Superfrog: Comparing Learning Outcomes and Potentials of a Worksheet, Smartphone, and Tangible AR Learning Environment

  • Conference paper
  • First Online:
Immersive Learning Research Network (iLRN 2023)

Abstract

The widespread availability of smartphones facilitates the integration of digital, augmented reality (AR), and tangible augmented reality (TAR) learning environments into the classroom. A haptic aspect can enhance the user’s overall experience during a learning process. To investigate further benefits of using TAR for educational purposes, we compare a TAR and a smartphone learning environment with a traditional worksheet counterpart in terms of learning effectiveness, emotions, motivation, and cognitive load. 64 sixth-grade students from a German high school used one of the three conditions to learn about frog anatomy. We found no significant differences in learning effectiveness and cognitive load. The TAR condition elicited significantly higher positive emotions than the worksheet, but not the smartphone condition. Both digital learning environments elicited significantly higher motivation, in contrast to the worksheet. Thus, our results suggest that smartphone and TAR learning environments are equally beneficial for enhancing learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 96.29
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://hci.uni-wuerzburg.de/projects/horst-the-teaching-frog/.

References

  1. Antle, A., Wise, A.: Getting down to details: using learning theory to inform tangibles research and design for children. Interact. Comput. 25, 1–20 (2013). https://doi.org/10.1093/iwc/iws007

    Article  Google Scholar 

  2. Azuma, R.T.: A survey of augmented reality. Presence: Teleoperators Virtual Environ. 6(4), 355–385 (1997)

    Google Scholar 

  3. Baack, K., Göbel, R., Maier, A., Marx, U., Remé, R., Seitz, H.J.: Natura 1. Biologie für Gymnasien, Klett (2013)

    Google Scholar 

  4. Bacca, J., Baldiris, S., Fabregat, S., Graf, S., Kinishuk: Augmented reality trends in education: a systematic review of research and applications. Educ. Technol. Soc. 17(4), 133–149 (2014)

    Google Scholar 

  5. Bach, B., Sicat, R., Beyer, J., Cordeil, M., Pfister, H.: The hologram in my hand: how effective is interactive exploration of 3D visualizations in immersive tangible augmented reality? IEEE Trans. Visual Comput. Graphics 24(1), 457–467 (2018)

    Article  Google Scholar 

  6. Bier, E.A., Stone, M.C., Pier, K., Buxton, W., DeRose, T.D.: Toolglass and magic lenses: the see-through interface. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 73–80. SIGGRAPH 1993, Association for Computing Machinery, New York, NY, USA (1993). https://doi.org/10.1145/166117.166126

  7. für Schulqualität und Bildungsforschung München, S.: Lehrplanplus (2020). https://www.lehrplanplus.bayern.de/

  8. Billinghurst, M., Kato, H., Poupyrev, I.: Tangible augmented reality. In: ACM SIGGRAPH ASIA 2008 Courses (2008). https://doi.org/10.1145/1508044.1508051

  9. Breyer, B., Bluemke, M.: Deutsche version der positive and negative affect schedule PANAS (GESIS panel) (2016). https://doi.org/10.6102/zis242

  10. Cabero-Almenara, J., Roig-Vila, R.: The motivation of technological scenarios in augmented reality (AR): results of different experiments. Appl. Sci. 9(14), 2907 (2019). https://doi.org/10.3390/app9142907

  11. Carrera, C.C., Perez, J.L.S., de la Torre Cantero, J.: Teaching with AR as a tool for relief visualization: usability and motivation study. Int. Res. Geog. Environ. Educ. 27(1), 69–84 (2018). https://doi.org/10.1080/10382046.2017.1285135

  12. Chandrasekera, T., Yoon, S.: The effect of tangible user interfaces on cognitive load in the creative design process. In: 2015 IEEE International Symposium on Mixed and Augmented Reality - Media, Art, Social Science, Humanities and Design, pp. 6–8 (2015). https://doi.org/10.1109/ISMAR-MASHD.2015.18

  13. Dengel, A., Mägdefrau, J.: Immersive learning explored: subjective and objective factors influencing learning outcomes in immersive educational virtual environments. In: 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), pp. 608–615 (2018). https://doi.org/10.1109/TALE.2018.8615281

