Ab Initio Modeling of Layered Oxide High-Energy Cathodes for Na-Ion Batteries

  • Chapter
  • First Online:
Computational Design of Battery Materials

Part of the book series: Topics in Applied Physics ((TAP,volume 150))

  • 57 Accesses

Abstract

This chapter reviews the current research and main challenges in the first-principles description of layered oxides as emerging cathode materials for Na-ion batteries. Most recent results from our group are reported to highlight the in-depth understanding of oxide sublattice redox activity as peculiar feature in this family of cathode materials. The unveiled origin of oxygen redox at the atomistic level can deliver new knowledge on the electrochemical behaviour of layered transition metal oxides, outline rational design principles to achieve high energy density, and boost the development for applications in high-performing Na-ion battery devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. K. Kubota, S. Komaba, Review-practical issues and future perspective for Na-Ion batteries. J. Electrochem. Soc. 162(14), A2538–A2550 (2015)

    Article  Google Scholar 

  2. C. Delmas, Sodium and sodium-ion batteries: 50 years of research. Adv. Energy Mater. 8(17), 1703137 (2018)

    Article  Google Scholar 

  3. J.-M. Tarascon, Is lithium the new gold? Nat. Chem. 2(6), 510 (2010)

    Article  Google Scholar 

  4. C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3(4)18013 (2018)

    Google Scholar 

  5. A. Ponrouch, M.R. Palacín, Post-li batteries: promises and challenges. Philos. Trans. A Math. Phys. Eng. Sci. 377(2152), 20180297 (2019)

    Google Scholar 

  6. J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017)

    Article  Google Scholar 

  7. M.A. Muñoz-Márquez, D. Saurel, J.L. Gómez-Cámer, M. Casas-Cabanas, E. Castillo-Martínez, T. Rojo, Na-ion batteries for large scale applications: a review on anode materials and solid electrolyte interphase formation. Adv. Energy Mater. 7(20), 1700463 (2017)

    Article  Google Scholar 

  8. H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, MgRechargeable batteries: an on-going challenge. Energy Environ. Sci. 6(8), 2265 (2013)

    Article  Google Scholar 

  9. R. Mohtadi, F. Mizuno, Magnesium batteries: current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 5(1), 1291–1311 (2014)

    Article  Google Scholar 

  10. S. Ferrari et al., Solid-state post Li metal ion batteries: a sustainable forthcoming reality? Adv. Ener. Mater. 11, 2100785 (2021)

    Article  Google Scholar 

  11. D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015)

    Article  Google Scholar 

  12. J. Yang et al., Ultrastable all-solid-state sodium rechargeable batteries. ACS Energy Lett. 5(9), 2835–2841 (2020)

    Article  Google Scholar 

  13. C. Zhou, S. Bag, V. Thangadurai, Engineering materials for progressive all-solid-state Na batteries. ACS Energy Lett. 3(9), 2181–2198 (2018)

    Article  ADS  Google Scholar 

  14. K.M. Abraham, How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett. 5(11), 3544–3547 (2020)

    Article  Google Scholar 

  15. K. Chayambuka, G. Mulder, D.L. Danilov, P.H.L. Notten, Sodium-ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 8(16), 1800079 (2018)

    Article  Google Scholar 

  16. Y. Huang et al., Electrode materials of sodium-ion batteries toward practical application. ACS Energy Lett. 3(7), 1604–1612 (2018)

    Article  Google Scholar 

  17. L.P. Wang, L. Yu, M. Srinivasan, Z.J. Xu, X. Wang, Recent developments in electrode materials for sodium-ion batteries. J. Mater. Chem. A 3(18), 9353–9378 (2015)

    Article  Google Scholar 

  18. J.M. Lee et al., Recent advances in develo** hybrid materials for sodium-ion battery anodes. ACS Energy Lett. 5(6), 1939–1966 (2020)

    Article  Google Scholar 

  19. L. Li, Y. Zheng, S. Zhang, J. Yang, Z. Shao, Z. Guo, Recent progress on sodium ion batteries: potential high-performance anodes. Energy Environ. Sci. 11(9), 2310–2340 (2018)

    Article  Google Scholar 

  20. J. Zhao et al., Electrochemical and thermal properties of hard carbontype anodes for Na-Ion batteries. J. Power Sources 244, 752–757 (2013)

    Article  Google Scholar 

  21. E. Irisarri, A. Ponrouch, M.R. Palacin, Review-hard carbon negative electrode materials for sodium-ion batteries. J. Electrochem. Soc. 162(14), A2476–A2482 (2015)

    Article  Google Scholar 

  22. C. Bommier, X. Ji, Recent development on anodes for na-ion batteries. Israel J. Chem. 55(5), 486–507 (2015)

    Article  Google Scholar 

  23. C. Bommier, T.W. Surta, M. Dolgos, X. Ji, New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 15(9), 5888–5892 (2015)

    Article  ADS  Google Scholar 

  24. M.N. Obrovac, V.L. Chevrier, Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114(23), 11444–11502 (2014)

    Article  Google Scholar 

  25. V.L. Chevrier, G. Ceder, Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 158(9), A1011 (2011)

    Article  Google Scholar 

  26. G. Rousse, M.E. Arroyo-de Dompablo, P. Senguttuvan, A. Ponrouch, J.-M. Tarascon, M.R. Palacín, Rationalization of intercalation potential and redox mechanism for A\({_2}\)Ti\({_3}\)O\({72}\) (A = Li, Na). Chem. Mater. 25(24), 4946–4956 (2013)

    Google Scholar 

  27. J. Xu, C. Ma, M. Balasubramanian, Y.S. Meng, Understanding Na\(_2\)Ti\(_3\)O\(_7\) as an ultra-low voltage anode material for a Na-ion battery. Chem. Commun. 50(83), 12564–12567 (2014)

