Microbial Tolerance Strategies Against Cadmium Toxicity

  • Chapter
  • First Online:
Cadmium Toxicity Mitigation

Abstract

Cadmium (Cd) is a heavy metal found in the environment because it is released from natural and anthropogenic sources. Cd is a persistent, nonbiodegradable pollutant with great toxicity for plants, animals, and microorganisms. Although Cd toxicity, some microorganisms can inhabit different environments contaminated with toxic levels of Cd2+ because they have developed Cd tolerance and detoxification mechanisms. These mechanisms include the production of extracellular chelating compounds, the adsorption of Cd2+ in the cellular surface, the transport of Cd2+ from the cytoplasm using efflux pumps, and Cd intracellular complexation with glutathione, metallothionein, and phytochelatins. This chapter shows the state-of-the-art of Cd-tolerant microorganisms and describes the main mechanisms employed in Cd tolerance by bacteria and fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aiking H, Stijnman A, Van Garderen C et al (1984) Inorganic phosphate accumulation and cadmium detoxification in Klebsiella aerogenes NCTC 418 growing in continuous culture. Appl Environ Microbiol 47:374–377

    Article  CAS  Google Scholar 

  • Ajmal AW, Saroosh S, Mulk S et al (2021) Bacteria isolated from wastewater irrigated agricultural soils adapt to heavy metal toxicity while maintaining their plant growth promoting traits. Sustainability 13:7792

    Article  CAS  Google Scholar 

  • Akbar M, El-Sabrout AM, Shokralla S et al (2022) Preservation and recovery of metal-tolerant fungi from industrial soil and their application to improve germination and growth of wheat. Sustainability 14:5531

    Article  CAS  Google Scholar 

  • Akhtar S, Mahmood-Ul-Hassan M, Ahmad R et al (2013) Metal tolerance potential of filamentous fungi isolated from soils irrigated with untreated municipal effluent. Soil Environ 32:55–62

    CAS  Google Scholar 

  • Amaral L, Martins A, Spengler G, Molnar J (2014) Efflux pumps of gram-negative bacteria: what they do, how they do it, with what and how to deal with them. Front Pharmacol 4

    Google Scholar 

  • Anton A, Grosse C, Reissmann J et al (1999) CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. J Bacteriol 181:6876–6881

    Article  CAS  Google Scholar 

  • Apell H-J (2004) How do P-type ATPases transport ions? Bioelectrochemistry 63:149–156

    Article  CAS  Google Scholar 

  • ATSDR (2012) Toxicological profile for cadmium [Online]. Atlanta GA. https://www.atsdr.cdc.gov/toxprofiles/tp5-p.pdf. Accessed 24 July 2023

  • Ayangbenro AS, Babalola OO (2020) Genomic analysis of Bacillus cereus NWUAB01 and its heavy metal removal from polluted soil. Sci Rep 10:19660

    Article  CAS  Google Scholar 

  • Badu AG, Shea PJ, Sudhakar D et al (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J Environ Manag 151:160–166

    Article  Google Scholar 

  • Bae W, Chen W, Mulchandani A, Mehra RK (2000) Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol Bioeng 70:518–524

    Article  CAS  Google Scholar 

  • Bashir S, Adeel M, Gulshan AB et al (2019) Effects of organic and inorganic passivators on the immobilization of cadmium in contaminated soils: a review. Environ Eng Sci 36:986–998

    Article  CAS  Google Scholar 

  • Begg SL, Eijkelkamp BA, Luo Z et al (2015) Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae. Nat Commun 6:6418

    Article  CAS  Google Scholar 

  • Bertrand J-C, Doumenq P, Guyoneaud R et al (2015) Applied microbial ecology and bioremediation. In: Bertrand J-C, Caumette P, Lebaron P et al (eds) Environmental microbiology: fundamentals and applications: microbial ecology. Springer Netherlands, Dordrecht

    Chapter  Google Scholar 

  • Bigalke M, Ulrich A, Rehmus A, Keller A (2017) Accumulation of cadmium and uranium in arable soils in Switzerland. Environ Pollut 221:85–93

    Article  CAS  Google Scholar 

  • Bjerregaard P, Andersen CBI, Andersen O (2015) Ecotoxicology of metals—sources, transport, and effects on the ecosystem. In: Nordberg GF, Fowler BA, Nordberg M (eds) Handbook on the toxicology of metals, 4th edn. Academic Press, San Diego

    Google Scholar 

  • Bouley G, Dubreuil A, Despaux N, Boudene C (1977) Toxic effects of cadmium microparticles on the respiratory system: an experimental study on rats and mice. Scand J Work Environ Health 3:116–121

    Article  CAS  Google Scholar 

  • Braud A, Geoffroy V, Hoegy F et al (2010) Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. Environ Microbiol Rep 2:419–425

    Article  CAS  Google Scholar 

  • Brocklehurst KR, Hobman JL, Lawley B et al (1999) ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol Microbiol 31:893–902

    Article  CAS  Google Scholar 

  • Brown S, Santa Maria JP, Jr. and Walker, S. (2013) Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol 67:313–336

    Article  CAS  Google Scholar 

  • Castro-Alonso MJ, Montañez-Hernandez LE, Sanchez-Muñoz MA et al (2019) Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: microbiological and molecular concepts. Front Mater 6:126