  14. Deterding, S., Dixon, D., Khaled, R., Nacke, L.: From game design elements to gamefulness: defining gamification. In: Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments (MindTrek 2011), pp. 9–15. ACM, Tampere, Finland (2011). https://doi.org/10.1145/2181037.2181040

  15. Diegmann, P., Schmidt-Kraepelin, M., Van den Eynden, S., Basten, D.: Benefits of augmented reality in educational environments - a systematic literature review. In: Proceedings of the 12th International Conference on Wirtschaftsinformatik, pp. 1542–1556. Osnabrück, Germany (2015)

    Google Scholar 

  16. Ebesutani, C., Regan, J., Smith, A., Reise, S., Higa-McMillan, C., Chorpita, B.: The 10-item positive and negative affect schedule for children, child and parent shortened versions: application of item response theory for more efficient assessment. J. Psychopathol. Behav. Assess. 34, 191–203 (2012). https://doi.org/10.1007/s10862-011-9273-2

  17. de Freitas, S., Liarokapis, F.: Serious games: a new paradigm for education? In: Ma, M., Oikonomou, A., Jain, L.C. (eds.) Serious Games and Edutainment Applications, pp. 9–23. Springer, London (2011). https://doi.org/10.1007/978-1-4471-2161-9_2

    Chapter  Google Scholar 

  18. Garzón, J., Pavón, J., Baldiris, S.: Systematic review and meta-analysis of augmented reality in educational settings. Virtual Reality 23, 447–459 (2019). https://doi.org/10.1007/s10055-019-00379-9

    Article  Google Scholar 

  19. Gervautz, M., Schmalstieg, D.: Anywhere interfaces using handheld augmented reality. Computer 45(7), 26–31 (2012). https://doi.org/10.1109/MC.2012.72

    Article  Google Scholar 

  20. Gikas, J., Grant, M.M.: Mobile computing devices in higher education: student perspectives on learning with cellphones, smartphones & social media. Internet High. Educ. 19, 18–26 (2013). https://doi.org/10.1016/j.iheduc.2013.06.002

    Article  Google Scholar 

  21. Glandt, D.: Amphibien und Reptilien. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49727-2

    Book  Google Scholar 

  22. Gutiérrez Posada, J.E., Hayashi, E.C.S., Baranauskas, M.C.C.: On feelings of comfort, motivation and joy that GUI and TUI evoke. In: Marcus, A. (ed.) DUXU 2014. LNCS, vol. 8520, pp. 273–284. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07638-6_27

    Chapter  Google Scholar 

  23. Ishii, H., Ullmer, B.: Tangible bits: towards seamless interfaces between people, bits and atoms. In: Proceedings of the 1997 CHI Conference on Human Factors in Computing Systems (CHI 1997), pp. 234–241. Atlanta, USA (1997). https://doi.org/10.1145/258549.258715

  24. Kalemkuş, J., Kalemkuş, F.: Effect of the use of augmented reality applications on academic achievement of student in science education: meta analysis review. Interact. Learn. Environ. (2022). https://doi.org/10.1080/10494820.2022.2027458

    Article  Google Scholar 

  25. Keller, S., Rumann, S., Habig, S.: Cognitive load implications for augmented reality supported chemistry learning. Information 12(3), 96–115 (2021). https://doi.org/10.3390/info12030096

    Article  Google Scholar 

  26. Khan, M., Trujano, F., Choudhury, A., Maes, P.: Mathland: playful mathematical learning in mixed reality. In: CHI 2018 Extended Abstracts. Montréal, Canada (2018)

    Google Scholar 

  27. Kim, K., Billinghurst, M., Bruder, G., Duh, H.B., Welch, G.F.: Revisiting trends in augmented reality research: a review of the 2nd decade of ISMAR (2008–2017). IEEE Trans. Visual Comput. Graph. 24(11), 2947–2962 (2018). https://doi.org/10.1109/TVCG.2018.2868591

    Article  Google Scholar 

  28. Koehler, M., Mishra, P.: What happens when teachers design educational technology? the development of technological pedagogical content knowledge. J. Educ. Comput. Res. 32(2), 131–152 (2005)