    Article  Google Scholar 

  28. A. Eguía-Barrio, E. Castillo-Martínez, M. Zarrabeitia, M. A. Muñoz- Márquez, M. Casas-Cabanas, T. Rojo, Structure of H\(_2\)Ti\(_3\)O\(_7\) and its evolution during sodium insertion as anode for Na-ion batteries. Phys. Chem. Chem. Phys. 17(10), 6988–6994 (2015)

    Google Scholar 

  29. K. Chiba, N. Kijima, Y. Takahashi, Y. Idemoto, J. Akimoto, Synthesis, structure, and electrochemical Li-ion intercalation properties of Li\(_2\)Ti\(_3\)O\(_7\) with Na\(_2\)Ti\(_3\)O\(_7\)-type Layered Structure. Solid State Ion. 178(33), 1725–1730 (2008)

    Article  Google Scholar 

  30. L. Wu et al., Unfolding the mechanism of sodium insertion in anatase TiO\(_2\) nanoparticles. Adv. Energy Mater. 5(2), 1401142 (2015)

    Article  Google Scholar 

  31. Y. Fang, X.-Y. Yu, X.W. Lou, Nanostructured electrode materials for advanced sodium-ion batteries. Matter 1(1), 90–114 (2019)

    Article  Google Scholar 

  32. A. Massaro et al., First-principles study of Na insertion at TiO\(_2\) anatase surfaces: new hints for Na-ion battery design. Nanoscale Adv. 2(7), 2745–2751 (2020)

    Article  ADS  Google Scholar 

  33. F. Bella et al., Unveiling the controversial mechanism of reversible Na storage in TiO\(_2\) nanotube arrays: amorphous versus anatase TiO\(_2\). Nano Res. 10(8), 2891–2903 (2017)

    Article  Google Scholar 

  34. G. Longoni et al., Shape-controlled TiO\(_2\) nanocrystals for Na-ion battery electrodes: the role of different exposed crystal facets on the electrochemical properties. Nano Lett. 17(2), 992–1000 (2017)

    Article  ADS  Google Scholar 

  35. F. Fasulo, A. Massaro, A. B. Muñoz-García, M. Pavone, Na uptake at TiO\(_2\) anatase surfaces under electric field control: a first-principles study. J. Mater. Res. (2022)

    Google Scholar 

  36. L. David, R. Bhandavat, G. Singh, MoS\({_2}\)/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8(2), 1759–1770 (2014)

    Article  Google Scholar 

  37. G. Barik, S. Pal, Defect induced performance enhancement of monolayer MoS\({_2}\) for Li- and Na-Ion batteries. J. Phys. Chem. C 123(36), 21852–21865 (2019)

    Article  Google Scholar 

  38. A. Massaro, A. Pecoraro, A.B. Muñoz-García, M. Pavone, Firstprinciples study of Na intercalation and diffusion mechanisms at 2D MoS\({_2}\)/graphene interfaces. J. Phys. Chem. C 125(4), 2276–2286 (2021)

    Article  Google Scholar 

  39. Q. Pan, Z. Li, W. Zhang, D. Zeng, Y. Sun, H. Cheng, Single ion conducting sodium ion batteries enabled by a sodium ion exchanged poly(bis(4-carbonyl benzene sulfonyl)imide-co-2,5-diamino benzesulfonic acid) polymer electrolyte. Solid State Ion 300, 60–66 (2017)

    Article  Google Scholar 

  40. M. Guin, F. Tietz, O. Guillon, New promising NASICON material as solid electrolyte for sodium-ion batteries: correlation between composition, crystal structure and ionic conductivity of Na\({_3+x}\)Sc\({_2}\)Si\(_x\)P\({_3-x}\)O\({_12}\). Solid State Ion 293, 18–26 (2016)

    Article  Google Scholar 

  41. F. Coló, F. Bella, J.R. Nair, M. Destro, C. Gerbaldi, Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-Ion batteries. Electrochimica Acta 174, 185–190 (2015)

    Article  Google Scholar 

  42. H. Gao, W. Zhou, K. Park, J.B. Goodenough, A sodium-ion battery with a low-cost cross-linked gel-polymer electrolyte. Adv. Energy Mater. 6(18), 1600467 (2016)

    Article  Google Scholar 

  43. F. Bella, F. Coló, J.R. Nair, C. Gerbaldi, Photopolymer electrolytes for sustainable, upscalable, safe, and ambient-temperature sodium-ion secondary batteries. Chem. Sus. Chem. 8(21), 3668–3676 (2015)

    Article  Google Scholar 

  44. X. Qi et al., Sodium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolytes for sodium-ion batteries. Chem. ElectroChem. 3(11), 1741–1745 (2016)

    Google Scholar 

  45. Y. Zhang, R. Zhang, Y. Huang, Air-stable Na\({_x}\)TMO\(_2\) cathodes for sodium storage. Front. Chem. 7, 335 (2019)

    Article  ADS  Google Scholar 

  46. M.S. Islam, C.A.J. Fisher, Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43(1), 185–204 (2014)

    Article  Google Scholar 

  47. S.T. Dacek, W.D. Richards, D.A. Kitchaev, G. Ceder, Structure and dynamics of fluorophosphate Na-Ion battery cathodes. Chem. Mater. 28(15), 5450–5460 (2016)

    Article  Google Scholar 

  48. Q. Liu et al., Recent progress of layered transition metal oxide cathodes for sodium-ion batteries. Small 15(32), 1805381 (2019)

    Article  Google Scholar 

  49. R. Berthelot, D. Carlier, C. Delmas, Electrochemical investigation of the P\({_2}\)-Na\({_x}\)CoO\({_2}\) phase diagram. Nat. Mater. 10(1), 74–80 (2011)