    Article  Google Scholar 

  • Chakraborty J, Das S (2014) Characterization and cadmium-resistant gene expression of biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11. Environ Sci Pollut Res 21:14188–14201

    Article  CAS  Google Scholar 

  • Chakravarty R, Banerjee PC (2012) Mechanism of cadmium binding on the cell wall of an acidophilic bacterium. Bioresour Technol 108:176–183

    Article  CAS  Google Scholar 

  • Chandrangsu P, Rensing C, Helmann JD (2017) Metal homeostasis and resistance in bacteria. Nat Rev Microbiol 15:338–350

    Article  CAS  Google Scholar 

  • Chaparro-Acuña SP, Becerra-Jiménez ML, Martínez-Zambrano JJ, Rojas-Sarmiento HA (2018) Soil bacteria that precipitate calcium carbonate: mechanism and applications of the process. Acta Agron 67:277–288

    Article  Google Scholar 

  • Chatterjee S, Kumari S, Rath S et al (2020) Diversity, structure and regulation of microbial metallothionein: metal resistance and possible applications in sequestration of toxic metals. Metallomics 12:1637–1655

    Article  CAS  Google Scholar 

  • Chaturvedi AD, Pal D, Penta S, Kumar A (2015) Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem. World J Microbiol Biotechnol 31:1595–1603

    Article  Google Scholar 

  • Chen Y, Chao Y, Li Y et al (2016) Survival strategies of the plant-associated bacterium Enterobacter sp. strain EG16 under cadmium stress. Appl Environ Microbiol 82:1734–1744

    Article  CAS  Google Scholar 

  • Chen J, Wang L, Li W et al (2021) Genomic insights into cadmium resistance of a newly isolated, plasmid-free Cellulomonas sp. strain Y8. Front Microbiol 12:784575

    Article  Google Scholar 

  • Chien C-C, Lin B-C, Wu C-H (2013) Biofilm formation and heavy metal resistance by an environmental Pseudomonas sp. Biochem Eng J 78:132–137

    Article  CAS  Google Scholar 

  • Chlebek D, Płociniczak T, Gobetti S et al (2022) Analysis of the genome of the heavy metal resistant and hydrocarbon-degrading rhizospheric Pseudomonas qingdaonensis ZCR6 strain and assessment of its plant-growth-promoting traits. Int J Mol Sci 23:214

    Article  CAS  Google Scholar 

  • Choi J (2009) Adsorption, bioavailability, and toxicity of cadmium to soil microorganisms. Geomicrobiol J 26:248–255

    Article  CAS  Google Scholar 

  • Choudhury R, Srivastava S (2001) Zinc resistance mechanisms in bacteria. Curr Sci 2021:768–775

    Google Scholar 

  • Cunningham DP, Lundie LL Jr (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59:7–14

    Article  CAS  Google Scholar 

  • Czaczyk K, Myszka K (2007) Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Pol J Environ Stud 16

    Google Scholar 

  • Dhanya BE, Athmika, Rekha PD (2021) Characterization of an exopolysaccharide produced by Enterobacter sp. YU16-RN5 and its potential to alleviate cadmium induced cytotoxicity in vitro. 3 Biotech 11:491

    Article  Google Scholar 

  • Diaz-Ravina M, Baath E (1996) Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Appl Environ Microbiol 62:2970–2977

    Article  CAS  Google Scholar 

  • Dixit R, Wasiullah, Malaviya D et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189

    Article  Google Scholar 

  • Durve A, Chandra N (2014) FT-IR analysis of bacterial biomass in response to heavy metal stress. Int J Biotechnol Photon 112:386–391

    Google Scholar 

  • Enshaei M, Khanafari A, Akhavan SA (2010) Metallothionein induction in two species of Pseudomonas exposed to cadmium and copper contamination. Iran J Environ Health Sci Eng 7:287–298

    CAS  Google Scholar 

  • Fan M, Liu Z, Nan L et al (2018) Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Microbiol Res 217:51–59

    Article  CAS  Google Scholar 

  • Fang J, Jiao X, Cheng H et al (2021) Draft genome of a multidrug and multi-heavy metal resistant Vibrio parahaemolyticus ST165 strain of Penaeus vannamei from seawater farms in Zhejiang, China. J Glob Antimicrob Resist 26:323–325

    Article  CAS  Google Scholar 

  • Fang L, Zhu H, Geng Y et al (2022) Resistance properties and adaptation mechanism of cadmium in an enriched strain, Cupriavidus nantongensis X1T. J Hazard Mater 434:128935

    Article  CAS  Google Scholar 

  • Fashola MO, Ngole-Jeme VM, Babalola OO (2016) Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. Int J Environ Res Public Health 13:1047

    Article  Google Scholar 

  • Fatoki O (1997) Biomethylation in the natural environment: a review. South Afr J Anim Sci 93:366–370

    CAS  Google Scholar 

  • Fei X, **ao R, Christakos G et al (2019) Comprehensive assessment and source apportionment of heavy metals in Shanghai agricultural soils with different fertility levels. Ecol Indic 106:105508

    Article  CAS  Google Scholar 

  • Ferreira ML, Ramirez SA, Vullo DL (2018) Chemical characterization and ligand behaviour of Pseudomonas veronii 2E siderophores. World J Microbiol Biotechnol 34:134