    Article  Google Scholar 

  29. Küçük, S., Kapakin, S., Göktaş, Y.: Learning anatomy via mobile augmented reality: effects on achievement and cognitive load. Anat. Sci. Educ. 9(5), 411–421 (2016). https://doi.org/10.1002/ase.1603

    Article  Google Scholar 

  30. Laurent, J., et al.: A measure of positive and negative affect for children: scale development and preliminary validation. Psychol. Assess. 11, 326–338 (1999)

    Article  Google Scholar 

  31. Li, J., Van der Spek, E.D., Feijs, L., Wang, F., Hu, J.: Augmented reality games for learning: a literature review. In: International Conference on Distributed, Ambient, and Pervasive Interactions (2017). https://doi.org/10.1007/978-3-319-58697-7_46

  32. Liu, L., Wagner, C., Suh, A.: Understanding the success of Pokémon go: impact of immersion on players’ continuance intention. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC 2017. LNCS (LNAI), vol. 10285, pp. 514–523. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58625-0_37

    Chapter  Google Scholar 

  33. Loderer, K., Pekrun, R., Lester, J.C.: Beyond cold technology: a systematic review and meta-analysis on emotions in technology-based learning environments. Learn. Instr. 70, 101162 (2018)

    Google Scholar 

  34. Majuri, J., Koivisto, J., Hamari, J.: Gamification of education and learning: a review of empirical literature. In: Proceedings of the 2nd International GamiFIN Conference (GamiFIN 2018), pp. 11–19 (2018)

    Google Scholar 

  35. Mayer, R.E.: Cognitive theory of multimedia learning. In: Mayer, R.E. (ed.) The Cambridge Handbook of Multimedia Learning, pp. 43–71. Cambridge University Press (2014). https://doi.org/10.1017/CBO9781139547369.005

  36. McGonigal, J.: Reality is Broken: Why Games Make Us Better and How They Can Change the World, 1st edn. Penguin Press, New York (2011)

    Google Scholar 

  37. Ni, A.Y.: Comparing the effectiveness of classroom and online learning: Teaching research methods. J. Public Affairs Educ. 19, 199–215 (2013). https://doi.org/10.1080/15236803.2013.12001730

  38. Oberdörfer, S.: Better Learning with gaming: knowledge encoding and knowledge learning using gamification. Ph.D. thesis, University of Würzburg (2021). https://doi.org/10.25972/OPUS-21970

  39. Oberdörfer, S., Birnstiel, S., Latoschik, M.E., Grafe, S.: Mutual benefits: interdisciplinary education of pre-service teachers and HCI students in VR/AR learning environment design. Front. Educ. 6, 233 (2021). https://doi.org/10.3389/feduc.2021.693012

    Article  Google Scholar 

  40. Oberdörfer, S., Elsässer, A., Grafe, S., Latoschik, M.E.: Grab the frog: comparing intuitive use and user experience of a smartphone-only, AR-only, and tangible AR learning environment. In: Proceedings of the 23rd International Conference on Mobile Human-Computer Interaction (MobileHCI 2021). Toulouse & Virtual, France (2021). https://doi.org/10.1145/3447526.3472016

  41. Oberdörfer, S., Elsässer, A., Schraudt, D., Grafe, S., Latoschik, M.E.: Horst - the teaching frog: Learning the anatomy of a frog using tangible AR. In: Proceedings of the 2020 Mensch und Computer Conference (MuC 2020), pp. 303–307. Magdeburg, Germany (2020). https://doi.org/10.1145/3404983.3410007

  42. Oberdörfer, S., Latoschik, M.E.: Gamified knowledge encoding: knowledge training using game mechanics. In: Proceedings of the 10th International Conference on Virtual Worlds and Games for Serious Applications (VS Games 2018). 2018 IEEE. Reprinted, with permission., Würzburg, Germany (2018). https://doi.org/10.1109/VS-Games.2018.8493425

  43. Paas, F.G.W.C.: Training strategies for attaining transfer of problem-solving skill in statistics: a cognitive-load approach. J. Educ. Psychol. 84(4), 429–434 (1992)

    Article  Google Scholar 

  44. Paas, F.G.W.C., Ayres, P., Pachman, M.: Assessment of cognitive load in multimedia learning - theory, methods and applications. In: Robinson, D.H., Schraw, G. (eds.) Recent Innovations in Educational Technology that Facilitate Student Learning, pp. 11–35. Information Age Publishing Inc. (2008)