    Article  ADS  Google Scholar 

  50. H. Yoshida, N. Yabuuchi, S. Komaba, NaFe\(_{0.5}\)Co\(_{0.5}\)O\(_{2}\) as high energy and power positive electrode for Na-Ion batteries. Electrochem. Comm. 34, 60–63 (2013)

    Google Scholar 

  51. X. Wang, M. Tamaru, M. Okubo, A. Yamada, Electrode properties of P2-Na\(_{2/3}\)Mn\(_{y}\)Co\(_{1_ y}\)O\(_{2}\) as cathode materials for sodium-ion batteries. J. Phys. Chem. C 117(30), 15545–15551 (2013)

    Article  Google Scholar 

  52. A. Eftekhari, D.-W. Kim, Sodium-ion batteries: new opportunities beyond energy storage by lithium. J. Power Sources 395, 336–348 (2018)

    Article  ADS  Google Scholar 

  53. Q. Wang et al., Unlocking anionic redox activity in O\(_{3}\)-type sodium 3d layered oxides via Li substitution. Nat. Mater. 20, 353–361 (2021)

    Article  ADS  Google Scholar 

  54. C. Zhao et al., Ti substitution facilitating oxygen oxidation in Na\(_{2/3}\)Mg\(_{1/3}\)Ti\(_{1/6}\)Mn\(_{1/2}\)O\(_{2}\) cathode. Chem. 5(11), 2913–2925 (2019)

    Article  Google Scholar 

  55. C. Delmas, C. Fouassier, P. Hagenmuller, Structural classification and properties of the layered oxides. Physica B+C 99(1), 81–85 (1980)

    Google Scholar 

  56. N.A. Katcho et al., Origins of bistability and Na Ion mobility difference in P\(_{2}\)- and O\(_{3}\)-Na\(_{2/3}\)Fe\(_{2/3}\)Mn\(_{1/3}\)O\(_{2}\) cathode polymorphs. Adv. Energy Mater. 7(1), 1601477 (2017)

    Article  Google Scholar 

  57. C. Zhao et al., Revealing high Na-content P\(_{2}\)-type layered oxides as advanced sodium-ion cathodes. J. Am. Chem. Soc. 142(12), 5742–5750 (2020)

    Article  Google Scholar 

  58. C. Ma et al., Exploring oxygen activity in the high energy P\(_{2}\)-type Na\(_{0.78}\)Ni\(_{0.23}\)Mn\(_{0.69}\)O\(_{2}\) cathode material for Na-Ion batteries. J. Am. Chem. Soc. 139(13), 4835–4845 (2017)

    Google Scholar 

  59. B. Mortemard de Boisse, D. Carlier, M. Guignard, L. Bourgeois, C. Delmas, P2-Na\(_{x}\)Mn\(_{1/2}\)Fe\(_{1/2}\)O\(_{2}\) phase used as positive electrode in Na batteries: structural changes induced by the electrochemical (De)intercalation process. Inorg. Chem. 53(20), 11197–11205 (2014)

    Article  Google Scholar 

  60. N. Yabuuchi, S. Komaba, Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries. Sci. Technol. Adv. Mater. 15(4) (2014)

    Google Scholar 

  61. E. Talaie, V. Duffort, H.L. Smith, B. Fultz, L.F. Nazar, Structure of the high voltage phase of layered P\(_{2}\)-Na\(_{2/3_z}\)[Mn\(_{1/2}\)Fe\(_{1/2}\)]O\(_{2}\) and the positive effect of Ni substitution on its stability. Energy Environ. Sci. 8(8), 2512–2523 (2015)

    Article  Google Scholar 

  62. J.W. Somerville et al., Nature of the “Z” phase in layered Na-ion battery cathodes. Energy Environ. Sci. 12(7), 2223–2232 (2019)

    Google Scholar 

  63. R.J. Clément, P.G. Bruce, C.P. Grey, Review-manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials. J. Electrochem. Soc. 162(14), A2589–A2604 (2015)

    Article  Google Scholar 

  64. G. Singh et al., High voltage Mg-doped Na\(_{0.67}\)Ni\(_{0.3x}\) Mg\(_{x}\)Mn\(_{0.7}\)O\(_{2}\) (x = 0.05, 0.1) Na-Ion cathodes with enhanced stability and rate capability. Chem. Mater. 28(14), 5087–5094 (2016)

    Google Scholar 

  65. P. Hou et al., A high energy-density P\(_{2}\)-Na\(_{2 /3}\)[Ni\(_{0.3}\)Co\(_{0.1}\)Mn\(_{0.6}\)]O\(_{2}\) cathode with mitigated P\(_{2}\)–O\(_{2}\) transition for sodium-ion batteries. Nanoscale 11(6), 2787–2794 (2019)

    Google Scholar 

  66. J.U. Choi, J.H. Jo, Y.J. Park, K.-S. Lee, S.-T. Myung, Mn-Rich P’2- Na\(_{0.67}\)[Ni\(_{0.1}\)Fe\(_{0.1}\)Mn\(_{0.8}\)]O\(_{2}\) as high-energy-density and long-life cathode material for sodium-ion batteries. Adv. Energy Mater. 10(27), 2001346 (2020)

    Google Scholar 

  67. N. Yabuuchi et al., P\(_{2}\)-type Na\(_{x}\) [Fe\(_{1/2}\)Mn\(_{1/2}\)]O\(_{2}\) made from earth-abundant elements for rechargeable Na-batteries. Nat. Mater. 11(6), 512–517 (2012)

    Article  ADS  Google Scholar 

  68. L. Li et al., Understanding oxygen redox in Cu-doped P\(_{2}\)-Na\(_{0.67}\)Mn\(_{0.8}\)Fe\(_{0.1}\) Co\(_{0.1}\)O\(_{2}\) cathode materials for Na-Ion batteries. J. Electrochem. Soc. 165(16), A3854–A3861 (2018)

