Introduction: Battery Materials: Bringing It All Together for Tomorrow’s Energy Storage Needs

  • Chapter
  • First Online:
Computational Design of Battery Materials

Part of the book series: Topics in Applied Physics ((TAP,volume 150))

  • 91 Accesses

Abstract

The design and development of battery materials has emerged as a key enabler of our current technological era. Objectives of improving the capacity, rate capabilities, safety, economic feasibility and sustainability of battery systems stand behind efforts to innovate materials and their implementation. To glean insights into origins of performance in battery materials, a raft of computational tools are harnessed, many of which are surveyed in the pages of this book. The design of battery materials is a multidisciplinary challenge, which requires the involvement of scientists and engineers from diverse fields. The development and implementation of effective computational methods for the study of these battery materials and their behaviour is where these aspects are truly integrated. The content in this book provides fascinating insights into the plethora of intertwined physical and chemical phenomena at play in applied battery materials, and showcases numerous ingenious approaches to examine these through the aid of computational techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. V.L. Deringer, Modelling and understanding battery materials with machine-learning-driven atomistic simulations. J. Phys. Energy 2(4), 041003 (2020)

    Article  ADS  Google Scholar 

  2. A. Bhowmik et al., A perspective on inverse design of battery interphases using multi-scale modelling, experiments and generative deep learning. Energy Storage Mater. 21, 446–456 (2019)

    Article  Google Scholar 

  3. K. Smith, et al., Computational Design of Batteries from Materials to Systems, National Renewable Energy Lab.(NREL), Golden, CO (United States) (2017)

    Google Scholar 

  4. S. Curtarolo et al., The high-throughput highway to computational materials design. Nat. Mater. 12(3), 191–201 (2013)

    Article  ADS  Google Scholar 

  5. A. Van der Ven et al., Rechargeable alkali-ion battery materials: theory and computation. Chem. Rev. 120(14), 6977–7019 (2020)

    Article  Google Scholar 

  6. G. Ceder, Opportunities and challenges for first-principles materials design and applications to Li battery materials. MRS Bull. 35(9), 693–701 (2010)

    Article  ADS  Google Scholar 

  7. T.R. Juran, M. Smeu, Hybrid density functional theory modeling of Ca, Zn, and Al ion batteries using the Chevrel phase Mo 6 S 8 cathode. Phys. Chem. Chem. Phys. 19(31), 20684–20690 (2017)

    Article  Google Scholar 

  8. G. Hautier et al., Phosphates as lithium-ion battery cathodes: an evaluation based on high-throughput ab initio calculations. Chem. Mater. 23(15), 3495–3508 (2011)

    Article  Google Scholar 

  9. G. Hautier et al., Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. J. Mater. Chem. 21(43), 17147–17153 (2011)

    Article  Google Scholar 

  10. Y. Wang, Y. Li, Ab initio prediction of two-dimensional Si 3 C enabling high specific capacity as an anode material for Li/Na/K-ion batteries. J. Mater. Chem. A 8(8), 4274–4282 (2020)

    Article  Google Scholar 

  11. T. Zhang et al., Understanding electrode materials of rechargeable lithium batteries via DFT calculations. Prog. Nat. Sci. Mater. Int. 23(3), 256–272 (2013)

    Article  Google Scholar 

  12. Q. He et al., Density functional theory for battery materials. Energy Environ. Mater. 2(4), 264–279 (2019)

    Article  Google Scholar 

  13. M. Ebner et al., Tortuosity anisotropy in lithium-ion battery electrodes. Adv. Energy Mater. 4(5), 1301278 (2014)

    Article  Google Scholar 

  14. M. So et al., Mechanism of silicon fragmentation in all-solid-state battery evaluated by discrete element method. J. Power Sour. 546, 231956 (2022)

    Article  Google Scholar 

  15. V. Becker et al., Modeling the influence of particle shape on mechanical compression and effective transport properties in granular lithium-ion battery electrodes. Energ. Technol. 9(6), 2000886 (2021)

    Article  Google Scholar 

  16. F. Shuang, K.E. Aifantis, A first molecular dynamics study for modeling the microstructure and mechanical behavior of Si nanopillars during lithiation. ACS Appl. Mater. Interfaces. 13(18), 21310–21319 (2021)

    Article  Google Scholar 

  17. S. Loftager, J.M. García-Lastra, T. Vegge, A density functional theory study of the ionic and electronic transport mechanisms in LiFeBO3 battery electrodes. J. Phys. Chem. C 120(33), 18355–18364 (2016)

    Article  Google Scholar 

  18. T. Flack et al., Many-Particle Li Ion dynamics in LiMPO4 olivine phosphates (M = Mn, Fe). J. Phys. Chem. C 126(30), 12339–12347 (2022)

    Article  Google Scholar 

  19. T. Das et al., Structural, dynamic, and diffusion properties of a Li 6 (PS 4) SCl superionic conductor from molecular dynamics simulations; prediction of a dramatically improved conductor. J Mater Chem A 10(30), 16319–16327 (2022)