    Article  Google Scholar 

  • Ferreira ML, Gerbino E, Cavallero GJ et al (2020) Infrared spectroscopy with multivariate analysis to interrogate the interaction of whole cells and secreted soluble exopolymeric substances of Pseudomonas veronii 2E with Cd(II), Cu(II) and Zn(II). Spectrochim Acta A Mol Biomol Spectrosc 228:117820

    Article  CAS  Google Scholar 

  • Figueira EMDAP, Lima AIG, Pereira SIA (2005) Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent. Can J Microbiol 51:7–14

    Article  CAS  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  • Garcia-Rubio R, De Oliveira HC, Rivera J, Trevijano-Contador N (2019) The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Front Microbiol 10:2993

    Article  Google Scholar 

  • Ghosh SK, Bera T, Chakrabarty AM (2020) Microbial siderophore – a boon to agricultural sciences. Biol Control 144:104214

    Article  CAS  Google Scholar 

  • Ghosh A, Pramanik K, Bhattacharya S et al (2022) A potent cadmium bioaccumulating Enterobacter cloacae strain displays phytobeneficial property in Cd-exposed rice seedlings. Curr Res Microb Sci 3:100101

    CAS  Google Scholar 

  • Gow NAR, Latge JP, Munro CA (2017) The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr 5

    Google Scholar 

  • Große C, Grass G, Anton A et al (1999) Transcriptional organization of the czc heavy-metal homeostasis determinant from Alcaligenes eutrophus. J Bacteriol 181:2385–2393

    Article  Google Scholar 

  • Gutiérrez J-C, De Francisco P, Amaro F et al (2019) Structural and functional diversity of microbial metallothionein genes. In: Das S, Dash HR (eds) Microbial diversity in the genomic era. Academic Press

    Google Scholar 

  • Hartwig A (2013) Cadmium and cancer. In: Sigel A, Sigel H, Sigel RKO (eds) Cadmium: from toxicity to essentiality. Springer Netherlands, Dordrecht

    Google Scholar 

  • Hasgül E, Malkoç S, Güven A et al (2019) Biosorption of cadmium and copper by Aspergillus spp. isolated from industrial ceramic waste sludge. Biyolojik Çeşitlilik ve Koruma 12:44–56

    Google Scholar 

  • Hassan E, Nafady N, Hassan S et al (2021) Cadmium biosorption potential and kinetic behavior of endophytic Fusarium verticillioides and its green synthesized silver nanoparticles (GSNPs). Glob Nest J 23:449–457

    CAS  Google Scholar 

  • Higham DP, Sadler PJ, Scawen MD (1986) Effect of cadmium on the morphology, membrane integrity and permeability of Pseudomonas putida. J Gen Microbiol 132:1475–1482

    CAS  Google Scholar 

  • Holst O, Moran AP, Brennan PJ (2010) Overview of the glycosylated components of the bacterial cell envelope. In: Holst O, Brennan PJ, Itzstein MV et al (eds) Microbial glycobiology. Academic Press, San Diego

    Google Scholar 

  • Hossain ST, Mallick I, Mukherjee SK (2012) Cadmium toxicity in Escherichia coli: cell morphology, Z-ring formation and intracellular oxidative balance. Ecotoxicol Environ Saf 86:54–59

    Article  CAS  Google Scholar 

  • Hyder O, Chung M, Cosgrove D et al (2013) Cadmium exposure and liver disease among US adults. J Gastrointest Surg 7:1265–1273

    Article  Google Scholar 

  • Igiri BE, Okoduwa SIR, Idoko GO et al (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol 2018:2568038

    Article  Google Scholar 

  • Imran M, Ahmad I, Barasubiye T et al (2020) Heavy metal tolerance among free-living fungi isolated from soil receiving long term application of wastewater. J Pure Appl Microbiol 14:157–170

    Article  CAS  Google Scholar 

  • IRIS-USEPA (1987) Cadmium [Online]. U.S. Environmental Protection Agency. https://iris.epa.gov/ChemicalLanding/&substance_nmbr=141

  • Ivanov VB, Bystrova EI, Seregin IV (2003) Comparative impacts of heavy metals on root growth as related to their specificity and selectivity. Russ J Plant Physiol 50:398–406

    Article  CAS  Google Scholar 

  • Jaeckel P, Krauss G, Menge S et al (2005) Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus. Biochem Biophys Res Commun 333:150–155

    Article  CAS  Google Scholar 

  • Janyasuthwiong S, Rene E (2017) Bioprecipitation—a promising technique for heavy metal removal and recovery from contaminated wastewater streams. MOJ Civil Eng 2:191–193

    Google Scholar 

  • Jebril N, Boden R, Braungardt C (2022) Cadmium resistant bacteria mediated cadmium removal: a systematic review on resistance, mechanism and bioremediation approaches. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, p 012006

    Google Scholar 

  • Kalsotra T, Khullar S, Agnihotri R, Reddy MS (2018) Metal induction of two metallothionein genes in the ectomycorrhizal fungus Suillus himalayensis and their role in metal tolerance. Microbiology 164:868–876