    Google Scholar 

  45. Pekrun, R.: The control-value theory of achievement emotions: assumptions, corollaries, and implications for educational research and practice. Educ. Psychol. Rev. 18, 315–341 (2006). https://doi.org/10.1007/s10648-006-9029-9

  46. Ryan, R.M., Deci, E.L.: Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemp. Educ. Psychol. 61, 101860 (2020). https://doi.org/10.1016/j.cedpsych.2020.101860

  47. Ryan, R., Deci, E.: Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 55, 68–78 (2000). https://doi.org/10.1037/0003-066X.55.1.68

    Article  Google Scholar 

  48. Seaborn, K., Fels, D.I.: Gamification in theory and action: a survey. Int. J. Hum Comput Stud. 74, 14–31 (2015). https://doi.org/10.1016/j.ijhcs.2014.09.006

    Article  Google Scholar 

  49. Steinhaeusser, S.C., Riedmann, A., Haller, M., Oberdörfer, S., Bucher, K., Latoschik, M.E.: Fancy fruits - an augmented reality application for special needs education. In: Proceedings of the 11th International Conference on Virtual Worlds and Games for Serious Applications (VS Games 2019). IEEE, Vienna, Austria (2019)

    Google Scholar 

  50. Storch, V., Welsch, U.: Amphibia, Lurche. In: Kükenthal Zoologisches Praktikum, pp. 372–392. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-41937-9_13

    Chapter  Google Scholar 

  51. Sweller, J.: Cognitive load during problem solving: effects on learning. Cogn. Sci. 12(2), 257–285 (1988)

    Article  Google Scholar 

  52. Sweller, J.: Measuring cognitive load. Perspect. Med. Educ. 7(1), 1–2 (2018)

    Article  Google Scholar 

  53. Tulodziecki, G., Herzig, B., Grafe, S.: Medienbildung in Schule und Unterricht. 3. vollst. akt. u. überarb. Auflage. Klinkhardt, Bad Heilbrunn (2021)

    Google Scholar 

  54. Weerasinghe, M., et al.: Vocabulary: learning vocabulary in AR supported by keyword visualisations. ar**v, 2207.00896, cs.HC (2022). https://doi.org/10.48550/ARXIV.2207.00896

  55. Wilde, M., Bätz, K., Kovaleva, A., Urhahne, D.: Überprüfung einer kurzskala intrinsischer motivation (KIM) (2009)

    Google Scholar 

  56. Yin, X., Li, G., Deng, X., Luo, H.: Enhancing k-16 science education with augmented reality: a systematic review of literature from 2001 to 2020. In: 2022 8th International Conference of the Immersive Learning Research Network (iLRN), pp. 215–219 (2022). https://doi.org/10.23919/iLRN55037.2022.9815958

  57. Youngblut, C.: Use of multimedia technology to provide solutions to existing curriculum problems: virtual frog dissection. Ph.D. thesis, George Mason University, United States (2001)

    Google Scholar 

  58. Zuckerman, O., Gal-Oz, A.: To TUI or not to TUI: evaluating performance and preference in tangible vs. graphical user interfaces. Int. J. Hum.-Comput. Stud. 71(7–8), 803–820 (2013). https://doi.org/10.1016/j.ijhcs.2013.04.003

Download references

Acknowledgements

We would like to thank principal Wolfgang Naumann and the teachers of LuO Darmstadt Gymnasium for their support of our study.

This research was performed within the “Die Zukunft des MINT-Lernens” project, supported by the Deutsche Telekom Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Oberdörfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oberdörfer, S., Elsässer, A., Grafe, S., Latoschik, M.E. (2024). Superfrog: Comparing Learning Outcomes and Potentials of a Worksheet, Smartphone, and Tangible AR Learning Environment. In: Bourguet, ML., Krüger, J.M., Pedrosa, D., Dengel, A., Peña-Rios, A., Richter, J. (eds) Immersive Learning Research Network. iLRN 2023. Communications in Computer and Information Science, vol 1904. Springer, Cham. https://doi.org/10.1007/978-3-031-47328-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47328-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47327-2

  • Online ISBN: 978-3-031-47328-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation