 

  • Ferreira RR, Fornazier RF, Vitória AP, Lea PJ, Azevedo RA (2002) Changes in antioxidant enzyme activities in soybean under cadmium stress. J Plant Nutr 25(2):327–342

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Gallie DR (2013) Increasing vitamin C content in plant foods to improve their nutritional value- successes and challenges. Nutrients 5:3424–3446

    Article  Google Scholar 

  • Gallie DR, Chen Z (2019) Chloroplast-localized iron superoxide dismutases FSD2 and FSD3 are functionally distinct in Arabidopsis. PLoS One 14:e0220078

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681

    Google Scholar 

  • Hédiji H, Djebali W, Belkadhi A, Cabasson C, Moing A, Rolin D, Brouquisse R, Gallusci P, Chaïbi W (2015) Impact of long-term cadmium exposure on mineral content of Solanum lycopersicum plants: consequences on fruit production. S Afr J Bot 97:176–181

    Article  Google Scholar 

  • Heyno E, Klose C, Krieger-Liszkay A (2008) Origin of cadmium-induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase. New Phytol 179(3):687–699

    Article  CAS  Google Scholar 

  • Hiraga S, Sazaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42(5):462–468

    Article  CAS  Google Scholar 

  • Hodges D, DeLong J, Forney C, Prange RK (1999) Improving the thiobarbituric acid-reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207(4):604–611

    Article  CAS  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875

    Google Scholar 

  • Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C (2019) Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 11(2):255–277

    Article  CAS  Google Scholar 

  • Jaskulak M, Rorat A, Grobelak A, Kacprzak M (2018) Antioxidative enzymes and expression of rbcL gene as tools to monitor heavy metal-related stress in plants. J Environ Manag 218:71–78

    Article  CAS  Google Scholar 

  • Jawad Hassan M, Ali Raza M, Ur Rehman S, Ansar M, Gitari H, Khan I, Wajid M, Ahmed M, Abbas Shah G, Peng Y (2020) Effect of cadmium toxicity on growth, oxidative damage, antioxidant defense system and cadmium accumulation in two sorghum cultivars. Plan Theory 9(11):1575

    Google Scholar 

  • Jiang N, Li Z, Yang J, Zu Y (2022) Responses of antioxidant enzymes and key resistant substances in perennial ryegrass (Lolium perenne L.) to cadmium and arsenic stresses. BMC Plant Biol 22(1):145

    Article  CAS  Google Scholar 

  • Jouili H, Bouazizi H, El Ferjani E (2011) Plant peroxidases: biomarkers of metallic stress. Acta Physiol Plant 33:2075–2082

    Article  CAS  Google Scholar 

  • Jozefczak M, Bohler S, Schat H, Horemans N, Guisez Y, Remans T, Vangronsveld J, Cuypers A (2015) Both the concentration and redox state of glutathione and ascorbate influence the sensitivity of arabidopsis to cadmium. Ann Bot 116(4):601–612

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Karalija E, Selović A (2018) The effect of hydro and proline seed priming on growth, proline and sugar content, and antioxidant activity of maize under cadmium stress. Environ Sci Pollut Res 25(33):33370–33380

    Article  CAS  Google Scholar 

  • Karalija E, Selović A, Bešta-Gajević R, Šamec D (2022) Thinking for the future: phytoextraction of cadmium using primed plants for sustainable soil clean-up. Physiol Plant 174(4):13739

    Article  Google Scholar 

  • Karimpour M, Ashrafi SD, Taghavi K, Mojtahedi A, Roohbakhsh E, Naghipour D (2018) Adsorption of cadmium and lead onto live and dead cell mass of Pseudomonas aeruginosa: a dataset. Data Brief 18:1185–1192

    Article  Google Scholar 

  • Khan MH (2007) Induction of oxidative stress and antioxidant metabolism in Calamus Tenuis leaves under chromium and zinc toxicity. Indian J Plant Physiol 12(4):353–359

    CAS  Google Scholar 

  • Labidi O, Vives-Peris V, GómezCadenas A, Pérez-Clemente RM, Sleimi N (2021) Assessing of growth, antioxidant enzymes, and phytohormone regulation in Cucurbita pepo under cadmium stress. Food Sci Nutr 9:2021–2031

    Article  CAS  Google Scholar 

  • Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A (2017) Frontiers reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci 8:1867

    Article  Google Scholar 

  • Luo H, Li H, Zhang X, Fu J (2011) Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress. Ecotoxicology 20:770–778

    Article  CAS  Google Scholar 

  • Mäder M (1992) Compartmentation of peroxidase isoenzymes in plant cells. In: Penel C, Gaspar T, Greppin M (eds) Topic and detailed literature on molecular, biochemical and physiological aspects. University of Geneva, Geneva

    Google Scholar 

  • Mahmoud A, AbdElgawad H, Hamed BA, Beemster GT, El-Shafey NM (2021) Differences in cadmium accumulation, detoxification and antioxidant defenses between contrasting maize cultivars implicate a role of superoxide dismutase in Cd tolerance. Antioxidants 10(11):1812

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22(4):368–374

    Article  CAS  Google Scholar 

  • Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2007) Cadmium induced oxidative stress in soybean plants also by the accumulation of delta-aminolevulinic acid. Biometals 20:841

    Article  CAS  Google Scholar 

  • Otter T, Polle A (1994) The influence of apoplastic ascorbate on the activities of cell-wall associated peroxidase and NADH oxidase in needles of Norway spruce (Picea abies L.). Plant Cell Physiol 35(8):1231–1238

    Article  CAS  Google Scholar 

  • Pandey VP, Awasthi M, Singh S, Tiwari S, Dwivedi UN (2017) A comprehensive review on function and application of plant peroxidases. Biochem Anal Biochem 6:308

    Article  Google Scholar 

  • Pathak N, Khandelwal S (2006) Oxidative stress and apoptotic changes in murine splenocytes exposed to cadmium. Toxicology 220(1):26–36

    Article  CAS  Google Scholar 

  • Peijnenburg W, Baerselman R, de Groot A, Jager T, Leenders D, Posthuma L, Van Veen R (2000) Quantification of metal bioavailability for lettuce (Lactuca sativa L.) in field soils. Arch Environ Contam Toxicol 39(4):420–430

    Article  CAS  Google Scholar 

  • Ramel F, Birtic S, Cuin S, Triantaphylides C, Ravanat JL, Havaux M (2012) Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol 158(3):1267–1278

    Article  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Río LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    Article  Google Scholar 

  • Shanying HE, **aoe YANG, Zhenli HE, Baligar VC (2017) Morphological and physiological responses of plants to cadmium toxicity: a review. Pedosphere 27(3):421–438

    Article  Google Scholar 

  • Shapiguzov A, Vainonen JP, Wrzaczek M, Kangasjärvi J (2012) ROS-talk-how the apoplast, the chloroplast, and the nucleus get the message through. Front Plant Sci 3:292

    Article  CAS  Google Scholar 

  • Sharkey T (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ 28:269–277

    Article  CAS  Google Scholar 

  • Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van L, Vangrosveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444

    Article  CAS  Google Scholar 

  • Smeets K, Ruytinx J, Semane B, Van Belleghem F, Remans T, Van Sanden S, Vangronsveld J, Cuypers A (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot 63:1–8

    Article  CAS  Google Scholar 

  • Sparks DL (2012) Advances in agronomy. Academic Press

    Google Scholar 

  • Srivastava RK, Pandey P, Rajpoot R, Rani A, Dubey RS (2014) Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma 251:1047–1065

    Article  CAS  Google Scholar 

  • Subašić M, Šamec D, Selović A, Karalija E (2022) Phytoremediation of cadmium polluted soils: current status and approaches for enhancing. Soil Syst 6(1):3

    Article  Google Scholar 

  • Szarka A, Tomasskovics B, Bánhegyi G (2012) The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int J Mol Sci 13(4):4458–4483

    Article  CAS  Google Scholar 

  • Takahashi A, Masuda A, Sun M, Centonze VE, Herman B (2004) Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). Brain Res Bull 62:497–504

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. In: Luch A (ed) Molecular, clinical and environmental toxicology. Springer, Basel, pp 133–164

    Chapter  Google Scholar 

  • Volpe MG, Di Nazzaro M, Stasio FS, Coppola R, De Marco A (2015) Content of micronutrients, mineral and trace elements in some Mediterranean spontaneous edible herbs. Chem Cent J 9:57

    Article  Google Scholar 

  • Xu SS, Lin SZ, Lai ZX (2015) Cadmium impairs iron homeostasis in Arabidopsis thaliana by increasing the polysaccharide contents and the iron-binding capacity of root cell walls. Plant Soil 392:71–85

    Article  CAS  Google Scholar 

  • Zhang H, Lian C, Shen Z (2009) Proteomic identification of small, copper-responsive proteins in germinating embryos of Oryza sativa. Ann Bot 103:923–930

    Article  CAS  Google Scholar 

  • Zhou YJ, Zhang SP, Liu CW, Cai YQ (2009) The protection of selenium on ROS-mediated apoptosis by mitochondria dysfunction in cadmium-induced LLC-PK1 cells. Toxicol In Vitro 23(2):288–294

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erna Karalija .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karalija, E., Parić, A. (2024). Antioxidant Defense: A Key Mechanism of Cadmium Tolerance. In: Jha, A.K., Kumar, N. (eds) Cadmium Toxicity Mitigation. Springer, Cham. https://doi.org/10.1007/978-3-031-47390-6_8

Download citation

Publish with us

Policies and ethics

Navigation