    Article  CAS  Google Scholar 

  • Kanwar P, Goswami N, Mishra T (2021) Heavy metal tolerance mechanisms in microorganisms - a review. Pollut Res 40:562–571

    CAS  Google Scholar 

  • Khan Z, Atif Nisar M, Zajif Hussain S et al (2015) Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium. Appl Microbiol Biotechnol 99:10745–10757

    Article  CAS  Google Scholar 

  • Khan Z, Rehman A, Hussain SZ et al (2016) Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent. AMB Express 6:54

    Article  Google Scholar 

  • Khan A, Gupta A, Singh P et al (2020) Siderophore-assisted cadmium hyperaccumulation in Bacillus subtilis. Int Microbiol 23:277–286

    Article  CAS  Google Scholar 

  • Khan Z, Elahi A, Bukhari DA, Rehman A (2022) Cadmium sources, toxicity, resistance and removal by microorganisms: a potential strategy for cadmium eradication. J Saudi Chem Soc 26:101569

    Article  CAS  Google Scholar 

  • Khullar S, Reddy MS (2018) Ectomycorrhizal fungi and its role in metal homeostasis through metallothionein and glutathione mechanisms. Curr Biotechnol 7:231–241

    Article  CAS  Google Scholar 

  • Khullar S, Reddy MS (2019) Cadmium induced glutathione bioaccumulation mediated by γ-glutamylcysteine synthetase in ectomycorrhizal fungus Hebeloma cylindrosporum. Biometals 32:101–110

    Article  CAS  Google Scholar 

  • Khullar S, Sudhakara Reddy M (2019) Cadmium and arsenic responses in the ectomycorrhizal fungus Laccaria bicolor: glutathione metabolism and its role in metal(loid) homeostasis. Environ Microbiol Rep 11:53–61

    Article  CAS  Google Scholar 

  • Kneer R, Kutchan TM, Hochberger A, Zenk MH (1992) Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin. Arch Microbiol 157:305–310

    Article  CAS  Google Scholar 

  • Kolaj-Robin O, Russell D, Hayes KA et al (2015) Cation diffusion facilitator family: structure and function. FEBS Lett 589:1283–1295

    Article  CAS  Google Scholar 

  • Kubier A, Wilkin RT, Pichler T (2019) Cadmium in soils and groundwater: a review. Appl Geochem 108:104388

    Article  CAS  Google Scholar 

  • Kumar V, Singh S, Singh G, Dwivedi SK (2019) Exploring the cadmium tolerance and removal capability of a filamentous fungus Fusarium solani. Geomicrobiol J 36:782–791

    Article  CAS  Google Scholar 

  • Kumar A, Subrahmanyam G, Mondal R et al (2021) Bio-remediation approaches for alleviation of cadmium contamination in natural resources. Chemosphere 268:128855

    Article  CAS  Google Scholar 

  • Kumari D, Pan X, Lee D-J, Achal V (2014) Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature. Int Biodeterior Biodegrad 94:98–102

    Article  CAS  Google Scholar 

  • Labarrere CA, Kassab GS (2022) Glutathione: a Samsonian life-sustaining small molecule that protects against oxidative stress, ageing and damaging inflammation. Front Nutr 9:1007816

    Article  Google Scholar 

  • Lebrun M, Audurier A, Cossart P (1994) Plasmid-borne cadmium resistance genes in Listeria monocytogenes are similar to cadA and cadC of Staphylococcus aureus and are induced by cadmium. J Bacteriol 176:3040–3048

    Article  CAS  Google Scholar 

  • Legatzki A, Grass G, Anton A et al (2003) Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J Bacteriol 185:4354–4361

    Article  CAS  Google Scholar 

  • Li F, Wang W, Li C et al (2018) Self-mediated pH changes in culture medium affecting biosorption and biomineralization of Cd2+ by Bacillus cereus Cd01. J Hazard Mater 358:178–186

    Article  CAS  Google Scholar 

  • Li F, Zheng Y, Tian J et al (2019) Cupriavidus sp. strain Cd02-mediated pH increase favoring bioprecipitation of Cd2+ in medium and reduction of cadmium bioavailability in paddy soil. Ecotoxicol Environ Saf 184:109655

    Article  CAS  Google Scholar 

  • Lim H-S, Lee H-H, Kim T-H, Lee B-R (2016) Relationship between heavy metal exposure and bone mineral density in Korean adult. J Bone Metab 23:223–231

    Article  Google Scholar 

  • Liu J, Dutta SJ, Stemmler AJ, Mitra B (2006) Metal-binding affinity of the transmembrane site in ZntA: implications for metal selectivity. Biochemistry 45:763–772

    Article  CAS  Google Scholar 

  • Liu P, Chen X, Huang Q, Chen W (2015) The Role of CzcRS Two-component systems in the heavy metal resistance of Pseudomonas putida X4. Int J Mol Sci 16:17005

    Article  CAS  Google Scholar 

  • Liu H, Zhang Y, Wang Y et al (2021) The connection between Czc and Cad systems involved in cadmium resistance in Pseudomonas putida. Int J Mol Sci 22:9697

    Article  CAS  Google Scholar 

  • Loebus J, Leitenmaier B, Meissner D et al (2013) The major function of a metallothionein from the aquatic fungus Heliscus lugdunensis is cadmium detoxification. J Inorg Biochem 127:253–260