    Article  Google Scholar 

  20. L. Van Duong, M.T. Nguyen, Y.A. Zulueta, Unravelling the alkali transport properties in nanocrystalline A 3 OX (A= Li, Na, X= Cl, Br) solid state electrolytes. A theoretical prediction. RSC Adv. 12(31), 20029–20036 (2022)

    Article  Google Scholar 

  21. Y.A. Zulueta, M.T. Nguyen, J.A. Dawson, Boosting Li-ion transport in transition-metal-doped Li2SnO3. Inorg. Chem. 59(16), 11841–11846 (2020)

    Article  Google Scholar 

  22. A. Hagopian et al., Importance of halide ions in the stabilization of hybrid Sn-based coatings for lithium electrodes. ACS Appl. Mater. Interfaces. 14(8), 10319–10326 (2022)

    Article  Google Scholar 

  23. A. Hagopian et al., Ab initio modelling of interfacial electrochemical properties: beyond implicit solvation limitations. J. Phys.: Condens. Matter. 33(30), 304001 (2021)

    Google Scholar 

  24. E.R. Fadel et al., Role of solvent-anion charge transfer in oxidative degradation of battery electrolytes. Nat. Commun. 10(1), 3360 (2019)

    Article  ADS  Google Scholar 

  25. A. Hagopian et al., Morphology evolution and dendrite growth in Li-and Mg-metal batteries: a potential dependent thermodynamic and kinetic multiscale ab initio study. Electrochim. Acta 353, 136493 (2020)

    Article  Google Scholar 

  26. X. Tang et al., Recovering large-scale battery aging dataset with machine learning. Patterns 2(8), 100302 (2021)

    Article  Google Scholar 

  27. K. Liu et al., A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery. IEEE Trans. Industr. Electron. 68(4), 3170–3180 (2020)

    Article  Google Scholar 

  28. J.T. Buchman, et al., Nickel enrichment of next-generation NMC nanomaterials alters material stability, causing unexpected dissolution behavior and observed toxicity to S. oneidensis MR-1 and D. magna. Environ. Sci. Nano, 2020. 7(2), 571–587.

    Google Scholar 

  29. S. Farran, Deep-sea mining and the potential environmental cost of ‘going green’ in the Pacific. Environ. Law Rev. 24(3), 173–190 (2022)

    Article  Google Scholar 

  30. A. Kung et al., Governing deep sea mining in the face of uncertainty. J. Environ. Manage. 279, 111593 (2021)

    Article  Google Scholar 

  31. R. Sharma, Environmental issues of deep-sea mining. Procedia Earth Planet. Sci. 11, 204–211 (2015)

    Article  ADS  Google Scholar 

  32. N.C. Mestre et al., Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining. Environ. Pollut. 228, 169–178 (2017)

    Article  Google Scholar 

  33. M.C. Díaz-Ramírez et al., Battery manufacturing resource assessment to minimise component production environmental impacts. Sustainability 12(17), 6840 (2020)

    Article  Google Scholar 

  34. J. Dunn et al., Circularity of lithium-ion battery materials in electric vehicles. Environ. Sci. Technol. 55(8), 5189–5198 (2021)

    Article  ADS  Google Scholar 

  35. Y. Liang et al., A review of rechargeable batteries for portable electronic devices. InfoMat 1(1), 6–32 (2019)

    Article  Google Scholar 

  36. X. Shen, et al., Advanced electrode materials in lithium batteries: retrospect and prospect. Energy Mater. Adva. 2021 (2021)

    Google Scholar 

  37. H. Löbberding et al., From cell to battery system in BEVs: Analysis of system packing efficiency and cell types. World Electr. Veh. J. 11(4), 77 (2020)

    Article  Google Scholar 

  38. M.S. Whittingham, Lithium Batteries: 50 Years of Advances to Address the Next 20 Years of Climate Issues, (ACS Publications, 2020), pp. 8435–8437

    Google Scholar 

  39. A. Bhowmik et al., Implications of the battery 2030+ AI-assisted toolkit on future low-TRL battery discoveries and chemistries. Adv. Energy Mater. 12(17), 2102698 (2022)

    Article  Google Scholar 

  40. M. Bini et al., Rechargeable Lithium Batteries: Key Scientific and Technological Challenges, in Rechargeable Lithium Batteries. (Elsevier, 2015), pp.1–17

    Google Scholar 

  41. S. Ferrari et al., Solid-state post Li metal ion batteries: a sustainable forthcoming reality? Adv. Energy Mater. 11(43), 2100785 (2021)

    Article  Google Scholar 

  42. G.-C. Ri et al., First-principles study of ternary graphite compounds cointercalated with alkali atoms (Li, Na, and K) and alkylamines towards alkali ion battery applications. J. Power Sources 324, 758–765 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorian A. H. Hanaor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanaor, D.A.H. (2024). Introduction: Battery Materials: Bringing It All Together for Tomorrow’s Energy Storage Needs. In: Hanaor, D.A.H. (eds) Computational Design of Battery Materials. Topics in Applied Physics, vol 150. Springer, Cham. https://doi.org/10.1007/978-3-031-47303-6_1

Download citation

Publish with us

Policies and ethics

Navigation