    Google Scholar 

  69. Y.-E. Zhu et al., A P\(_{2}\)-Na\(_{0.67}\)Co\(_{0.5}\)Mn\(_{0.5}\)O\(_{2}\) cathode material with excellent rate capability and cycling stability for sodium-ion batteries. J. Mater. Chem. A 4(28), 11103–11109 (2016)

    Google Scholar 

  70. E. De La Llave et al., Electrochemical performance of Na\(_{0.6}\)[Li\(_{0.2}\)Ni\(_{0.2}\)Mn\(_{0.6}\)]O\(_{2}\) cathodes with high-working average voltage for Na-Ion batteries. J. Mater. Chem. A 5(12), 5858–5864 (2017)

    Google Scholar 

  71. R.A. House et al., Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577(7791), 502–508 (2020)

    Article  ADS  Google Scholar 

  72. J. Vergnet, M. Saubanére, M.-L. Doublet, J.-M. Tarascon, The structural stability of P2-layered Na-based electrodes during anionic redox. Joule 4(2), 420–434 (2020)

    Article  Google Scholar 

  73. M. BenYahia, J. Vergnet, M. Saubanére, M.-L. Doublet, Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 18(5), 496–502 (2019)

    Article  ADS  Google Scholar 

  74. U. Maitra et al., Oxygen redox chemistry without excess alkali-metal ions in Na\(_{2/3}\)[Mg\(_{0.28}\)Mn\(_{0.72}\)]O\(_{2}\). Nat. Chem. 10(3), 288–295 (2018)

    Google Scholar 

  75. T. Risthaus et al., A high-capacity P\(_{2}\) Na\(_{2/3}\)Ni\(_{1/3}\)Mn\(_{2/3}\)O\(_{2}\) cathode material for sodium-ion batteries with oxygen activity. J. Power Sources 395, 16–24 (2018)

    Article  ADS  Google Scholar 

  76. H. Kim et al., Importance of chemical distortion on the hysteretic oxygen capacity in Li-excess layered oxides. ACS Appl. Mater. Inter. 14(7), 9057–9065 (2022)

    Article  Google Scholar 

  77. Z. Li et al., Tuning bulk O\(_{2}\) and nonbonding oxygen state for reversible anionic redox chemistry in P2-layered cathodes. Angew. Chem. Int. Ed. (2022)

    Google Scholar 

  78. Y. Zhang et al., Revisiting the Na\(_{2/3}\)Ni\(_{1/3}\)Mn\(_{2/3}\)O\(_{2}\) cathode: oxygen redox chemistry and oxygen release suppression. ACS Cent. Sci. 6(2), 232–240 (2020)

    Article  Google Scholar 

  79. J. Liu, W.H. Kan, C.D. Ling, Insights into the high voltage layered oxide cathode materials in sodium-ion batteries: structural evolution and anion redox. J. Power Sour 481, 229139 (2021)

    Article  Google Scholar 

  80. J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mat. 22(3), 587–603 (2010)

    Article  Google Scholar 

  81. K. Li, D. Xue, Estimation of electronegativity values of elements in different valence states. J. Phys. Chem. A 110(39), 11332–11337 (2006)

    Article  Google Scholar 

  82. A. Grimaud, W.T. Hong, Y. Shao-Horn, J.-M. Tarascon, Anionic redox processes for electrochemical devices (Nat, Mat, 2016)

    Book  Google Scholar 

  83. G. Assat, J.-M. Tarascon, Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3(5), 373–386 (2018)

    Article  ADS  Google Scholar 

  84. H. Koga et al., Reversible oxygen participation to the redox processes revealed for Li\(_{1.20}\)Mn\(_{0.54}\)Co\(_{0.13}\)Ni\(_{0.13}\)O\(_{2}\). J. Electrochem. Soc. 160(6), A786–A792 (2013)

    Google Scholar 

  85. K. Luo et al., Charge-compensation in 3d transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8(7), 684–691 (2016)

    Article  Google Scholar 

  86. M. Oishi et al., Direct observation of reversible oxygen anion redox reaction in Li-rich manganese oxide, Li\(_{2}\)MnO\(_{3}\), studied by soft X-ray absorption spectroscopy. J. Mater. Chem. A 4(23), 9293–9302 (2016)

    Article  Google Scholar 

  87. M. Sathiya et al., Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12(9), 827–835 (2013)

    Article  ADS  Google Scholar 

  88. J. Hong et al., Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18(3), 256–265 (2019)

    Article  ADS  Google Scholar 

  89. M. Saubanére, E. McCalla, J.M. Tarascon, M.L. Doublet, The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ. Sci. 9(3), 984–991 (2016)

    Article  Google Scholar 

  90. D.H. Seo, J. Lee, A. Urban, R. Malik, S. Kang, G. Ceder, The structural and chemical origin of the oxygen redox activity in layered and cationdisordered Li-excess cathode materials. Nat. Chem. 8(7), 692–697 (2016)

    Article  Google Scholar 

  91. A. Massaro, A.B. Muñoz-García, P.P. Prosini, C. Gerbaldi, M. Pavone, Unveiling oxygen redox activity in P\(_{2}\)-type Na\(_{x}\)Ni\(_{0.25}\)Mn\(_{0.68}\)O\(_{2}\) high energy cathode for Na-Ion batteries. ACS Energy Lett. 6(7), 2470–2480 (2021)

    Google Scholar 

  92. Y. Wang et al., Pillar-beam structures prevent layered cathode materials from destructive phase transitions. Nat. Comm. 12(1), 13 (2021)

    Article  ADS  Google Scholar 

  93. A. Massaro, A. Langella, A.B. Munoz-Garcia, M. Pavone, Firstprinciples insights on anion redox activity in Na\(_{x}\)Fe\(_{1/8}\)Ni\(_{1/8}\)Mn\(_{3/4}\)O\(_{2}\): toward efficient high-energy cathodes for Na-ion batteries. J. Am. Ceram. Soc. 1(11) (2022)

    Google Scholar 

  94. A. Massaro, A. Langella, C. Gerbaldi, G. A. Elia, A. B. Munoz-Garcia, M. Pavone, Ru-do** of P\(_{2}\)-Na\(_{x}\)Mn\(_{0.75}\)Ni\(_{0.25}\)O\(_{2}\)-layered oxides for high-energy Na-Ion battery cathodes: first-principles insights on activation and control of reversible oxide redox chemistry. ACS Appl. Energy Mater. (2022)

    Google Scholar 

  95. N. Yabuuchi et al., Origin of stabilization and destabilization in solidstate redox reaction of oxide Ions for lithium-ion batteries. Nat. Comm. 7(1), 13814 (2016)

    Article  ADS  Google Scholar 

  96. M. Sathiya et al., Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14(2), 230–238 (2015)

    Article  ADS  Google Scholar 

  97. B. Mortemard de Boisse et al., Highly reversible oxygen-redox chemistry at 4.1 V in Na\(_{4/7.x}\)[\(_{1/7}\)Mn\(_{6/7}\)]O\(_2\)(:MnVacancy). Adv. Energy Mater. 8(20), 1800409 (2018)

    Google Scholar 

  98. B. Mortemard De Boisse et al., Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode. Nat. Comm. 7, 1, 9 (2016)

    Google Scholar 

  99. C.-J. Yu et al., Structural and electrochemical trends in mixed manganese oxides Na\(_{x}\)(M\(_{0.44}\)Mn\(_{0.56}\))O\(_{2}\) (M=Mn, Fe, Co, Ni) for sodium-ion battery cathode. J. Power Sources 511, 230 395, 2021

    Google Scholar 

  100. Q. Shen et al., Transition-metal vacancy manufacturing and sodium-site do** enable a high-performance layered oxide cathode through cationic and anionic redox chemistry. Adv. Funct. Mater. 2106923, 1–11 (2021)

    Google Scholar 

  101. C. Zhao et al., Rational design of layered oxide materials for sodium-ion batteries. Science 370(6517), 708–711 (2020)

    Article  ADS  Google Scholar 

  102. K. Kang, Y.S. Meng, J. Breger, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763), 977–980 (2006)

    Article  ADS  Google Scholar 

  103. Q. Li et al., Electrochemistry of selenium with sodium and lithium: kinetics and reaction mechanism. ACS Nano 10(9), 8788–8795 (2016)

    Article  Google Scholar 

  104. A.Urban, D.-H. Seo, G. Ceder, Computational understanding of Li-ion batteries. Npj Comput. Mater. 2(1) (2016)

    Google Scholar 

  105. D. Morgan, A.V. der Ven, G. Ceder, Li conductivity in Li\(_{x}\)MPO\(_{4}\) (M=Mn, Fe Co, Ni) olivine materials. Electrochem. Solid-State Lett. 7(2), A30 (2004)

    Article  Google Scholar 

  106. Q. Li et al., Revealing the effects of electrode crystallographic orientation on battery electrochemistry via the anisotropic lithiation and sodiation of ReS2. ACS Nano 12(8), 7875–7882 (2018)

    Article  Google Scholar 

  107. S. Hwang et al., Multistep lithiation of tin sulfide: an investigation using in situ electron microscopy. ACS Nano 12(4), 3638–3645 (2018)

    Article  Google Scholar 

  108. H.-C. Yu, C. Ling, J. Bhattacharya, J.C. Thomas, K. Thornton, A. Van derVen, Designing the next generation high capacity battery electrodes. Energy Environ. Sci. 7, 1760–1768 (2014)

    Google Scholar 

  109. A. Jain et al., A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50(8), 2295–2310 (2011)

    Article  Google Scholar 

  110. Q. Bai, L. Yang, H. Chen, Y. Mo, Computational studies of electrode materials in sodium-ion batteries. Adv. Energy Mater. 8(17), 1702998 (2018)

    Article  Google Scholar 

  111. X. Zhang, Z. Zhang, S. Yao, A. Chen, X. Zhao, Z. Zhou, An effective method to screen sodium-based layered materials for sodium ion batteries. Comp. Mater. 4(1), 13 (2018)

    Google Scholar 

  112. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  ADS  Google Scholar 

  113. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133–A1138 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  114. P. Hohenberg, W. Kohn, Inhomogeneous electron. Gas. Phys. Rev. 136(3B), B864–B871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  115. H. Kim et al., Unlocking the origin of triggering hysteretic oxygen capacity in divalent species incorporated O-type sodium layered-oxide cathodes. Energy Storage Mater. 45, 432–441 (2022)

    Article  Google Scholar 

  116. Z. Yao, M.K.Y. Chan, C. Wolverton, Exploring the origin of anionic redox activity in super Li-rich iron oxide-based high-energy-density cathode materials. Chem. Mater. 34(10), 4536–4547 (2022)

    Article  Google Scholar 

  117. X.-H. Shi,Y.-P.Wang, X. Cao, S.Wu, Z. Hou, Z. Zhu, Charge compensation mechanisms and oxygenVacancy formations in LiNi\(_{1/3}\)Co\(_{1/3}\)Mn\(_{1/3}\)O\(_{2}\): first-principles calculations. ACS Omega 7(17), 14 875–14886 (2022)

    Google Scholar 

  118. V.I. Anisimov, J. Zaanen, O.K. Andersen, Band theory and Mott insulators: hubbard U instead of stoner I. Phys. Rev. B 44(3), 943–954 (1991)

    Article  ADS  Google Scholar 

  119. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010)

    Article  ADS  Google Scholar 

  120. S. Grimme, S. Ehrlich, L. Goerigk, Effect of the dam** function in dispersion corrected density functional theory. J. Comp. Chem. 32(7), 1456–1465 (2011)

    Article  Google Scholar 

  121. S. Fabris, S. de Gironcoli, S. Baroni, G. Vicario, G. Balducci, Taming multiple valency with density functionals: a case study of defective ceria. Phys. Rev. B 71, 041102 (2005)

    Article  ADS  Google Scholar 

  122. G. Pacchioni, Modeling doped and defective oxides in catalysis with density functional theory methods: room for improvements. J. Chem. Phys. 128(18), 182505 (2008)

    Article  ADS  Google Scholar 

  123. S. Lutfalla, V. Shapovalov, A.T. Bell, Calibration of the DFT/GGA+U method for determination of reduction energies for transition and rare earth metal oxides of Ti, V. Mo. Ce. J. Chem. Theory Comput. 7(7), 2218–2223 (2011)

    Article  Google Scholar 

  124. L. Wang, T. Maxisch, G. Ceder, Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73, 195107 (2006)

    Article  ADS  Google Scholar 

  125. N.J. Mosey, P. Liao, E.A. Carter, Rotationally invariant ab initio evaluation of coulomb and exchange parameters for DFT+U calculations. J. Chem. Phys. 129(1), 014103 (2008)

    Article  ADS  Google Scholar 

  126. P. Verma, D.G. Truhlar, Does DFT+U mimic hybrid density functionals? Theor. Chem. Acc. 135(8) (2016)

    Google Scholar 

  127. F. Tran, P. Blaha, K. Schwarz, P. Novak, Hybrid exchange-correlation energy functionals for strongly correlated electrons: applications to transition-metal monoxides. Phys. Rev. B 74, 155–10815 (2006)

    Article  Google Scholar 

  128. C. Franchini, V. Bayer, R. Podloucky, J. Paier, G. Kresse, Density functional theory study of MnO by a hybrid functional approach. Phys. Rev. B 72(4), 045132 (2005)

    Article  ADS  Google Scholar 

  129. S. Kristyán, P. Pulay, Can (Semi)local density functional theory account for the London dispersion forces? Chem. Phys. Lett. 229(3), 175–180 (1994)

    Article  ADS  Google Scholar 

  130. E.C. Lee, D. Kim, P. Jurečka, P. Tarakeshwar, P. Hobza, K.S. Kim, Understanding of assembly phenomena by aromatic-aromatic interactions: benzene dimer and the substituted systems. J. Phys. Chem. A 111(18), 3446–3457 (2007)

    Article  Google Scholar 

  131. F. London, Zur Theorie und Systematik der Molekularkrüfte. Zeitschrift für Physik 63(3–4), 245–279 (1930)

    Article  ADS  Google Scholar 

  132. A. Szabó, N.S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover Publications, Mineola, 1996)

    Google Scholar 

  133. T. Janowski, P. Pulay, High accuracy benchmark calculations on the benzene dimer potential energy surface. Chem. Phys. Lett. 447(1), 27–32 (2007)

    Article  ADS  Google Scholar 

  134. X. Wu, M.C. Vargas, S. Nayak, V. Lotrich, G. Scoles, Towards extending the applicability of density functional theory to weakly bound systems. J. Chem. Phys. 115(19), 8748–8757 (2001)

    Article  ADS  Google Scholar 

  135. V. Barone, M. Casarin, D. Forrer, M. Pavone, M. Sambi, A. Vittadini, Role and effective treatment of dispersive forces in materials: polyethy lene and graphite crystals as test cases. J. Comput. Chem. 30(6), 934–939 (2009)

    Article  Google Scholar 

  136. J.M. Pérez-Jordá, A. Becke, A density-functional study of Van der Waals forces: rare gas diatomics. Chem. Phys. Lett. 233(1), 134–137 (1995)

    Article  ADS  Google Scholar 

  137. M. Pavone, N. Rega, V. Barone, Implementation and validation of DFT-D for molecular vibrations and dynamics: the benzene dimer as a case study. Chem. Phys. Lett. 452(4), 333–339 (2008)

    Article  ADS  Google Scholar 

  138. L.A. Girifalco, R.A. Lad, Energy of cohesion, compressibility, and the potential energy functions of the graphite system. J. Chem. Phys. 25(4), 693–697 (1956)

    Article  ADS  Google Scholar 

  139. L.X. Benedict, N.G. Chopra, M.L. Cohen, A. Zettl, S.G. Louie, V.H. Crespi, Microscopic determination of the interlayer binding energy in graphite. Chem. Phys. Lett. 286(5), 490–496 (1998)

    Article  ADS  Google Scholar 

  140. R. Zacharia, H. Ulbricht, T. Hertel, Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 69(15), 155406 (2004)

    Article  ADS  Google Scholar 

  141. P. Ugliengo, C.M. Zicovich-Wilson, S. Tosoni, B. Civalleri, Role of dispersive interactions in layered materials: a Periodic B3LYP and B3LYPD* study of Mg(OH)\(_{2}\), Ca(OH)\(_{2}\) and Kaolinite. J. Mater. Chem. 19(17), 2564–2572 (2009)

    Article  Google Scholar 

  142. A. Pecoraro, E. Schiavo, P. Maddalena, A.B. Muñoz-García, M. Pavone, Structural and electronic properties of defective 2D transition metal dichalcogenide heterostructures. J. Comp. Chem. 41(22), 1946–1955 (2020)

    Article  Google Scholar 

  143. L. Donetti, C. Navarro, C. Marquez, C. Medina-Bailon, J. Padilla, F. Gamiz, DFT-based layered dielectric model of few-layer MoS\(_{2}\). Solid- State Electron. 194, 108346 (2022)

    Article  Google Scholar 

  144. J. Manzi et al., Monoclinic and orthorhombic NaMnO\(_{2}\) for secondary batteries: a comparative study. Energies 14, 5 (2021)