    Article  CAS  Google Scholar 

  • López Pérez PA, Aguilar López R, Neria González MI (2015) Cadmium removal at high concentration in aqueous medium: mediated by Desulfovibrio alaskensis. Int J Environ Sci Technol 12:1975–1986

    Article  Google Scholar 

  • Loutet SA, Chan ACK, Kobylarz MJ et al (2015) The fate of intracellular metal ions in microbes. In: Nriagu JO, Skaar EP (eds) Trace metals and infectious diseases. MIT Press, Cambridge, MA

    Google Scholar 

  • Macaskie LE, Dean ACR (1984) Cadmium Accumulation by a Citrobacter sp. J Gen Microbiol 130:53–62

    CAS  Google Scholar 

  • Margaryan A, Panosyan H, Birkeland N-K (2021) Heavy metal resistance in prokaryotes: mechanism and application. In: Egamberdieva D, Birkeland N-K, Li W-J et al (eds) Microbial communities and their interactions in the extreme environment. Springer Singapore, Singapore

    Google Scholar 

  • Masood F, Malik A (2013) Current aspects of metal resistant bacteria in bioremediation: from genes to ecosystem. In: Malik A, Grohmann E, Alves M (eds) Management of microbial resources in the environment. Springer Netherlands, Dordrecht

    Google Scholar 

  • Maurya PK, Malik DS, Yadav KK et al (2019) Bioaccumulation and potential sources of heavy metal contamination in fish species in river Ganga basin: possible human health risks evaluation. Toxicol Rep 6:472–481

    Article  CAS  Google Scholar 

  • Mazhar SH, Herzberg M, Ben Fekih I et al (2020) Comparative insights into the complete genome sequence of highly metal resistant Cupriavidus metallidurans strain BS1 isolated from a gold–copper mine. Front Microbiol 11

    Google Scholar 

  • Mccreight JD, Schroeder DB (1982) Inhibition of growth of nine ectomycorrhizal fungi by cadmium, lead, and nickel in vitro. Environ Exp Bot 22:1–7

    Article  CAS  Google Scholar 

  • Mitra RS, Bernstein IA (1978) Single-strand breakage in DNA of Escherichia coli exposed to Cd2+. J Bacteriol 133:75–80

    Article  CAS  Google Scholar 

  • Mohd-Nadzir M, Nurhayati RW, Idris FN, Nguyen MH (2021) Biomedical applications of bacterial exopolysaccharides: a review. Polymers 13:530

    Article  Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2012) Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnol Prog 28:299–311

    Article  CAS  Google Scholar 

  • Morillo-Pérez JA, García-Ribera R, Quesada T et al (2008) Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae. World J Microbiol Biotechnol 24:2699–2704

    Article  Google Scholar 

  • Morrow H (2010) Cadmium and cadmium alloys. In: Kirk-Othmer encyclopedia of chemical technology. Wiley

    Google Scholar 

  • Mutoh N, Hayashi Y (1988) Isolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystin, small cadmium-binding peptides. Biochem Biophys Res Commun 151:32–39

    Article  CAS  Google Scholar 

  • Naik MM, Pandey A, Dubey SK (2012) Biological characterization of lead-enhanced exopolysaccharide produced by a lead resistant Enterobacter cloacae strain P2B. Biodegradation 23:775–783

    Article  CAS  Google Scholar 

  • Nazareth S, Marbaniang T (2008) Effect of heavy metals on cultural and morphological growth characteristics of halotolerant Penicillium morphotypes. J Basic Microbiol 48:363–369

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730

    Article  CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    Article  CAS  Google Scholar 

  • Oger C, Mahillon J, Petit F (2003) Distribution and diversity of a cadmium resistance (cadA) determinant and occurrence of IS257 insertion sequences in Staphylococcal bacteria isolated from a contaminated estuary (Seine, France). FEMS Microbiol Ecol 43:173–183

    Article  CAS  Google Scholar 

  • Orr S, Bridges C (2017) Chronic kidney disease and exposure to nephrotoxic metals. Int J Mol Sci 18:1039

    Article  Google Scholar 

  • Oshiquiri LH, Dos Santos KRA, Ferreira Junior SA et al (2020) Trichoderma harzianum transcriptome in response to cadmium exposure. Fungal Genet Biol 134:103281

    Article  CAS  Google Scholar 

  • Osman GE, Abulreesh HH, Elbanna K et al (2019) Recent progress in metal-microbe interactions: prospects in bioremediation. J Pure Appl Microbiol 13:13

    Article  CAS  Google Scholar 

  • Pal A, Dutta S, Mukherjee PK, Paul AK (2005) Occurrence of heavy metal-resistance in microflora from serpentine soil of Andaman. J Basic Microbiol 45:207–218

    Article  CAS  Google Scholar 

  • Pal A, Bhattacharjee S, Saha J et al (2022) Bacterial survival strategies and responses under heavy metal stress: a comprehensive overview. Crit Rev Microbiol 48:327–355

    Article  CAS  Google Scholar 

  • Park JH, Lamb D, Paneerselvam P et al (2011) Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J Hazard Mater 185:549–574

    Article  CAS  Google Scholar 

  • Paul A, Mondal B, Ghosh R, Bhattacharyya S (2021) Heavy metal tolerance of filamentous fungal strains isolated from agricultural field near waste dump site of Dhapa, Kolkata. J Mycopathol Res 59:23–30

    Google Scholar 

  • Peng D, Qiao S, Luo Y et al (2020) Performance of microbial induced carbonate precipitation for immobilizing Cd in water and soil. J Hazard Mater 400:123116

    Article  CAS  Google Scholar 

  • Pinot F, Kreps SE, Bachelet M et al (2000) Cadmium in the environment: sources, mechanisms of biotoxicity, and biomarkers. Rev Environ Health 15:299–324

    Article  CAS  Google Scholar 

  • Płaza G, Łukasik W, Ulfig K (1998) Effect of cadmium on growth of potentially pathogenic soil fungi. Mycopathologia 141:93–100

    Article  Google Scholar 

  • Pongratz R, Heumann KG (1999) Production of methylated mercury, lead, and cadmium by marine bacteria as a significant natural source for atmospheric heavy metals in polar regions. Chemosphere 39:89–102

    Article  CAS  Google Scholar 

  • Priyadarshanee M, Das S (2021) Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: a comprehensive review. J Environ Chem Eng 9:104686

    Article  CAS  Google Scholar 

  • Priyadarshini E, Priyadarshini SS, Cousins BG, Pradhan N (2021) Metal-fungus interaction: review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere 274:129976

    Article  CAS  Google Scholar 

  • Qiao S, Zeng G, Wang X et al (2021) Multiple heavy metals immobilization based on microbially induced carbonate precipitation by ureolytic bacteria and the precipitation patterns exploration. Chemosphere 274:129661

    Article  CAS  Google Scholar 

  • Raab A, Feldmann J (2003) Microbial transformation of metals and metalloids. Sci Prog 86:179–202

    Article  CAS  Google Scholar 

  • Rahman NNNA, Shahadat M, Won CA, Omar FM (2014) FTIR study and bioadsorption kinetics of bioadsorbent for the analysis of metal pollutants. RSC Adv 4:58156–58163

    Article  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  Google Scholar 

  • Ramadan SE, Razak AA, Soliman HG (1988) Influence of cadmium on certain biological activities in a cadmium-tolerant fungi. Biol Trace Elem Res 18:179–190

    Article  CAS  Google Scholar 

  • Reddy MS, Prasanna L, Marmeisse R, Fraissinet-Tachet L (2014) Differential expression of metallothioneins in response to heavy metals and their involvement in metal tolerance in the symbiotic basidiomycete Laccaria bicolor. Microbiology 160:2235–2242

    Article  CAS  Google Scholar 

  • Renu S, Sarim KM, Singh DP et al (2022) Deciphering cadmium (Cd) tolerance in newly isolated bacterial strain, Ochrobactrum intermedium BB12, and its role in alleviation of Cd stress in spinach plant (Spinacia oleracea L.). Front Microbiol 12

    Google Scholar 

  • Rieuwerts JS, Thornton I, Farago ME, Ashmore MR (1998) Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem Speciat Bioavailab 10:61–75

    Article  CAS  Google Scholar 

  • Rizvi A, Ahmed B, Zaidi A, Khan MS (2019) Bioreduction of toxicity influenced by bioactive molecules secreted under metal stress by Azotobacter chroococcum. Ecotoxicology 28:302–322

    Article  CAS  Google Scholar 

  • Rohde M (2019) The gram-positive bacterial cell wall. Microbiol Spectr 7. https://doi.org/10.1128/microbiolspec.gpp3-0044-2018

  • Ron EZ, Minz D, Finkelstein NP, Rosenberg E (1992) Interactions of bacteria with cadmium. Biodegradation 3:161–170

    Article  CAS  Google Scholar 

  • Roskova Z, Skarohlid R, Mcgachy L (2022) Siderophores: an alternative bioremediation strategy? Sci Total Environ 819:153144

    Article  CAS  Google Scholar 

  • Rumble J (2017) CRC handbook of chemistry and physics. Routledge

    Google Scholar 

  • Russell D, Soulimane T (2012) Evidence for zinc and cadmium binding in a CDF transporter lacking the cytoplasmic domain. FEBS Lett 586:4332–4338

    Article  CAS  Google Scholar 

  • Sácký J, Beneš V, Borovička J et al (2019) Different cadmium tolerance of two isolates of Hebeloma mesophaeum showing different basal expression levels of metallothionein (HmMT3) gene. Fungal Biol 123:247–254

    Article  Google Scholar 

  • Saha J, Dey S, Pal A (2022a) Whole genome sequencing and comparative genomic analyses of Pseudomonas aeruginosa strain isolated from arable soil reveal novel insights into heavy metal resistance and codon biology. Curr Genet 68:481–503

    Article  CAS  Google Scholar 

  • Saha J, Sarkar M, Mandal P, Pal A (2022b) Comparative study of heavy metal uptake and analysis of plant growth promotion potential of multiple heavy metal-resistant bacteria isolated from arable land. Curr Microbiol 79:7

    Article  CAS  Google Scholar 

  • Salam LB, Obayori OS, Ilori MO, Amund OO (2020) Effects of cadmium perturbation on the microbial community structure and heavy metal resistome of a tropical agricultural soil. Bioresour Bioprocess 7:25