    Article  Google Scholar 

  145. A. Zunger, S.-H. Wei, L.G. Ferreira, J.E. Bernard, Special quasirandom structures. Phys. Rev. Lett. 65(3), 353–356 (1990)

    Article  ADS  Google Scholar 

  146. E.M.J. Mayer, Molecular distributions. J. Chem. Phys. 9, 2–16 (1941)

    Article  ADS  Google Scholar 

  147. H. Wang, A. Chroneos, C. Jiang, U. Schwingenschlöl, Special quasirandom structures for gadolinia-doped ceria and related materials. Phys. Chem. Chem. Phys. 14(33), 11737–11742 (2012)

    Article  Google Scholar 

  148. M.C. Gao, P.K. Liaw, J.W. Yeh, Y. Zhang, High-Entropy Alloys: Fundamentals and Applications (2016), pp 1–516

    Google Scholar 

  149. A. Chroneos, C. Jiang, R.W. Grimes, U. Schwingenschlöl, H. Bracht, E centers in ternary Si1 _ x _ yGexSny random alloys. Appl. Phys. Lett. 95(11), 112101 (2009)

    Article  ADS  Google Scholar 

  150. C. Jiang, C.Wolverton, J. Sofo, L.-Q. Chen, Z.-K. Liu, First-principles study of binary bcc alloys using special quasi-random structures. Phys. Rev. B 69(21), 214202 (2004). Anchoring modes from ab initio calculations. Phys. Chem. Chem. Phys. 17(18), 12238–12246 (2015)

    Google Scholar 

  151. R. Fielden, M.N. Obrovac, Investigation of the NaNi\(_{x}\)Mn\(_{1}\). xO2 \((0 < x < 1)\) system for Na-Ion battery cathode materials. J. Electrochem. Soc. 162(3), A453–A459 (2015)

    Google Scholar 

  152. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993)

    Article  ADS  Google Scholar 

  153. G. Kresse, J. Hafner, Ab initio molecular dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys. Rev. B 49(20), 14251–14269 (1994)

    Article  ADS  Google Scholar 

  154. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999)

    Article  ADS  Google Scholar 

  155. G. Kresse, J. Furthmuller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6(1), 15–50 (1996)

    Article  Google Scholar 

  156. A.M. Ritzmann, A.B. Munoz-Garcia, M. Pavone, J.A. Keith, E.A. Carter, Ab initio evaluation of oxygen diffusivity in LaFeO\(_{3}\): the role of lanthanum vacancies. MRS Commun. 3(3), 161–166 (2013)

    Article  Google Scholar 

  157. A.B. Munoz-Garcia, M. Pavone, E.A. Carter, Effect of antisite defects on the formation of oxygen vacancies in Sr\(_{2}\)FeMoO\(_{6}\): implications for ion and electron transport. Chem. Mat. 23(20), 4525–4536 (2011)

    Article  Google Scholar 

  158. C. Baiano et al., Role of surface defects in CO\(_2\) adsorption and activation on CuFeO\(_{2}\) delafossite oxide. Mol. Cat. 496, 111–181 (2020)

    Google Scholar 

  159. A.B. Munoz-Garcia, B. Tirri, I. Capone, A. Matic, M. Pavone, S. Brutti, Structural evolution of disordered LiCo\(_{1/3}\)Fe\(_{1/3}\)Mn\(_{1/3}\)PO\(_{4}\) in lithium batteries uncovered. J. Mat. Chem. A 8(37), 19641–19653 (2020)

    Article  Google Scholar 

  160. A.B. Munoz-Garcia, M. Pavone, K-doped Sr\(_{2}\)Fe\(_{1.5}\)Mo\(_{0.5}\)O\(_{6}\). Predicted as a bifunctional catalyst for air electrodes in proton-conducting solid oxide electrochemical cells. J. Mat. Chem. A 5(25), 12735–12739 (2017)

    Google Scholar 

  161. A.B. Munoz-Garcia, M. Tuccillo, M. Pavone, Computational design of cobalt-free mixed proton-electron conductors for solid oxide electrochemical cells. J. Mater. Chem. A 5(23), 11825–11833 (2017)

    Article  Google Scholar 

  162. S.A. Tolba, K.M. Gameel, B.A. Ali, H.A. Almossalami, N.K. Allam, The DFT+U: approaches, accuracy, and applications. Dens. Funct. Calculat. Recent Progr. Theor. Appl. 3–30 (2018)

    Google Scholar 

  163. M. Pavone, A.M. Ritzmann, E.A. Carter, Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials. Energy Environ. Sci. 4(12), 4933 (2011)

    Article  Google Scholar 

  164. A.B. Munoz-Garcia et al., Origin and electronic features of reactive oxygen species at hybrid zirconia-acetylacetonate interfaces. ACS Appl. Mater. Inter. 7(39), 21662–21667 (2015)

    Article  Google Scholar 

  165. A.B. Munoz-Garcia, M. Pavone, Structure and energy level alignment at the dye-electrode interface in p-type DSSCs: new hints on the role of anchoring modes from ab initio calculations. Phys. Chem. Chem. Phys. 17(18), 12238–12246 (2015)

    Article  Google Scholar 

  166. V. Barone, M. Casarin, D. Forrer, M. Pavone, M. Sambi, A. Vittadini, Role and effective treatment of dispersive forces in materials: polyethylene and graphite crystals as test cases. J. Comp. Chem. 30(6), 934–939 (2009)

    Article  Google Scholar 

  167. Q. Wang et al., P2-type layered Na\(_{0.75}\)Ni\(_{1/3}\)Ru\(_{1/6}\)Mn\(_{1/2}\)O\(_{2}\) cathode material with excellent rate performance for sodium-ion batteries. ACS Appl. Mater. Inter. 12(35), 39056–39062 (2020)