    Article  Google Scholar 

  • Samrane K, Bouhaouss A (2022) Cadmium in phosphorous fertilizers: balance and trends. Rasayan J Chem 15:2103–2117

    Article  CAS  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  Google Scholar 

  • Seshadri B, Bolan NS, Naidu R (2015) Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation. J Soil Sci Plant Nutr 15:524–548

    Google Scholar 

  • Shan B, Hao R, Xu H et al (2021) A review on mechanism of biomineralization using microbial-induced precipitation for immobilizing lead ions. Environ Sci Pollut Res 28:30486–30498

    Article  CAS  Google Scholar 

  • Sharma R, Rensing C, Rosen BP, Mitra B (2000) The ATP hydrolytic activity of purified ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli. J Biol Chem 275:3873–3878

    Article  CAS  Google Scholar 

  • Sher S, Hussain SZ, Rehman A (2020) Phenotypic and genomic analysis of multiple heavy metal–resistant Micrococcus luteus strain AS2 isolated from industrial waste water and its potential use in arsenic bioremediation. Appl Microbiol Biotechnol 104:2243–2254

    Article  CAS  Google Scholar 

  • Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414

    Article  Google Scholar 

  • Silver S (1992) Plasmid-determined metal resistance mechanisms: range and overview. Plasmid 27:1–3

    Article  CAS  Google Scholar 

  • Sinha S, Kumar-Mukherjee S (2008) Cadmium–induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56:55–60

    Article  CAS  Google Scholar 

  • Smirnova GV, Oktyabrsky ON (2005) Glutathione in bacteria. Biochemistry (Mosc) 70:1199–1211

    Article  CAS  Google Scholar 

  • Suhani I, Sahab S, Srivastava V, Singh RP (2021) Impact of cadmium pollution on food safety and human health. Curr Opin Toxicol 27:1–7

    Article  CAS  Google Scholar 

  • Sun R, Wang L, Huang R et al (2020) Cadmium resistance mechanisms of a functional strain Enterobacter sp. DNB-S2, isolated from black soil in Northeast China. Environ Pollut 263:114612

    Article  CAS  Google Scholar 

  • Tellez-Plaza M, Guallar E, Howard BV et al (2013) Cadmium exposure and incident cardiovascular disease. Epidemiology 24:421–429

    Article  Google Scholar 

  • Thiem D, Złoch M, Gadzała-Kopciuch R et al (2018) Cadmium-induced changes in the production of siderophores by a plant growth promoting strain of Pseudomonas fulva. J Basic Microbiol 58:623–632

    Article  CAS  Google Scholar 

  • Timofeeva AM, Galyamova MR, Sedykh SE (2022) Bacterial siderophores: classification, biosynthesis, perspectives of use in agriculture. Plants (Basel) 11:3065

    Article  CAS  Google Scholar 

  • Trevors JT, Stratton GW, Gadd GM (1986) Cadmium transport, resistance, and toxicity in bacteria, algae, and fungi. Can J Microbiol 32:447–464

    Article  CAS  Google Scholar 

  • Uddin MJ, Haque F, Jabeen I, Shuvo SR (2023) Characterization and whole-genome sequencing of an extreme arsenic-tolerant Citrobacter freundii SRS1 strain isolated from Savar area in Bangladesh. Can J Microbiol 69:44–52

    Article  CAS  Google Scholar 

  • Valencia EY, Braz VS, Guzzo C, Marques MV (2013) Two RND proteins involved in heavy metal efflux in Caulobacter crescentus belong to separate clusters within proteobacteria. BMC Microbiol 13:79

    Article  CAS  Google Scholar 

  • Vallero D (2014) Chapter 23 - Metal and metalloid cycles. In: Vallero D (ed) Fundamentals of air pollution, 5th edn. Academic Press, Boston

    Google Scholar 

  • Wang CL, Michels PC, Dawson SC et al (1997) Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture. Appl Environ Microbiol 63:4075–4078

    Article  CAS  Google Scholar 

  • Wang LK, Vaccari DA, Li Y, Shammas NK (2005) Chemical precipitation. In: Wang LK, Hung Y-T, Shammas NK (eds) Physicochemical treatment processes. Humana Press, Totowa, NJ

    Chapter  Google Scholar 

  • Wang X, Zhang X, Liu X et al (2019) Physiological, biochemical and proteomic insight into integrated strategies of an endophytic bacterium Burkholderia cenocepacia strain YG-3 response to cadmium stress. Metallomics 11:1252–1264

    Article  CAS  Google Scholar 

  • Worms I, Simon DF, Hassler CS, Wilkinson KJ (2006) Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie 88:1721–1731

    Article  CAS  Google Scholar 

  • Wu X, Santos RR, Fink-Gremmels J (2015) Cadmium modulates biofilm formation by Staphylococcus epidermidis. Int J Environ Res Public Health 12:2878–2894

    Article  CAS  Google Scholar 

  • **a L, Xu X, Zhu W et al (2015) A comparative study on the biosorption of Cd2+ onto Paecilomyces lilacinus XLA and Mucoromycote sp. XLC. Int J Mol Sci 16:15670–15687

    Article  CAS  Google Scholar 

  • **a X, Wu S, Zhou Z, Wang G (2021) Microbial Cd(II) and Cr(VI) resistance mechanisms and application in bioremediation. J Hazard Mater 401:123685

    Article  CAS  Google Scholar 

  • Xu Y-N, Chen Y (2020) Advances in heavy metal removal by sulfate-reducing bacteria. Water Sci Technol 81:1797–1827

    Article  Google Scholar 

  • Xu S, **ng Y, Liu S et al (2020) Characterization of Cd2+ biosorption by Pseudomonas sp. strain 375, a novel biosorbent isolated from soil polluted with heavy metals in Southern China. Chemosphere 240:124893

    Article  CAS  Google Scholar 

  • Yang E, Sun L, Ding X et al (2019) Complete genome sequence of Caulobacter flavus RHGG3T, a type species of the genus Caulobacter with plant growth-promoting traits and heavy metal resistance. 3 Biotech 9:42

    Article  CAS  Google Scholar 

  • Yin K, Wang Q, Lv M, Chen L (2019a) Microorganism remediation strategies towards heavy metals. Chem Eng J 360:1553–1563

    Article  CAS  Google Scholar 

  • Yin W, Wang Y, Liu L, He J (2019b) Biofilms: the microbial “protective clothing” in extreme environments. Int J Mol Sci 20:3423

    Article  CAS  Google Scholar 

  • Yoon KP, Misra TK, Silver S (1991) Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258. J Bacteriol 173:7643–7649

    Article  CAS  Google Scholar 

  • You L-X, Zhang R-R, Dai J-X et al (2021) Potential of cadmium resistant Burkholderia contaminans strain ZCC in promoting growth of soy beans in the presence of cadmium. Ecotoxicol Environ Saf 211:111914

    Article  CAS  Google Scholar 

  • Yu X, Ding Z, Ji Y et al (2020) An operon consisting of a P-type ATPase gene and a transcriptional regulator gene responsible for cadmium resistances in Bacillus vietamensis 151–6 and Bacillus marisflavi 151–25. BMC Microbiol 20:18

    Article  CAS  Google Scholar 

  • Yu Y, Shi K, Li X et al (2022) Reducing cadmium in rice using metallothionein surface-engineered bacteria WH16-1-MT. Environ Res 203:111801

    Article  CAS  Google Scholar 

  • Yuan X, Xue N, Han Z (2021) A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years. J Environ Sci 101:217–226

    Article  CAS  Google Scholar 

  • Yun YS, Vijayaraghavan K, Won SW (2011) Bacterial biosorption and biosorbents. In: Kotrba P, Mackova M, Macek T (eds) Microbial biosorption of metals. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Zeng G, Qiao S, Wang X et al (2021) Immobilization of cadmium by Burkholderia sp. QY14 through modified microbially induced phosphate precipitation. J Hazard Mater 412:125156

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang Y, Liu M et al (2008) Dark septate endophyte (DSE) fungi isolated from metal polluted soils: their taxonomic position, tolerance, and accumulation of heavy metals in vitro. J Microbiol 46:624–632

    Article  Google Scholar 

  • Zhang D, Yin C, Abbas N et al (2020) Multiple heavy metal tolerance and removal by an earthworm gut fungus Trichoderma brevicompactum QYCD-6. Sci Rep 10:6940

    Article  CAS  Google Scholar 

  • Zhao Y, Yao J, Yuan Z et al (2017) Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation. Environ Sci Pollut Res 24:372–380

    Article  CAS  Google Scholar 

  • Zhao X, Wang M, Wang H et al (2019) Study on the remediation of Cd pollution by the biomineralization of urease-producing bacteria. Int J Environ Res Public Health 16:268

    Article  CAS  Google Scholar 

  • Zheng C, Chen M, Tao Z et al (2015) Differential expression of sulfur assimilation pathway genes in Acidithiobacillus ferrooxidans under Cd2+ stress: evidence from transcriptional, enzymatic, and metabolic profiles. Extremophiles 19:429–436

    Article  CAS  Google Scholar 

  • Zheng Y, **ao C, Chi R (2021) Remediation of soil cadmium pollution by biomineralization using microbial-induced precipitation: a review. World J Microbiol Biotechnol 37:208

    Article  CAS  Google Scholar 

  • Zhu G, **e L, Tan W et al (2022) Cd2+ tolerance and removal mechanisms of Serratia marcescens KMR-3. J Biotechnol 359:65–74

    Article  CAS  Google Scholar 

  • Złoch M, Thiem D, Gadzała-Kopciuch R, Hrynkiewicz K (2016) Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd2+. Chemosphere 156:312–325

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from CONACYT, Programa Presupuestario F003 (Formerly Fondo Sectorial de Investigación para la Educación) CB2017-2018, A1-S-40454, to Alejandro Hernández-Morales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Hernández-Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rolón-Cárdenas, G.A., Hernández-Morales, A. (2024). Microbial Tolerance Strategies Against Cadmium Toxicity. In: Jha, A.K., Kumar, N. (eds) Cadmium Toxicity Mitigation. Springer, Cham. https://doi.org/10.1007/978-3-031-47390-6_6

Download citation

Publish with us

Policies and ethics

Navigation