    Google Scholar 

  168. T. Nakamura et al., Impact of oxygen defects on electrochemical processes and charge compensation of Li-rich cathode material Li\(_{1.2}\)Mn\(_{0.6}\)Ni\(_{0.2}\)O\(_{2}\). ACS Appl. Energy Mater. 3(10), 9703–9713 (2020)

    Google Scholar 

  169. C.J. Cramer, W.B. Tolman, K.H. Theopold, A.L. Rheingold, Variable character of O-O and M-O bonding in side-on (..2) 1:1 metal complexes of O\(_2\). Proc. Natl. Acad. Sci. 100(7), 3635–3640 (2003)

    Google Scholar 

  170. L.E. Sutton, H.J.M. Bowen, Tables of Interatomic Distances and Configuration in Molecules and Ions (English Special Ed. 11). (The Chemical Society, London, 1958)

    Google Scholar 

  171. E. McCalla et al., Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-Ion batteries. Science 350(6267), 1516–1521 (2015)

    Article  ADS  Google Scholar 

  172. J. Martinez De Ilarduya, L. Otaegui, J.M. Lopez del Amo, M. Armand, G. Singh, NaN\(_3\) addition, a strategy to overcome the problem of sodium deficiency in P2-Na\(_{0.67}\)[Fe\(_{0.5}\)Mn\(_{0.5}\)]O\(_{2}\) cathode for sodium-ion battery. J. Power Sources 337, 197–203 (2017)

    Google Scholar 

  173. L. Yang et al., Lithium-do** stabilized high-performance P\(_{2}\).Na\(_{0.66}\)Li\(_{0.18}\) Fe\(_{0.12}\)Mn\(_{0.7}\)O\(_{2}\) cathode for sodium ion batteries. J. Am. Chem. Soc. 141(16), 6680–6689 (2019)

    Google Scholar 

  174. S. Muy et al., Tuning mobility and stability of lithium ion conductors based on lattice dynamics. Energy Environ. Sci. 11(4), 850–859 (2018)

    Article  Google Scholar 

  175. Y. Yu et al., Towards controlling the reversibility of anionic redox in transition metal oxides for high-energy Li-ion positive electrodes. Energy Environ. Sci. 14(4), 2322–2334 (2021)

    Article  Google Scholar 

  176. Y. Yu et al., Revealing electronic signatures of lattice oxygen redox in lithium ruthenates and implications for high-energy Li-Ion battery material designs. Chem. Mater. 31(19), 7864–7876 (2019)

    Article  Google Scholar 

  177. N. Charles, Y. Yu, L. Giordano, R. Jung, F. Maglia, Y. Shao-Horn, Toward establishing electronic and phononic signatures of reversible lattice oxygen oxidation in lithium transition metal oxides for Li-Ion batteries. Chem. Mater. 32(13), 5502–5514 (2020)

    Article  Google Scholar 

  178. N. Kiziltas-Yavuz et al., Improving the rate capability of high voltage lithium-ion battery cathode material LiNi\(_{0.5}\)Mn\(_{1.5}\)O\(_{4}\) by ruthenium do**. J. Power Sources 267, 533–541 (2014)

    Google Scholar 

  179. M. Pavone, A.B. Munoz-Garcia, A.M. Ritzmann, E.A. Carter, Firstprinciples study of lanthanum strontium manganite: insights into electronic structure and oxygenVacancy formation. J. Phys. Chem. C 118(25), 13346–13356 (2014)

    Article  Google Scholar 

  180. A.B. Munoz-Garcia, A.M. Ritzmann, M. Pavone, J.A. Keith, E.A. Carter, Oxygen transport in Perovskite-type solid oxide fuel cell materials: insights from quantum mechanics. Acc. Chem. Res. 47(11), 3340–3348 (2014)

    Article  Google Scholar 

  181. P. Yan et al., Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat. Nanotechnol. 14(6), 602–608 (2019)

    Article  ADS  Google Scholar 

  182. A.B. Munoz-Garcia et al., Unveiling structure-property relationships in Sr\(_2\)Fe\(_{1.5}\)Mo\(_{0.5}\)O\(_{6}\)..., an electrode material for symmetric solid oxide fuel cells. J. Am. Chem. Soc. 134(15), 6826–6833 (2012)

    Google Scholar 

  183. G. Ponti et al., The role of medium size facilities in the HPC ecosystem: the case of the new CRESCO4 cluster integrated in the ENEAGRID infrastructure, International Conference on High Performance Computing & Simulation (HPCS), pp. 1030–1033 (2014)

    Google Scholar 

Download references

Acknowledgements

Part of this work was carried out by A.M. during the PhD program granted by European Union (FSE, PON Ricerca e Innovazione 2014–2020, Azione I.1 “Dottorati Innovativi con caratterizzazione Industriale”). Most of this project is related to the activities within “Ricerca Sistema Elettrico”, funded by the Italian Ministry of Economic Development through contributions to research and development. The computing resources and the related technical support have been provided by CRESCO/ENEAGRID High Performance Computing infrastructure and its staff [183]; CRESCO/ENEAGRID High Performance Computing infrastructure is funded by ENEA, the Italian National Agency for New Technologies, Energy and Sustainable Economic Development and by Italian and European research programs. See: http://www.cresco.enea.it/english for information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arianna Massaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Massaro, A., Fasulo, F., Langella, A., Muñoz-Garcia, A.B., Pavone, M. (2024). Ab Initio Modeling of Layered Oxide High-Energy Cathodes for Na-Ion Batteries. In: Hanaor, D.A.H. (eds) Computational Design of Battery Materials. Topics in Applied Physics, vol 150. Springer, Cham. https://doi.org/10.1007/978-3-031-47303-6_13

Download citation

Publish with us

Policies and ethics

Navigation